ABSTRACT: The impacts of climate change on the heat budget of the eastern China seas (ECSs) are estimated under the historical representative concentration pathway (RCP) 4.5 and RCP8.5 scenarios using an atmosphere-ocean coupled regional climate model system (REMO/MPIOM). The results suggest that recent and future ocean warming over the ECSs is linked overall to increased oceanic heat transport by currents, which is partly compensated by air-sea heat exchange. The Taiwan Strait is the major source of oceanic heat for the ECSs, whereas the shelf break section (SBS) acts as a heat sink. An increase in net oceanic heat transport into the ECSs is projected under both considered RCP scenarios, mainly resulting from a reduction of the outward heat transport through the SBS. The mean relative contribution of SBS to the oceanic heat transport thus decreases by 4 to 5% under both RCP scenarios, relative to the historical run. Regarding the surface air-sea exchange, the heat loss caused by thermal radiation and latent and sensible heat in the ECSs exceeds the heat gain achieved by solar radiation. Under the RCP scenarios, warmer sea surface temperature and stronger surface wind will enhance the upward latent heat flux, eventually leading to a more pronounced heat loss from the ECSs. The mean relative contributions of the latent heat flux to the air-sea heat exchange notably increases by 2 to 3% under both projection scenarios, relative to the historical run. Taking into account all components of the heat balance of the ECSs, we deduce that the increased horizontal heat transport will enhance the surface evaporation over the ECSs under future warming.
KEY WORDS: Climate projections · Air-sea heat flux · Oceanic heat transport · Ocean heat budget · Regional climate modeling · Climate change impacts
Full text in pdf format Supplementary material | Cite this article as: Tian D, Su J, Zhou F, Mayer B and others (2019) Heat budget responses of the eastern China seas to global warming in a coupled atmosphere–ocean model. Clim Res 79:109-126. https://doi.org/10.3354/cr01579
Export citation Share: Facebook - - linkedIn |
Previous article Next article |