ABSTRACT: Marine heatwaves are increasing in frequency and can disrupt marine ecosystems non-linearly. In this study, we examined the effect of the North Pacific warming event of 2014, the largest long-term sea surface anomaly on record, on black-legged kittiwake Rissa tridactyla foraging trips before, during, and after the event. We assessed foraging trip characteristics (trip distance and duration), the dispersal of foraging locations, and the persistence of foraging areas within and among years. Foraging trip characteristics, foraging area size, and location varied from year to year. Kittiwake foraging was more dispersed, direct, and farther from the colony in years immediately after and during the warming event. A third of the foraging area used pre-heatwave (2012) was important in subsequent years, which indicates that this area was, and may still be, a perennial foraging hot spot. During the chick-rearing stage, black-legged kittiwakes increased their speed and reduced the proportion of resting compared to the incubation stage. We conclude that marine heatwaves may have a strong impact on seabird foraging, extending foraging ranges, and that those impacts may be nonlinear with a strong lag.
KEY WORDS: Seabird · Black-legged kittiwake · Rissa tridactyla · Foraging behaviour · Prey availability · Foraging area
Full text in pdf format | Cite this article as: Osborne OE, O’Hara PD, Whelan S, Zandbergen P, Hatch SA, Elliott KH
(2020) Breeding seabirds increase foraging range in response to an extreme marine heatwave. Mar Ecol Prog Ser 646:161-173. https://doi.org/10.3354/meps13392
Export citation Share: Facebook - - linkedIn |
Previous article Next article |