ABSTRACT: Asia is the largest continent in the world and home to 4.7 billion people. Climate change on this continent, therefore, attracts a significant amount of attention from scientists and policy-makers. However, observational studies of long-term climate change over the continent as a whole are lacking. Using updated, homogenized observational data from stations in Asia since 1901 and systematic-bias-adjusted data from stations in China after 1950, we analyzed the long-term trends of surface air temperature (SAT) and precipitation in Asia and China from 1901-2020. The results showed that (1) in the 120 yr between 1901 and 2020, the annual mean SAT rose significantly at rates of 0.13 ± 0.01 and 0.14 ± 0.03°C decade-1 in Asia and China, respectively. The year 2020 in Asia may have been the warmest year since the beginning of the 20th century. (2) Since 1901, in both Asia and China, the annual mean minimum temperature increased more than twice as fast as the maximum temperature, and the diurnal temperature range (DTR) dropped significantly. (3) From 1901-2019, the annual precipitation anomaly percentage in Asia showed a significant increasing trend at an average rate of 0.52 ± 0.10% decade-1, and the increase was more obvious in high latitudes than in low to mid-latitudes. (4) Since 1901, there has been no significant change in annual precipitation in China, but there was a weak and non-significant decrease in the first half of the 20th century and a significant increase after the mid 20th century. The results presented in this paper can help us understand the spatio-temporal patterns and causes of climate change in the Asian continent and Chinese mainland.
KEY WORDS: Asia · China · Surface air temperature · Precipitation · Change trend · Climate warming · Observational data
Full text in pdf format | Cite this article as: Ren G, Zhan Y, Ren Y, Wen K and others (2023) Observed changes in temperature and precipitation over Asia, 1901-2020. Clim Res 90:31-43. https://doi.org/10.3354/cr01713
Export citation Share: Facebook - - linkedIn |
Previous article Next article |