ABSTRACT: A large part of the production of Laminaria hyperborea kelp forests is not directly consumed by grazers, but is exported during storm events or natural annual blade erosion. Drifting kelp fragments are transported and can accumulate temporarily over subtidal benthic habitats. The decay process is particularly slow (>6 mo for complete decay during spring-summer) and L. hyperborea fragments are able to maintain their primary production function for several months. If they accumulate in low subtidal habitats, fragments can have a long residence time, thus modifying habitat structure. Based on a 6 mo cage experiment, we investigated macrofaunal colonization and community succession within accumulations of L. hyperborea fragments on a low subtidal (-10 m) sandy bottom ecosystem. Stable isotope (δ13C and δ15N) measurements were carried out to describe the structure and development of the trophic food web and the role of detritus as a food source. Kelp tissues were rapidly and abundantly colonized by macrofauna, and a classical ecological succession occurred, with changes in species dominance and increase in diversity during decay. The food web was based on 2 main sources: particulate organic matter from the water column and decaying kelp tissues. Kelp contributed significantly to the diet of numerous species that are commonly consumed by local predators (fish, shrimp). Following community succession, diets diversified and the food web became more complex during the decay process. Our results indicate that drift kelp accumulations structure their associated communities and food web during the whole decay process.
KEY WORDS: Kelp · Degradation · Macrofauna · Community · Detritus · Food web · Stable Isotopes · In situ experiment
Full text in pdf format Supplementary material | Cite this article as: de Bettignies F, Dauby P, Lepoint G, Riera P and others (2020) Temporal succession of a macrofaunal community associated with kelp fragment accumulations in an in situ experiment. Mar Ecol Prog Ser 656:109-121. https://doi.org/10.3354/meps13391
Export citation Share: Facebook - - linkedIn |
Previous article Next article |