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Appendix 1. Network linking functions

BLEACHING EVENT GENERATION

We modelled the arrival of future bleaching events as
an intrinsic environmental feature whose dynamics
depend on the future rate of warming in (sea surface
temperature, SST). For our study area, we applied the
modelling package 'ReefClim’ (R. Jones et al. unpubl.) to
determine the local change in SST degree! (°C) of
global warming, where global warming estimates were
based on IPCC predictions for a range of greenhouse gas
emissions and climate sensitivities (IPCC 2001). Through
application of the LARS-WG weather generator
(Semenov et al. 1998), we generated an artificial sample
(n = 100) of year long daily SST sequences for each
decade (to 2050) that was consistent with this local pat-
tern of warming. The statistics used to generate the sys-
tematic daily variability (around background warming)
were based on measures of sea temperatures recorded at
Australian Institute of Marine Science weather stations
and underwater temperature loggers at the study site
from 1990 to 2000; i.e. we assume this variability remains
the same until 2050.

By filtering the generated sequences of daily SST (100
decade™!) through the cumulative ‘bleaching onset'
thresholds (see Fig. 4c) we determined the likelihood of
exceedance for each decade between 1990 and 2050. Divi-
sion of the threshold exceedance data into 6 intensity lev-
els (Table A1) allowed for development of characteristic

Table Al. Assigned bleaching intensity levels based on number
of bleaching days yr!

Bleaching level Bleaching days (n)
1. Base level 0-20

2. Very low 20-40

3. Low 40-60

4. Medium 60-80

5. High 80-100

6. Catastrophic >100

frequency distributions for the annual encounter probabil-
ity of a bleaching event of given intensity (Fig. Al).

By assuming that the onset of a bleaching event was
governed by a Poisson process (in which probability of
onset within a small interval of time depends only on the
size of the interval and not on any history of onset prior to
that time), we simulated randomised streams of bleaching
sequences that were consistent with the encounter proba-
bility statistics. For events governed by a Poisson process,
the time between successive events (i.e. recurrence inter-
val) is described by the exponential distribution
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Fig. Al. (a) Comparison of projected annual encounter probability

(AEP) for each bleaching intensity level in 1990 (baseline) and

2050 (low and high warming) (intermediate decades not shown);

(b) comparison as in (a), but with inclusion of +0.1°C decade™
increase in thermal bleaching threshold



where A is the average number of events per unit time (i.e.
arrival rate), and t is the event-window timeframe. A, is
explicitly related to the rate of SST warming, so we used
and acceptance-rejection algorithm to alter a rate function,
At) >0, so as to account for decadal increases in the
frequency of arrival of events.

MORTALITY BELIEF NETWORK

We used survival analysis (Hosmer & Lemeshow 1999) to
help characterise the conditional distributions relating
bleaching intensity (Table A1) to the level of mortality in
our indicator corals (no macroalgae mortality was associ-
ated with any level of bleaching). Survival analysis uses
time-to-death data to characterise the probability of death
as it relates to the level of a stressor and exposure time.
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Fig. A2. Acropora-like and Porites-like corals. Bayesian posterior

density functions for the mortality (o, B, €mortaity) Parameters in

‘ReefState’ model. €noraiity represents standard deviation of the
model lack-of-fit terms

Appendix 1 (continued)

By using a combination of field data and elicited expert
opinion (for as yet unrealised event intensities) we found
that a survival model based on a 2-parameter Weibull
distribution most adequately represented the bleaching
mortality response. The distribution is described by

P=1- eXp(OcIB) + Emortality (AZ)

where P is mortality (%), I is bleaching intensity level, o
and P are fitted constants, and epqarry represents a lack-
of-fit error term.

To aid the expert elicitation of mortality information (for
as yet unrealised high values of I), we developed a series
of questions aimed at establishing points on the cumula-
tive distribution function of times-to-death for multiple
event intensities. A typical question was, ‘Given a popula-
tion of 100 individuals, how many would one expect to die
at X days above the bleaching threshold'. We relied upon
the expert judgment of 3 coral ecologists (T. Done, R.
Berkelmans and P. Marshall) to provide their best esti-
mates, along with an estimated confidence interval.

In an effort to make formal the uncertainty in the experts
judgments, and also to facilitate the automatic propagation
of that uncertainty into causal projections, we regarded
the o, B, and €poranry Parameters of the mortality function
(Eq. A2) as random variables in the mortality belief net-
work (Fig. 3b) to which probability distributions were
assigned (Fig. A2). Characterisation of the probability dis-
tributions for both the heat-tolerant (Porites spp.) and
heat-sensitive (Acropora spp.) indicator species was
achieved using Bayesian inference with non-informative
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Fig. A3. Acropora-like and Porites-like corals. Cumulative distrib-
ution plots for Acropora-like (thermally sensitive) and Porites-like
(thermally tolerant) corals, showing survival model fit to assessed
expert data (A) for each of the 6 bleaching intensity levels. Con-
tinuous curves: median values of predictive distributions resulting
from survival models; dashed lines: 5th and 95th predictive per-
centiles; vertical error bars: assessed expert uncertainty of 15%
in either direction
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priors (Kuczera 1997). The lack-of-fit error term €poraity
corresponds to the distribution of regression residuals,
assumed to be normal with a standard deviation estimated
by the root mean squared error of the regression. To
ensure we fully captured the tails of the distribution for
each parameter, we used Markov chain sampling in the
form of the Metropolis algorithm (Kuczera & Parent 1998)
to sample the posterior distribution for each parameter. For
the current application, 5 parallel sequences were gener-
ated, each with 2500 samples. The first 500 samples in the
sequence were discarded, leaving a total of 10000 sam-
ples. An acceptable R-statistic (Gelman et al. 1997) indi-
cated approximate convergence.

By sampling over the entire posterior probability distrib-
ution of each parameter, we were able to characterise the
joint probability distribution described by the mortality
belief network. Fig. A3 shows the most likely (50th per-
centile) mortality response for the indicator Acropora and
Porites coral types for each of the bleaching intensities
shown in Table Al. The experts' assessments (including
confidence intervals) for each coral type fell within the
90 % prediction limits, suggesting that there was insuffi-
cient evidence to reject the Weibull survival model.

RECOVERY BELIEF NETWORK

We introduced 2 simplifying assumptions for the recov-
ery modelling process, consistent with a neutral theory
construct (Hubbell 1997, van Woesik 2002). First, recruit-
ment of new corals and algae to damaged reefs is not lim-
iting. While they can be so limited, evidence suggests that
many coral reefs on the Great Barrier Reef are often satu-
rated with recruits (Hughes et al. 1999, van Woesik et al.
1999). Instead, we assume that the balance between lat-
eral extension and post-settlement mortality (partial and
whole colony) is what determines the trajectory of coral
cover. Second, we do not differentiate between increases
in coral cover resulting from net growth of new colonies on
the one hand and that of established colonies (including
remnant patches) on the other. Rather, coral recovery is
modelled as a lumped process (implicitly incorporating
species specific recruitment, survivorship, growth and
repair) using a simple logistic growth function

n
Ciut+) = Cup T CunYi (Cmaxzc(i,t)J * €growth; (A3)

i=1
where i = Porites spp., Acropora spp. or algae, y; is their
specific growth rate parameter, ., is the maximum per-
missible cover of all benthic categories combined, and
€growth T€Present their individual lack-of-fit error terms. In
summary, the growth function describes a sigmoidal
growth curve that approaches the maximum cover (Cpax =
1) at a reducing rate, as the combined cover (i.e.
Ccombined_cover = Cporites T Cacropora + Calgae) approaches Cmax- The
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Fig. A4. Acropora-like and Porites-like corals and algae. Bayesian

posterior density functions for recovery (Y, €gown) parameters in

the ReefState model. &g represents standard deviation of the
model lack-of-fit terms

‘realised’ rate of growth for each community element thus
declines as a proportion of its ‘potential’ rate vy;, as space
available for unobstructed growth (i.e. Cnax — Ccombined_cover)
declines. The recovery function also includes specification
of competitive growth preference rules, which rank corals
as superior competitors to algae (after McCook 2001, Diaz-
Pulido & McCook 2002, 2004), but giving no competitive
advantage (other than growth rate per se) between Porites
spp. and Acropora spp. Wins and losses were determined
at random on an event basis. These preference rules
explicitly determine that a simulated algal dominated reef
state is not the result of algal overgrowth of established
corals, but rather the result of algal pre-emption of spaces
created by disturbance. The 'realised’ rate of algal expan-
sion into vacated spaces, and hence the area at large, is
less than the ‘potential’ rate, due to manageable 'con-
straints’ such as nutrient limitation and herbivory (Diaz-
Pulido & McCook 2003, McClanahan et al. 2003). We
define ‘'medium’ and 'high' constraints as those constraints
that result in contractions of 50 and 100 % respectively, of
the expansion of algal area cover that could have occurred
in the absences of constraints (e.g. 100 % constraint repre-
sents the situation in which the accumulation of algal bio-
mass during a recovery period is equal to the total losses).

In order to calibrate the ‘potential’ rates of return for
the Porites and Acropora indicator species, we chose to
use recovery data for an ephemeral mid-shelf coral com-
munity (Rib Reef: 146°52'E, 18°28'S) located in an opti-
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Fig. AS. (a) Acropora-like, (b) Porites-like and (c) combined corals; (d) algae. Calibration data utilised to characterise ‘potential’ recovery
characteristics. Continuous curves: median predicted model value; dashed lines: bounds of 5th and 95th predictive envelope

mal setting, i.e. strong recruitment and growth of corals
(Ninio et al. 2000). The data set describes 13 yr of post-
disturbance recovery following almost total mortality
caused by the starfish Acanthaster planci. For calibrating
the coral recovery responses, this data set was ideal as
the site was essential devoid of a standing crop of
macroalgae over the entire recovery period, thereby
avoiding confounding effects. In order to capture the
‘potential’ rate of return of algae we used an alternate
data set, which recorded the 6 year expansion of algae at
Pandora Reef (146°26'E, 18°49'S) following the 1998
mass bleaching event. Previous studies at the reef (Scott
& Russ 1987, Klumpp & McKinnon 1992) have docu-
mented the prevalence of high nutrient and sediment
conditions, with only low levels of herbivory. We were
therefore confident that the rate of expansion of algae

would be at near potential rates for the region, given the
adequate free space made available by recent bleaching
induced coral mortality (Diaz-Pulido & McCook 2002).

To identify the species-specific recovery rate parameters
from the 2 data sets, we used the same sampling strategy
as outlined for the mortality parameter identification.
Fig. A4 displays the identified Bayesian posterior density
functions for the y and &g parameters for the Porites,
Acropora and algae indicator species. Fig. A5 displays the
most likely (50th percentile) recovery response for the
Acropora, Porites, combined Acropora and Porites (i.e.
resulting from the randomised preferential growth
scheme), and (d) algae response data. For each species
type, the recovery response data fell within the 90 %
prediction limits, suggesting that there was insufficient
evidence to reject the recovery model.



