ABSTRACT: The grazing impact of 3 different protozoan species on a mixed bacterial community was studied by means of a simplified and functionally reproducible experimental microbial food web in a 2-stage flow-through system. In the first stage the algae
Rhodomonas sp. was grown on an inorganic medium with its accompanying bacterial community (BC) growing on algal exudates. This mixture of algae and bacteria was transferred into 4 second stage vessels: (1) a control, and 3 vessels inoculated with
(2) a heterotrophic nanoflagellate, Bodo saltans, (3) a scuticociliate, Cyclidium glaucoma, and (4) a mixotrophic flagellate, Ochromonas sp. Using image analysis techniques we followed the changes in bacterial size
distributions and bacterial to protozoan total biovolume ratios over an experimental period of 15 d. In addition, productivity of the grazed and ungrazed BC was measured using [3H]thymidine and [14C]leucine. As a consequence of total
grazing rates and size-selective feeding we observed 3 different responses of the initially identical BC to grazing of the 3 protists. (1) Low grazing by B. saltans caused a slow decrease of bacterial cell numbers from 14 to 5.9 x
106 cells ml-1, but no significant shift of the mean cell volume (MCV, average 0.107 μm3) and bacterial production. (2) Higher grazing rates of C. glaucoma resulted in the decline of bacterial abundance to
3.3 x 106 cells ml-1 in parallel with a doubling of the MCV to 0.207 μm3 and high DNA and protein synthesis rates. Due to the ciliate's ability to graze also on small prey (<1.5 μm) an increase in MCV seemed to provide
higher grazing resistance or at least decreased vulnerability. (3) Ochromonas sp. showed the highest grazing rates and reduced bacterial numbers by 20 times within 2 d. Only the smalles
KEY WORDS: Continuous flow systems · Grazing resistance · Bacterial growth and size-structure · Image analysis · Bodo saltans · Cyclidium glaucoma · Ochromonas sp.
Full text in pdf format
Previous article Next article