Inter-Research > AEI > v7 > n2 > p115-123  
AEI
Aquaculture Environment Interactions

via Mailchimp

AEI 7:115-123 (2015)  -  DOI: https://doi.org/10.3354/aei00141

Effect of temperature on the metabolism, behaviour and oxygen requirements of Sparus aurata

Mette Remen1,*, Marit A. J. Nederlof2, Ole Folkedal1, Grethe Thorsheim1, Ariadna Sitjà-Bobadilla3, Jaume Pérez-Sánchez3, Frode Oppedal1, Rolf Erik Olsen1,4 

1Institute of Marine Research, 5984 Matredal, Norway
2Department of Aquaculture and Fisheries, Wageningen University, De Elst 1, 6708 WD Wageningen, The Netherlands
3Institute of Aquaculture Torre la Sal (IATS-CSIC), 12595 Ribera de Cabanes, Castellón, Spain
4Present address: Norwegian University of Science and Technology, Department of Biology, 7491 Trondheim, Norway
*Corresponding author:

ABSTRACT: We investigated the effect of temperature on the limiting oxygen saturation (LOS) of gilthead sea bream Sparus aurata. This threshold was defined as the % O2 saturation where fish no longer upheld their routine metabolic rate (RMR, the metabolic rate of fed and active fish) during a progressive decline in oxygen saturation. S. aurata (398 ± 10 g, mean ± SE) were kept in 3 replicate tanks and subjected to 3 changes in temperature: 16 to 20°C, 20 to 16°C and 16 to 12°C. At each temperature, fish were left to acclimatize for 8 to 10 d, before daily feed intake (DFI), the routine oxygen consumption rate (routine MO2, mg kg-1 min-1) and the LOS were measured. In addition, at 20°C the swimming speed was measured in fish subjected to a decline in O2 from full air saturation to levels below the LOS (minimum of 8-10% O2). For the temperature range tested (12-20°C), DFI, MO2 and LOS increased exponentially with temperature (7.5-, 3.6- and 2.2-fold, respectively) with mean (± SE) LOS being 17 ± 1, 21 ± 0 and 35 ± 5% O2 at 12, 16 and 20°C, respectively. A gradual decline in swimming activity was observed as O2 declined below the LOS, indicating increasing metabolic stress and/or a ‘sit-out’ coping strategy which may prolong survival time in severe hypoxia. The results show the importance of temperature as an influential variable over the environmental O2 requirements of S. aurata.


KEY WORDS: Hypoxia · Aquaculture · Metabolism · Behaviour · Pcrit · Scrit · Oxygen threshold · Feeding rate · Temperature


Full text in pdf format
Cite this article as: Remen M, Nederlof MAJ, Folkedal O, Thorsheim G and others (2015) Effect of temperature on the metabolism, behaviour and oxygen requirements of Sparus aurata. Aquacult Environ Interact 7:115-123. https://doi.org/10.3354/aei00141

Export citation
Share:    Facebook - - linkedIn

 Previous article Next article