ABSTRACT: Virulence mechanisms utilized by the salmonid fish pathogen Renibacterium salmoninarum are poorly understood. One potential virulence factor is p57 (also designated MSA for major soluble antigen), an abundant 57 kDa soluble protein that is predominately localized on the bacterial cell surface with significant levels released into the extracellular milieu. Previous studies of an attenuated strain, MT 239, indicated that it differs from virulent strains in the amount of surface-associated p57. In this report, we show overall expression of p57 in R. salmoninarum MT 239 is considerably reduced as compared to a virulent strain, ATCC 33209. The amount of cell-associated p57 is decreased while the level of p57 in the culture supernatant is nearly equivalent between the strains. To determine if the lowered amount of cell-associated p57 was due to a sequence defect in p57, a genetic comparison was performed. Two copies of the gene encoding p57 (msa1 and msa2) were found in 33209 and MT 239, as well as in several other virulent isolates. Both copies from 33209 and MT 239 were cloned and sequenced and found to be identical to each other, and identical between the 2 strains. A comparison of msa1 and msa2 within each strain showed that their sequences diverge 40 base pairs 5' to the open reading frame, while sequences 3' to the open reading frame are essentially identical for at least 225 base pairs. Northern blot analysis showed no difference in steady state levels of msa mRNA between the 2 strains. These data suggest that while cell-surface localization of p57 may be important for R. salmoninarum virulence, the differences in localization and total p57 expression between 33209 and MT 239 are not due to differences in msa sequence or differences in steady state transcript levels.
KEY WORDS: Renibacterium salmoninarum · p57· msa · Gene duplication · Pathogenesis
Full text in pdf format Erratum |
Previous article Next article |