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INTRODUCTION

The discovery of alternating dense and less dense
bands in the calcium carbonate (CaCO3) skeletons of
massive corals and their confirmation as annual by
autoradiography (Knutson et al. 1972) and radiometric
techniques (Macintyre & Smith 1974, Moore & Krish-
naswami 1974) opened the door to the ‘vast store-
houses of information about chemical and physical
changes of waters in which they grew’ (Moore & Krish-
naswami 1974, p. 274). These annual density bands are
apparent when slices of coral skeleton, taken perpen-
dicular to the main vertical growth axis of the colony,
are X-rayed. Knowing the date of collection of the sam-
ple, well-displayed annual band pairs, consisting of a
dense and less dense band per year, can be counted
back through time to provide a chronology of coral
growth.

Starting from this basis, 2 main types of dated
records have been obtained from massive corals. The
first is growth data, i.e. annual linear extension rate,
average annual skeletal density and, combining these,
the mass of CaCO3 deposited per year (calcification

rate). Hiatuses in coral growth and unusual banding
patterns, such as ‘stress’ bands, can also be seen on
X-rays of coral slices. The second derives from geo-
chemical composition analyses of the calcium carbon-
ate skeleton: a wealth of isotopic and geochemical
tracers are incorporated into the skeleton during
growth (known as ‘inclusive’ records) and are mea-
sured in samples removed from along major growth
axes of the coral.

In the 36 yr since the discovery of annual density
bands, nearly 800 papers have been published
describing analyses of records obtained from mas-
sive coral skeletons. In the first 15 yr after their dis-
covery, the majority (60%) of papers examined the
annual bands as records of coral growth. In the most
recent 15 yr period, however, the vast majority of
papers (80%) have dealt with analyses of inclusive
records. This change in focus is also reflected in
recent reviews by the almost exclusive emphasis on
proxy climate and environmental records provided
by geochemical tracers from corals (Gagan et al. 2000,
Cole 2003, Felis & Patzold 2003, Correge 2006,
Grottoli & Eakin 2007). The annual density banding
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pattern appears to have been relegated to the role of
an initial visualisation tool for identifying transects for
subsequent geochemical analyses and to assist in
establishing a chronology. Does this change in focus
mean that coral growth records now provide little
useful information?

There is now a variety of experimental, modelling
and theoretical evidence that coral calcification rates
(and those of other marine calcifying organisms) will
decrease as the oceans continue to absorb part of the
excess atmospheric CO2 produced by anthropogenic
activities (Royal Society 2005, Kleypas et al. 2006). In
this article, I consider how annual growth records from
massive coral skeletons, the commonly used Indo-
Pacific Porites spp., can contribute to identifying the
possible consequences of increasing ocean acidifica-
tion and warming water temperatures for a major
marine calcifying organism. I present
• An update on the spatial temperature control of aver-

age Porites growth characteristics
• Evidence for possible age effects on coral growth re-

cords that could confound detecting long-term trends
• Evidence for recent coral growth changes from 3 reefs

in the central Great Barrier Reef (GBR), Australia.

MEASURING CORAL GROWTH VARIABLES

Three variables describing coral growth can be ob-
tained from the annual density banding pattern: (1)
how much the coral is extending each year—i.e. the
linear extension rate measured between annual den-
sity minima or maxima (mm yr–1); (2) average annual
skeletal density (g cm–3); and (3) the calcification rate
(g cm–2 yr–1)—i.e. the multiple of the first 2 variables,
which provides the mass of CaCO3 skeleton deposited
per year. These are typically obtained from skeletal
slices (~7 mm thick) cut along the plane of the vertical
growth axis of a coral core or colony.

The most commonly reported coral growth variable
is the linear extension rate. This can be measured
directly from X-ray positive prints of skeletal slices
with the annual bandwidth defined as the linear dis-
tance between equivalent parts of adjacent annual
density band pairs (e.g. Hudson 1981). A variety of
techniques have been used to measure the less com-
monly reported skeletal density variable. These
include the destructive technique of removing sections
of skeleton and determining the weight and volume,
and hence the density (e.g. Highsmith 1979, Carricart-
Ganivet et al. 2000) and the following non-destructive
techniques: ‘photo’ or ‘optical’ scanning of the coral
X-ray with appropriate CaCO3 standards to obtain
absolute skeletal density (e.g. Aller & Dodge 1974,
Buddemeier et al. 1974, Grigg 1981, Helmle et al.
2002); computerized tomography (CT) scanning of a
coral slice (Logan & Anderson 1991, Bessat & Buigues
2001); and gamma densitometry (Fig. 1), which mea-
sures the attenuation through the thickness of a coral
slice of a beam of gamma photons (e.g. Chalker &
Barnes 1990, Draschba et al. 2000) and has been shown
to produce comparable measurements to the optical
technique (Carricart-Ganivet & Barnes 2007). Once
measurements of linear extension and skeletal density
have been obtained, it is simple to produce annual
calcification rates.

Unless indicated otherwise, all material used in the
following analyses were from the Australian Institute
of Marine Science collection of small coral colonies and
coral cores (see Lough et al. 1999) and some recently
collected short (~50 cm length) cores from Porites
corals growing in shallow-water (< 10 m) environments
of the Great Barrier Reef (GBR), Australia. Dated
skeletal growth variables were obtained by gamma
densitometry of the coral slices (Lough & Barnes 1997,
2000). For comparative analyses of growth records
from different corals, each dated coral series was first
standardized by dividing by the long-term mean of
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Fig. 1. Porites sp. X-ray positive of top ~23 cm of a slice of Porites coral showing
annual density banding pattern and, superimposed, measured skeletal density
along a central track of the slice. The density varies between ~1.0 and 1.4 g cm–3
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each series. This allowed comparisons of relative trends
amongst corals with differing average skeletal growth
parameters. Standard linear regression techniques
were used to examine relationships between variables
and through time.

TEMPERATURE CONTROL ON AVERAGE PORITES
GROWTH CHARACTERISTICS

Average coral growth rates in Porites from 44 Indo-
Pacific reefs were analysed by Lough & Barnes (2000).
This dataset has been expanded to 49 reefs with the
addition of growth data for 15 short Porites cores from
4 sites in the Arabian Gulf (~28° N, 50° E) (Poulsen
et al. 2006) and 11 Porites colonies from Lihir Island,
Papua New Guinea (~3° S, 153° E) (J. M. Lough
unpubl. data). For the 49 sites, as reported previously
(Lough & Barnes 2000), average skeletal density was
inversely related to linear extension rate and calcifica-
tion rate (r2 = 0.57, p < 0.000; r2 = 0.35, p < 0.000,
respectively) and linear extension is the main source of
variability in calcification rate (r2 = 0.94, p < 0.000).

Even with the addition of new data for 5 sites (includ-
ing Lihir Island with the warmest, of all the 49 sites,
average annual sea surface temperature [SST] of
29.5°C) there is no change in the significant linear rela-
tionship between average annual SST and Porites
growth characteristics found by Lough & Barnes
(2000); average linear extension increases ~3 mm yr–1

and average calcification by ~0.33 g cm–2 yr–1 for each
1°C rise in average SSTs (Fig. 2).

Average linear extension and calcification rates in
the massive coral Porites are significantly linearly
related to average SST. This spatially derived relation-
ship is evident based on corals growing in average
water temperatures between ~23 to 30°C. Earlier evi-
dence of increasing coral extension and calcification
rates obtained from long coral cores (covering the past
200 to 250 yr) that matched observed temperature in-
creased suggested that, at least initially, some corals
may respond to global warming by increasing their
growth rates (Lough & Barnes 2000, Bessat & Buigues
2001). This neglects 3 other possible responses of coral
growth to the enhanced greenhouse effect. The first of
these is reduced or impaired growth as a result of more
frequent mass coral bleaching events, though massive
Porites tend to be more thermally tolerant than branch-
ing species (Marshall & Baird 2000). Several recent
Porites coral cores from the Great Barrier Reef did,
however, show growth hiatuses associated with the
1998 and 2002 (Berkelmans et al. 2004) mass coral
bleaching events on the GBR (J. M. Lough pers. obs.).
The second response is the reduced coral growth as a
result of changing ocean chemistry reducing the abil-

ity of marine calcifying organisms to form their skele-
tons (Kleypas et al. 1999), and the third possibility is a
non-linear response of coral calcification rates to rising
water temperatures with calcification reaching a
plateau and then declining at higher temperatures
(Jokiel & Coles 1977, Marshall & Clode 2004, Kleypas
et al. 2005, Cooper et al. 2008).

AGE EFFECTS ON CORAL GROWTH RECORDS

Tree-ring widths typically exhibit an age effect with
the young tree producing wider annual rings which
progressively decrease in width as the tree ages (Fritts
1976). This ‘growth curve’ artefact has to be removed
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Fig. 2. Porites spp. Porites growth data averaged across
colonies from each of 49 reefs vs. annual average sea surface
temperature (SST) for (a) density, (b) extension and (c) calcifi-
cation. Linear regressions also shown. Open diamonds are
data for 4 sites in the Arabian Gulf and 1 site at Lihir Island
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before using tree-ring width chronologies for dendro-
climatic reconstructions. There has, to date, been no
systematic analyses of possible age effects on growth
records from massive corals, though Lough & Barnes
(1997) noted ‘a tendency for higher density to be asso-
ciated with lower extension rates during the early
parts’ of 35 long cores from the GBR.

To test for possible age effects on coral growth para-
meters, growth variables were taken from 43 long
Porites cores with at least 100 yr of record. The earliest
start year was 1572 and the latest 1900. The cores were
from inshore, mid-shelf and offshore reefs between
~10° to 24°S on the GBR. All 43 series were then set to
start in Year 1, regardless of the actual start year of the
record. This start year was the earliest dated year in
each core, which was not necessarily the first year of
growth of the coral. The 43 series were then averaged
for successive 10 and 20 yr periods and tested for sig-
nificant linear trends with age.

Analysis of age effects in these 43 long-core records
all scaled to start in the same year confirms the earlier
observation of Lough & Barnes (1997) (Fig. 3). Exten-
sion rate showed a significant increase through time
though modulated by multidecadal variability. Skele-
tal density showed a more marked and significant
decrease in, at least, the first 100 yr of growth. Average
extension rate in Years 61 to 80 and 81 to 100 were sig-
nificantly higher than in the first 20 yr of record. Aver-
age skeletal density in all 20 yr periods up to Years 81
to 100 were significantly lower than in the first 20 yr of
record. There was, however, no significant trend in
calcification rate associated with colony age.

Application of skeletal growth records to the detec-
tion of changes associated with environmental trends,
such as decreasing aragonite saturation state and
warming water temperatures, requires that the coral’s
growth characteristics do not change with colony age.
Evidence presented here shows that there is an age
effect on skeletal density and, to a lesser extent, on lin-
ear extension rate in long-lived Porites, but not on calci-
fication rate. This is important as it indicates: (1) long-
term trends in coral calcification are not biased by age
effects, (2) a trend of decreasing skeletal density on its
own could potentially be associated with an age effect,
but (3) a trend of decreasing density and decreasing ex-
tension are unlikely to be associated with an age effect.

RECENT CORAL GROWTH CHANGES IN THE
CENTRAL GBR

To examine recent changes in coral growth charac-
teristics, coral growth records were examined from 3
reefs in the central section of the GBR: Pandora Reef,
an inshore reef (based on between 9 to 25 coral

records); Rib Reef, a mid-shelf reef (8 to 27 records);
and Myrmidon Reef, an offshore reef (12 to 25 records).
Standardized series of linear extension, skeletal den-
sity and calcification were averaged for 5 yr periods
from 1961 to 1965 through 2001 to 2005 and compared
to similarly averaged SST data (Rayner et al. 2003).

For Pandora Reef (Fig. 4a–c) there was a significant
decrease through time in linear extension and calcifi-
cation but no significant trend in skeletal density.
There were no significant trends in any of the 3 growth
variables at Rib Reef, although linear extension and
calcification were notably lower in the most recent 5 yr
period (Fig. 4d–f). At Myrmidon Reef, there was a
significant decrease through time in skeletal density
and calcification rate and although extension also de-
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creased, the trend was not significant (Fig. 4g–i).
Although there was a certain amount of variability in
the 5 yr averages (indicated by the overlapping error
bars in Fig. 4) there was evidence of significant decline
in calcification rates over the most recent 45 yr period
at an inshore (Pandora) and an offshore (Myrmidon)
reef in the central GBR. Average annual SSTs on the
GBR have significantly warmed since the late 19th
century (Lough 2007) and, based on analysis of proxy
SST records obtained from massive coral skeletons
(Hendy et al. 2002) updated to the present (Lough et al.
2006), are probably the warmest in, at least, the past
~250 yr. In the central GBR there has been significant
warming over the 45 yr period corresponding to the
examined coral growth records (Fig. 5). Applying the
equations linking average annual SST and skeletal
extension and calcification rates (Fig. 1) to the
observed change in SST between 1961 to 1965 and
2001 to 2005, would give, if only SST was driving coral
growth, an increase in extension and calcification rates
~12 to 13%. The observed changes are, however,
decreases in linear extension and calcification by ~15
to 16% at Pandora Reef and by 9 to 11% at Myrmidon
Reef.

Evidence of enhanced calcification rates in long
Porites cores from the GBR (Lough & Barnes 2000) only
provided data from 1780 through 1979. Results pre-
sented here for an inshore (Pandora) and an offshore
(Myrmidon) reef in the central GBR, and recently pub-
lished analyses for 2 nearshore regions in the northern
GBR (Cooper et al. 2008), that include growth data
subsequent to 1979 show, however, a recent decline in
coral growth characteristics. An apparent recent de-
cline in Porites growth in the Arabian Gulf was also
noted by Lough et al. (2003). In all of these studies,
there has been significant warming of ocean tempera-
tures that may have been expected to enhance growth.
The exact causes of these declines cannot be identified

at present (see Cooper et al. 2008) nor can they, at pre-
sent, be directly related to lower aragonite saturation
state. They may also be evidence of a thermal control
on coral calcification rates that have reached an opti-
mum and have now started to decline. There is, how-
ever, now some disturbing field evidence, from this
study and Cooper et al. (2008) for recent declining
growth in massive Porites.

CONCLUSIONS

The skeletal growth histories contained in massive
coral skeletons can make a significant contribution to
assessing coral responses to environmental changes.
This is particularly important in an era of rapidly
changing global climate, warming oceans, and chang-
ing global ocean chemistry, in addition to local stresses
to coral reefs. Massive coral skeletons containing
annual density bands provide dated coral growth his-
tories that can be exploited to assess the consequences
of environmental changes (as originally envisaged by
Knutson et al. 1972), including progressive ocean acid-
ification. These sources of coral growth histories can be
used to determine base-line growth rates and natural
variability prior to anthropogenic changes to coral reef
environments and global warming, and help detect
current changes. Routine examination of coral growth
characteristics in conjunction with geochemical analy-
ses of the same material can greatly enhance the envi-
ronmental information obtained from coral archives.
These retrospective monitors of coral reef environ-
ments are at present underexploited. There are, for
example, a large number of coral cores collected in
recent years primarily for the analyses of geochemical
records and reconstruction of past oceanic climates
and environments (www.ncdc.noaa.gov/paleo/index.
html). Rarely are details of coral growth provided, yet,
at the very least, annual linear extension rates can be
readily measured from X-rays of coral slices or deter-
mined from high-resolution sampled geochemical
records with annual cycles (similar to obtaining exten-
sion rates from skeletal density). There are also several
collections of massive coral colonies, some of which
have been analysed in terms of coral growth character-
istics (e.g. Hudson 1981, Lough et al. 1999, Carricart-
Ganivet & Merino 2001, Dodge & Helmle 2003, Halley
& Hudson 2007). There is an urgent need to ensure
that this valuable material is not lost and that the in-
formation on coral growth rates is obtained from these
under-used archives. This requires a coordinated
international effort to both identify what material is
available, to ensure it is appropriately curated and
encourage the routine measurement of coral skeletal
growth records in concert with geochemical analyses.
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