ABSTRACT: In the Western Atlantic and Gulf of Mexico (GOM), the blue crab Callinectes sapidus fishery is managed at a regional scale, and its assessment does not consider the population structure of the species. To understand connectivity of the blue crab population, we simulated larval dispersal using a biophysical model driven by high-resolution ocean currents and including early life-history traits of the species. Simulations were conducted during 2015 and 2016, and larvae were released from locations along Florida’s GOM and Atlantic coasts. A high degree of local larval retention was observed in Florida’s GOM waters, mainly during summer when weak southeastern winds tend to yield a shoreward net flow. Results demonstrated clear evidence of connectivity between the Gulf coast of Florida population and those of Mississippi, Alabama, and Louisiana, suggesting that the blue crab populations in the GOM are intermixed and the hypothesized boundary (in Florida) of 2 stocks needs further consideration. Outputs of the model also indicated connectivity between the blue crab populations of Florida’s Gulf coast and the South Atlantic Bight (SAB). Larval trajectories showed inter-annual variability driven by the interaction of winds, Loop Current (LC) intrusions in the northern GOM, LC eddies and their cyclonic counterparts, and the Mississippi River plume. The latter provides a conduit for larval transport from the GOM to the SAB. These findings provide evidence of the physical oceanographic processes that sustain the homogenous genetic population structure for blue crabs between SAB and GOM populations, highlighting the need for collaborative management in US waters.
KEY WORDS: Larval dispersal · Connectivity · Fishery management · Blue crab
Full text in pdf format Supplementary material | Cite this article as: Criales MM, Chérubin L, Gandy R, Garavelli L, Ali Ghannami M, Crowley C
(2019) Blue crab larval dispersal highlights population connectivity and implications for fishery management. Mar Ecol Prog Ser 625:53-70. https://doi.org/10.3354/meps13049
Export citation Share: Facebook - - linkedIn |
Previous article Next article |