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ABSTRACT: The episodic hyperproduction of mucilage macroaggregates in the northern Adriatic
Sea creates an important site for the accumulation, transformation, and degradation of organic mat-
ter. In this review, the structure and function of macroaggregate components in relation to their
macrogel and colloidal fractions are discussed. High resolution electron microscopy showed a very
complex structure, a honeycomb-like structure of the mucus macroagregates that might grow to
macroscopic sizes. The process of the formation and microbial interaction with the physicochemical
diversity of the organic matter pool is poorly understood. Whether the in situ bacteria react to the car-
bohydrate-rich mucus as an imbalance in its C:N:P ratio or whether the mucus is in fact largely a bac-
terial construct in relation to high dissolved organic carbon levels is unknown. The majority of carbo-
hydrate and protein macroaggregate pools are potentially degradable, while the great majority of
lipids can be preserved in the water column and exported away or finally deposited on the seabed.
Our present knowledge indicates that different macroaggregate fractions and components are sub-
jected to compositional selective reactivity, with important implications for macroaggregate persis-
tence. Future work should reconcile the discrepancies between bacterial ectoenzyme potential activ-
ities and biogeochemical degradation sequences based on actual measurements. The determination
of biofilm architecture, particularly the spatial arrangement of microcolonies, has profound implica-
tions for the function of these complex communities. We need to improve our understanding of the
dynamic relationship among bacteria, other microorganisms, and a variety of organic matter forms.
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OCCURRENCE AND ORIGIN

OF MACROAGGREGATES

Macroaggregates of various sizes, colors, and
shapes — classified as small flocs, macroflocs, stringers
(1 to 25 cm), clouds (5-10 cm to 3 m), creamy, and
gelatinous surface layers (Stachowitsch et al. 1990) —
occur periodically in the northern Adriatic. Different
ideas have been presented to explain the development
of the mucilage aggregates in the northern Adriatic,
and a recent overview of these can be found in Giani et
al. (2005a). In most studies, the importance of phyto-
plankton for the formation of mucilage has been tested
in combination with specific environmental factors,
changes in community structure, nutrient limitation,
cell lyses or viral attack, and reduced grazing pressure
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(Kaltenbock & Herndl 1992, Malej & Harris 1993,
Peduzzi & Weinbauer 1993, Baldi et al. 1997, Azam et
al. 1999, Granéli et al. 1999, Herndl et al. 1999, Myk-
lestad 1999, Najdek et al. 2002, Manganelli & Funari
2003, Degobbis et al. 2005, Kovac et al. 2005). In partic-
ular, diatoms are thought to play a key role in
macroaggregate formation through the release, i.e.
exudation, of polymeric substances mostly composed
of heteropolysaccharides and to a lesser extent of lipids
and proteins (Pajdak-Stos et al. 2001, Kovac et al. 2002,
2004, 2008).

The first report of mucilage appearance in the Adri-
atic dates back to 1729 (Fonda-Umani et al. 1989). In
recent decades, the extent and frequency of occur-
rence of nuisance mucilage has increased, as has pub-
lic discontent (Giani et al. 2005a). The formation of
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macroaggregates usually starts in late spring and is
thought to be linked to previous changes in the seawa-
ter inorganic N:P ratio rather than to the concentration
of individual nutrients (Cozzi et al. 2004, Penna et al.
2009). The marked retention of fresh water and water
column stratification in the northern Adriatic during
this period also seems to contribute to the development
(Degobbis et al. 2005). In addition, accumulation of
mucilage organic matter (OM) is enhanced by the
peculiar hydrological conditions of the northern Adri-
atic during summer when this sea region becomes iso-
lated from the rest of the Adriatic with the formation of
a gyre. This change is connected to an increased resi-
dence time of the water, development of a pycnocline,
and low turbulent shear (Supi¢ & Orli¢ 1999). Estimates
of the volume-specific carbon mass of mucilage-associ-
ated suspended matter that accumulated in the water
column during mucilage events in 1997 and 2000
yielded values of about 50 mg C I"! for dense water col-
umn mucilage clouds (Malej et al. 2001). According to

high microbial activity in the seawater, the process of
mucus formation is a result of the combination of
microbial activity and environmental conditions. Here,
we intend to present and discuss the role of microor-
ganisms in the formation of mucus aggregates. In order
to further this understanding, mucilage samples were
analyzed using different microscopic techniques. In
addition, the chemical composition of young and age-
ing aggregates is presented in an attempt to describe
the function (activity, role) of microorganisms in mucus
aggregates.

STRUCTURE AND CHEMICAL COMPOSITION OF
MACROAGGREGATES

The mucilage appears to be a highly structured
matrix containing diverse microbial flora, colloidal
organic debris, and inorganic particles. Light and epi-
fluorescent microscopy showed a diverse microbial

Fig. 1. Epifluorescent images of mucus samples in the Gulf of Trieste (northern Adriatic) (30 June 2004). Mucus samples were

collected by divers, fixed with formaldehyde, and photographed by Olympus BH2 (DP70 soft). (a,b) DAPI (4', 6-diamino-2-

phenylindole 1 ug ml™?, final Sigma)-stained samples where heterotrophic bacteria of different size and forms are presented (UV

filter set). (c) Autofluorescence of numerous cyanobacteria and unicellular Chlorococcus cells within a micro-millimeter mucus

aggregate (magnification 200x). (d) Typical nanoflagellate cells with body scales visible after sample staining with DAPI
(UV filter set)
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community attached to/in the mucus (Fig. 1). The most
abundant organisms within the macroaggregates were
bacteria, cyanobacteria, flagellates, and different
diatoms. Different studies have demonstrated a highly
variable composition of bacteria and phytoplankton in
the mucilage during periods of macroaggregate forma-
tion in the northern Adriatic (Rath et al. 1998, Najdek
et al. 2002, Kovac et al. 2005, Flander-Putrle & Malej
2008).

A large number of samples were examined using
transmission electron microscopy (TEM) or scanning
electron microscopy (SEM) and showed the complex ul-
trastructure of the mucus macroaggregates. SEM
analysis, using the high-pressure freezing method
(Studer et al. 2008), showed a very complex network at
low magnification (Fig. 2a). The inner core of the mucus
consisted of fibers forming net-like structures. At
higher magnification, it was possible to see fibers of dif-
ferent shapes and thickness, organized into complex
networks (Fig. 2b,c). In the TEM images of thin mucus
layers, the honeycomb-like structure is clearly visible
(Fig. 3). A fibrilar, honeycomb structure can grow to
macroscopic size in cultures and biofilms, but, as seen
in Fig. 3, it also occurs in the free water mass ecosystem
in the northern Adriatic. However, the process of
macroaggregate formation and how heterotrophic bac-
teria interact in the seawater with the great physico-
chemical diversity of the OM pool is poorly understood.

Physicochemically, macroaggregates represent the
transition between colloidal OM (macromolecules),
into macrogels (matrix) and particulate OM (POM,;
Chin et al. 1998, Verdugo et al. 2004, Svetli¢i¢ et al.
2005). The mechanism of gel formation can include
crosslinking with covalent bonds, chain associations,
and particle aggregation (Clark & Farrer 1995). Poly-
saccharide gels can be built up through various physi-
cal interactions, including electrostatic, dipole, van der
Waals, charge transfer, hydrophobic, and hydrogen
bonding as well as double helix formation (Guenet
1992). The gelation process in mucilage formation
probably encompasses first the assembling of gelator
molecules (polysaccharides) into small clusters (fibrils,
strands, ropes) and successively into a 3D volume-fill-
ing network (Raghavan & Cipriano 2005). The agglom-
eration and stabilization of the macrogel could be
enhanced by the association of colloids with cations
and organic and inorganic particles (Kovac et al. 2004,
Verdugo et al. 2004).

The total carbohydrate and protein contents of the
macroaggregate matrix average about 14 and 5%,
respectively (Posedel & Faganeli 1991, Faganeli et al.
1995, Penna et al. 2009). The carbohydrate and protein
contents are matched by higher organic carbon, total
nitrogen, and total phosphorus (Cgg, Ny, and Pyy) con-
tents, averaging 16.4, 0.7, and 0.03%, respectively.
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Fig. 2. Scanning electron micrographs of the mucus collected
at 14 m depth in the Gulf of Trieste on 30 June 2004. Speci-
mens were prepared using the high pressure freezing method
and no other sample preparation (Cryo SEM, Philips XL20).
(a) Sheets of material at lower magnification. (b) The inner
core of the mucus consisted of fibers forming irregular
network-like structures. (c) Network structures appeared to
be made up of fibers of different thickness
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Fig. 3. Transmission electron microscopy images of the mucus aggregates from the northern Adriatic (30 June 2004). The images
of ultra thin layers of mucus show a regular honeycomb structure (Jeol 100 CX electron microscope)

The percentages are normally lower in deeper, par-
tially degraded mucus aggregates (average of total
carbohydrate, 7.6 %; and total protein, 0.3 %).

The macroaggregate interstitial water colloids also
show the presence of both basic constituents, i.e. car-
bohydrates and proteins (Fig. 4), while the bands
assigned to lipids, i.e. aliphatic components, are less
evident. In all sample analyses, cyanogenic glycosides
were detected, which might represent the important
part of organic nitrilated compounds, whose origin
can be related to amino acids (Legras et al. 1990). The
presence of carbohydrates in all colloid fractions was
also confirmed by higher UV absorption spectral
analyses (at A = 250 nm; Binkley & Binkley 1999,
Giani et al. 2005b). The results of the carbohydrate
content and the C:N ratio within the higher molecular
weight (MW) colloidal fraction (Fig. 5) suggest that N-
containing carbohydrates can be important con-
stituents of this fraction. The presence of the non-pro-
tein N compounds was also supported by 8'°N data
exhibiting low values, especially in the >30 kDa frac-
tion (Faganeli et al. 2009) in accordance with pub-
lished isotopic data of non-protein nitrogen com-
pounds, for example N-acetylglucosamine (Smucker
& Dawson 1986), showing that a significant isotope
depletion of these compounds, namely amino sugars
as well as chlorophyll and nucleic acids, occurs due
to enzymatic transamination (Macko et al. 1986, Sachs
et al. 1999).

ROLE OF MICROBES IN MACROAGGREGATES

In the pelagic photic zone, nutrient limitation is
believed to be a fundamental controlling factor for the
community composition of microorganisms. Malfunc-
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Fig. 4. Fourier transform infrared (FTIR) spectra of macro-
aggregate colloidal fractions (retentates) with nominal mole-
cular weights of 30 to 10 kDa (UF1), 10 to 5 kDa (UF2),
and <5 kDa (UF3); carbohydrate bands (region ~1150 to
900 cm™!), protein bands (region 1654 to 1635 cm™'), lipid
bands (region 2950 to 2850 cm™?), and cyanogenic glycosides
(nitrile) band (at 2240 cm™!, assignment after Nishikida &
Hannah 1996)
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tioning of the microbial loop has been proposed as a
common feature for the accumulation of dissolved OM
(DOM) in marine systems, wherein P-limited bacteria
are unable to consume dissolved organic carbon
(DOC) as fast as it is produced (Thingstad et al. 1997).
Multi-year studies of microbial processes in the coastal
northern Adriatic Sea showed elevated concentrations
of DOC during high-primary-production seasons
(Fonda Umani et al. 2007) and the accumulation of
dissolved and colloidal polysaccharides resistant to
degradation (Azam et al. 1999) as a source material for
mucilage. The release and accumulation of polysac-
charides were studied in different controlled enrich-
ment experiments, but mainly to understand the re-
lationship between nutrient limitation, DOM accu-
mulation, and microbial response (Fajon et al. 1999,
Malej et al. 2003). Bacterial abundance and production
are considerably higher in the aggregates (Miiller-
Niklas et al. 1994) compared to concentrations in
surrounding water. During summer, the Adriatic Sea is
P-limited, and the dominance of large rod- and vibrio-
shaped bacteria has been recorded in some other parts
of the Mediterranean Sea (La Ferla & Leonardi 2005).
Recently it was proposed that the growth of bacteria
under nutrient limitation conditions depends on the
‘'surface:cell requirement of limiting element’' ratio
(Thingstad et al. 2005). This observation fits very well
with the response observed for the single organism
Vibrio splendidus, which increases in size during nutri-
ent starvation as a means of gaining better uptake
properties (Lovdal et al. 2008). Whether the in situ bac-
teria react to the carbohydrate-rich mucus as an imbal-
ance in the C:N:P ratio like V. splendidus does, or

duces the mucus.

Bacterial cells comprise the largest liv-
ing surface in marine environments, and
bacterioplankton release DOM to form
gel (Heissenberger et al. 1996, Stodereg-
ger & Herndl 1999). The importance of
microalgal-bacterial interactions within
marine snow and the release of extracellular material
have been emphasized previously (Heissenberger et
al. 1996, Leppard et al. 1996). Heissenberger et al.
(1996) observed that particle- associated bacteria
exhibit larger envelopes than free-living bacteria, but
the fate of these structures was not studied further. The
microbial species that may form regular structures,
including 'honeycombs’ or 'veils,’ have been studied
mainly in biofilms from cultures or aquatic environ-
ments (Dalton et al. 1996, Trichet et al. 2001,
Schaudinn et al. 2007 and references therein). Mucus
aggregates, comparable to biofilms, could be defined
as assemblages of microorganisms and their associated
extracellular products attached to an abiotic or biotic
surface (Davey & O'Toole 2000). Biofilm microorgan-
isms demonstrate physiological and morphological
changes during their transition from planktonic growth
to surface-attached community formation (O'Toole et
al. 2000, Whiteley et al. 2001, Sauer et al. 2002). A
range of behavior patterns in different surface-coloniz-
ing bacteria has been studied, and it is evident that the
processes are highly regulated. Bacterial cells sur-
round themselves to form microcolonies whose shape
and structure are determined by cell-to-cell signals
and are influenced by environmental conditions. Some
Gram-negative marine bacteria associated within
marine snow produce communication signals involved
in quorum sensing, such as acylated homoserine lac-
tones that are responsible for phenotypic behavior (for
biofilm formation and exoenzyme production) when
the population reaches high densities (Gram et al.
2002). There is also recent literature based on genomic
interferences that pelagic bacteria produce surface
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polysaccharides and proteins for interaction with parti-
cles and organisms (Moran et al. 2007). Recently, Mal-
fatti & Azam (2009) showed that bacteria themselves
produced cell-surface architectures that served as the
structural basis for the networks at nanometer to
micrometer scales. High-resolution atomic force
microscopy analyses showed the interconnection of
cell-surface gel matrices between microbial cells. The
phylogenic specificities of microbes, their high abun-
dance, and potential for aggregation to form complex
networks are confirmed as quantitatively significant
processes and may influence the biochemistry of the
mucus macroaggregates.

MACROAGGREGATE DEGRADATION

In this review, we assume that the mucilage forms as
the result of an unbalanced C:N:P ratio in the water col-
umn, which can favor extensive mucus structures that
would benefit the organism in some specific way. This
also means that the mucus must have a lifecycle initiated
and growing as long as the microbes can take advantage
of the mucus environment. With changing environmen-
tal conditions, the mucus environment can no longer of-
fer a selective advantage, and thus the mucus starts to
become old and a degradation process is initiated.

Bacteria are the principal decomposers of biopoly-
mers in macroaggregates (Miuller-Niklas et al. 1994,
Mingazzini & Take 1995). Macroaggregate degrada-
tion is supported by high bacterial abundance and
activity, and by an efficient recycling of nutrients,
which seem dependent on aggregate type and age
(Del Negro et al. 2005). Bacterial extracellular enzymes
are important catalysts in the degradation of macro-
aggregate OM to DOM, significantly influencing the
marine biogeochemical cycling of organic carbon and
other elements that limit microorganism growth. The
formed low MW products (<600 Da) can be taken up
by heterotrophic prokaryotes (Nagata 2000, Conan et
al. 2007) and are substrates for subsequent transforma-
tions including microbial and photochemical degrada-
tion, and polymerization (Kovac¢ et al. 1998). The qual-
ity of OM, including its C, N, P stoichiometric balance,
determines the proportion between biomass produc-
tion and remineralization (Obernosterer & Herndl
1995, del Giorgio & Cole 2000). Moreover, the transfor-
mation and degradation of macroaggregate OM
encompass size- and compositional-dependent reac-
tivity changes (Benner 2002). The degradation of sink-
ing macroaggregates, enriched in the interstitial water
oxygen concentration, is dependent on their residence
time (Ploug et al. 1999), which is connected to the strat-
ification of the northern Adriatic seawater column and
the formation of the summer gyre (Supi¢ & Orli¢ 1999).

Absorbance

However, we found only a slight increase of C:N
ratios (from 23 to 25, molar) in the water column
macroaggregate matrices, suggesting a parallel degra-
dation (similar degradation kinetics) of macroaggre-
gate carbohydrates and proteins in the summer strati-
fied seawater column (Posedel & Faganeli 1991). This
finding differs from those reported by others in the
northern Adriatic, i.e. significant increasing C:N ratios
in older macroaggregates (Del Negro et al. 2005). Our
observation was further supported by Fourier trans-
form infrared (FTIR) spectroscopy analyses showing
the presence of carbohydrates and proteins in surface
and water column samples while lipid contents were
lower (Fig. 6). The selective degradation of bulk
macroaggregate carbohydrates is reflected in the neu-
tral monosaccharide composition showing decreasing
glucose content with macroaggregate age (Faganeli et
al. 1995, Giani et al. 2005b).

According to Cgq, Ny (Fig. 5), and high perfor-
mance size-exclusion chromatography (N. Koron et al.
unpubl.) analyses, the degradation of macroaggregate
colloidal fractions proceeds faster in the >30 kDa and
30 to 10 kDa fractions compared to the 10 to 5 kDa
fraction. The differences in reactivity can again be ex-
plained by higher levels of N-containing polysaccha-
rides in the higher MW fractions and rapid degradation
of carbohydrates in all studied fractions leading to the
preservation of organic nitrogen in aged degraded
(‘'mature’) macroaggregates. Recent reports under-
score up to a 3-fold faster microbial degradation of the
carbohydrate component of glycoproteins compared to
the proteinaceous component (Ogawa et al. 2001,
Nagata et al. 2003).
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ENZYMATIC HYDROLYSIS OF
MACROAGGREGATES

Bacteria associated with macroaggregates exhibit a
very high potential enzymatic hydrolysis compared to
free-living cells in the surrounding water (Del Negro
et al. 2005, Zoppini et al. 2005), and high potential
aminopeptidase activity suggests that proteins are de-
graded more rapidly than other constituents (Simon et
al. 2002), which is in accordance with the reported pref-
erential degradation of organic N compared to C in ag-
gregates (Grossart & Ploug 2001) and marine snow
(Muller-Niklas et al. 1994). This can be reflected in a
progressive increase of carbon content in the macroag-
gregates. The potential activity of lipase, one of the
most active ectoenzymes of aquatic bacteria (Zoppini et
al. 2005), was also found to be very effective in
macroaggregates. Glucosidase activity was reported to
be lower compared to aminopeptidase activity. It was
also proposed that the rapid hydrolysis of proteina-
ceous material implies its large availability for bacteria
(Zoppini et al. 2005). However, Danovaro et al. (2005)
found high B-glucosidase activity in the northern Adri-
atic waters in summer during a mucilage event. The
lower contribution of potential polysaccharide hy-
drolytic activity can lead to enrichment in polysaccha-
ride content presumably rich in refractory compounds.
The most detectable B-glucosidase activity can indicate
the shift towards a more refractory B-glucosidic bond in
aged macroaggregates (Miller-Niklas et al. 1994). The
potential hydrolysis of organophosphorus compounds
by alkaline phosphatase indicated slower P cycling
compared to N (peptidase activity) and, thus, an in-
creasing bacterial P limitation in aged macroaggre-
gates (Zoppini et al. 2005).

This ‘spectrum’ of potential extracellular enzymatic
activities was not directly reflected in the chemical
composition of the progressive aged macroaggregates
or in laboratory degradation experiments. During the
incubation of macroaggregates, carbohydrates and
proteins decreased rapidly, but a slower decrease of
lipids, only at the end of the experiment, was presum-
ably due to lower lipid degradability (Fig. 6). This
observation was in agreement with previously re-
ported studies using 'H-nuclear magnetic resonance
(NMR) spectroscopy performed on bulk macroaggre-
gates collected in situ, showing that carbohydrates
degrade much faster than lipids (Kovac et al. 2002).
The study of laboratory-based degradation of
macroaggregate carbohydrates by the addition of cul-
tured bacterial strains, isolated from the Gulf of Tri-
este, in parallel with bacterial cell counting and bacte-
rial production revealed a rapid increase of dissolved
carbohydrate concentrations followed by a slow
decrease (Fig. 7). The latter was probably due to
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Fig. 7. (a) Concentrations of total dissolved carbohydrates
(TCHO), (b) bacterial carbon production (BCP), and (c) bac-
terial abundance during the macroaggregate degradation
experiment (C: control, M: addition of bacterial isolates, MA:
addition of bacterial isolates and inorganic N, P nutrients).
TCHO were measured according to the protocol of Dubois
et al. (1956), BCP by the *H-leucine incorporation and centri-
fugation method (Smith & Azam 1992), and bacterial abun-
dance with DAPI staining (Porter & Feig 1980). Error bars
are =SD

higher bacterial uptake evidenced by increasing bac-
terial biomass and bacterial carbon production. The
simultaneous addition of inorganic N and P nutrients
had a negligible effect on bacterial density and pro-
duction, suggesting that bacterial C-uptake should not
be severely limited by inorganic nutrients, and exhib-
ited a rather limited effect on carbohydrate release.

‘BIOAVAILABLE' MACROAGGREGATE POOL

The bulk macroaggregates from the Gulf of Trieste
(2004) contained about 14 % carbohydrates and 5 % pro-
teins (Penna et al. 2009). The enzymatically hydrolyzed
carbohydrates and proteins comprised about 70 and
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>50 %, respectively, of carbohydrate and protein pools in
surface and water column macroaggregates. Both con-
stituents, probably bonded into glycoproteins, can be de-
graded in parallel. The percentages were similar to those
estimated from chemical analyses of particulate and sed-
imenting OM containing macroaggregates in the sum-
mer stratified seawater column in the Gulf of Trieste
(Posedel & Faganeli 1991). The bacterial degradation
of macroaggregate polysaccharides studied in vitro
confirmed the rapid release of dissolved carbohydrates
and later a slowed decrease, probably due to higher
bacterial activity. The remaining less-degradable poly-
saccharides, containing more B-glycosidic linkages,
and low-degradable proteinaceous matter significantly
contribute to macroaggregate persistence. This indicates
that the degradation, persistence, and accumulation of
macroaggregates are biochemically fractionated and
could not simply be the result of rather low bacterial glu-
cosidase activity observed in the northern Adriatic (Za-
ccone et al. 2002). Considering the macroaggregate lipid
content of about 2 % (Penna et al. 2009), the hydrolyzed
lipids should comprise only about 30 % of the total lipid
pool. Hence, most of the macroaggregate lipids includ-
ing glycolipids, contrary to more degradable carbohy-
drates and proteins, would persist in the summer strati-
fied water column (Kovac¢ et al. 2002) and would finally
be deposited on the seabed and transported southward
into the deeper basin (Fonda Umani et al. 2007). The la-
bility of the macroaggregate colloidal fraction is also de-
pendent on its composition. Since the polysaccharide
component in the lower MW colloidal fraction seems
more degradable compared to N-containing polysaccha-
ridic material, the higher MW fraction represents a pos-
sible path of organic nitrogen preservation in marine
organic colloids. As a concurrent process, the photo-
chemical degradation of macroaggregate colloids
cleaves glycosidic bonds, producing oligomers and
monomers (Kovac¢ et al. 1998). All of these aspects can
also have an important impact on metal, for example Hg,
and OM interactions leading to metal immobilization as
well as its release into the seawater medium (Guo &
Santschi 2007). Future work should reconcile the dis-
crepancies between observed macroaggregate ectoen-
zyme potential activities and biogeochemical degrada-
tion sequences and enzyme hydrolysis. This difference
underlines the important relationship between substrate
composition and its lability.

CONCLUDING REMARKS

Mucilage is a compact and dense material, with a
huge heterogeneity in its network, chemical, and
organism composition and structures. Conformation
changes in macromolecules and their complexes after

a phytoplankton bloom are of enormous interest to
understand the role of dissolved and colloidal OM and
its aggregation to form mucilage under relevant eco-
system conditions. The chemical composition of such
aggregates is influenced by various factors, including
nutrients, temperature, pH, physiology, and age of the
aggregate. The available information is inadequate to
explain the origin/mechanisms of mucus aggregate
formation in both laboratory and field studies. Micro-
bial extracellular polymeric substances as such are
widely distributed in marine environments and act as
hotspots for the transformation of OM and modification
of the micro-environment. Laboratory studies of these
microenvironments are few, and lack of appropriate
tools restricts in situ studies of various processes occur-
ring in these micro-niches. According to the complex-
ity of the mucus material, a combination of techniques
is required to access the different parameters which
contribute to mucilage formation: organic and inor-
ganic compounds (molecules) and microorganisms.

Recent and continuous methodological advances in
marine microbiology will allow better imaging and
analytical techniques to determine structure on a
(sub)micrometer scale, with non-destructive methods.
The determination of biofilm architecture, particularly
the spatial arrangement of microcolonies, might have
important implications for the function of these com-
plex biochemical structures.

Another area that has not been explored much is the
change in bacterial diversity during aggregation and
degradation of macroaggregates. Intensive studies
using new molecular techniques need to be carried
out to assess the microbial diversity and reveal the
changes in microbial community during the production
and degradation of mucus macroaggregates. Future
work should also be focused on bacterial ectoenzyme
activities and biogeochemical degradation processes
within the water column as well as above the bottom,
since the mucus macroaggregates represent a danger
to seafloor communities (Schiaparelli et al. 2007).
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