Inter-Research > ESR > v44 > p217-230  
ESR
Endangered Species Research

via Mailchimp

ESR 44:217-230 (2021)  -  DOI: https://doi.org/10.3354/esr01103

‘Unscrambling’ the drivers of egg production in Agassiz’s desert tortoise: climate and individual attributes predict reproductive output

Corey I. Mitchell1,7,*, Derek A. Friend1,#, Lauren T. Phillips1,#, Elizabeth A. Hunter2, Jeffrey E. Lovich3, Mickey Agha4, Shellie R. Puffer3, Kristy L. Cummings3, Philip A. Medica5,†, Todd C. Esque5, Kenneth E. Nussear1, Kevin T. Shoemaker6

1Department of Geography, University of Nevada, Reno, NV 89557, USA
2Department of Biology, Georgia Southern University, Statesboro, GA 30460, USA
3US Geological Survey Southwest Biological Science Center, Flagstaff, AZ 86001, USA
4Washington Department of Fish and Wildlife, Olympia, WA 98501, USA
5US Geological Survey Western Ecological Research Center, Henderson, NV 89074, USA
6Department of Natural Resources and Environmental Science, University of Nevada, Reno, NV 89557, USA
7Present address: Desert Centered Ecology, LLC, Tucson, AZ 85716, USA
*Corresponding author:
#These authors contributed equally
Deceased 3 May 20

ABSTRACT: The ‘bet hedging’ life history strategy of long-lived iteroparous species reduces short-term reproductive output to minimize the risk of reproductive failure over a lifetime. For desert-dwelling ectotherms living in variable and unpredictable environments, reproductive output is further influenced by precipitation and temperature via effects on food availability and limits on activity. We assembled multiple (n = 12) data sets on egg production for the threatened Agassiz’s desert tortoise Gopherus agassizii across its range and used these data to build a range-wide predictive model of annual reproductive output as a function of annual weather variation and individual-level attributes (body size and prior-year reproductive status). Climate variables were more robust predictors of reproductive output than individual-level attributes, with overall reproductive output positively related to prior-year precipitation and an earlier start to the spring activity season, and negatively related to spring temperature extremes (monthly temperature range in March-April). Reproductive output was highest for individuals with larger body sizes that reproduced in the previous year. Expected annual reproductive output from 1990-2018 varied from 2-5 to 6-12 eggs female-1 yr-1 , with a weak decline in expected reproductive output over this time (p = 0.02). Climate-driven environmental variation in expected reproductive output was highly correlated across all 5 Recovery Units for this species (Pearson’s r > 0.9). Overall, our model suggests that climate change could strongly impact the reproductive output of Agassiz’s desert tortoise, and could have a negative population-level effect if precipitation is significantly reduced across the species’ range as predicted under some climate models.


KEY WORDS: Gopherus agassizii · Climate change · Fecundity · Population ecology · Meta-analysis


Full text in pdf format
Supplementary material
Cite this article as: Mitchell CI, Friend DA, Phillips LT, Hunter EA and others (2021) ‘Unscrambling’ the drivers of egg production in Agassiz’s desert tortoise: climate and individual attributes predict reproductive output. Endang Species Res 44:217-230. https://doi.org/10.3354/esr01103

Export citation
Share:    Facebook - - linkedIn

 Previous article Next article