Inter-Research > MEPS > v555 > p261-271  
MEPS
Marine Ecology Progress Series

via Mailchimp

MEPS 555:261-271 (2016)  -  DOI: https://doi.org/10.3354/meps11806

Identification of high-risk areas for harbour porpoise Phocoena phocoena bycatch using remote electronic monitoring and satellite telemetry data

Lotte Kindt-Larsen1,*, Casper Willestofte Berg1, Jakob Tougaard2, Thomas Kirk Sørensen1, Kerstin Geitner1, Simon Northridge3, Signe Sveegaard2, Finn Larsen1

1National Institute of Aquatic Resources, Technical University of Denmark, 2920 Charlottenlund, Denmark
2Department for Bioscience, Aarhus University, 4000 Roskilde, Denmark
3Sea Mammal Research Unit, University of St Andrews, St Andrews, Fife KY16 8LB, UK
*Corresponding author:

ABSTRACT: The bycatch of harbour porpoise Phocoena phocoena is an issue of major concern for fisheries management and for porpoise conservation. We used high-resolution spatial and temporal data on porpoise abundance and fishing effort from the Danish Skagerrak Sea to identify areas with potentially higher and lower risk of porpoise bycatch. From May 2010 to April 2011, 4 commercial gillnet vessels were equipped with remote electronic monitoring (REM) systems. The REM system recorded time, GPS position and closed-circuit television (CCTV) footage of all gillnet hauls. REM data were used to identify fishing grounds, quantify fishing effort and document harbour porpoise bycatch. Movement data from 66 harbour porpoises equipped with satellite transmitters from 1997 to 2012 were used to model population density. A simple model was constructed to investigate the relationship between the response (number of individuals caught) and porpoise density and fishing effort described by net soak time, net string length and target species. Results showed that a model including both porpoise density and fishing effort data predicted bycatch better than models containing only one factor. We therefore conclude that porpoise telemetry or REM data allow for identification of areas of potential high and low bycatch risk, and better predictions are obtained when combining the 2 sources of data. The final model can thus be used as a tool to identify areas of bycatch risk.


KEY WORDS: Harbour porpoise · Bycatch mitigation · REM · Natura 2000 · Fisheries management


Full text in pdf format
Supplementary material
Cite this article as: Kindt-Larsen L, Berg CW, Tougaard J, Sørensen TK and others (2016) Identification of high-risk areas for harbour porpoise Phocoena phocoena bycatch using remote electronic monitoring and satellite telemetry data. Mar Ecol Prog Ser 555:261-271. https://doi.org/10.3354/meps11806

Export citation
Share:    Facebook - - Bluesky - linkedIn

 Previous article Next article