Inter-Research > MEPS > v731 > p293-313  
MEPS
Marine Ecology Progress Series

via Mailchimp

MEPS 731:293-313 (2024)  -  DOI: https://doi.org/10.3354/meps14297

Assessing the demographic connectivity of common cockles in a shallow estuary as a basis for fisheries management and stock protection efforts

Flemming Thorbjørn Hansen1,3,*, Anders Chr. Erichsen2, Camille Saurel1, Pedro Seabra Freitas1

1Section for Coastal Ecology, DTU AQUA, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
2Environmental Solutions, DHI A/S, Agern Allé 5, 2970 Hørsholm, Denmark
3Present address: Environmental Solutions, DHI A/S, Agern Allé 5, 2970 Hørsholm, Denmark
*Corresponding author:

ABSTRACT: Common cockle Cerastoderma edule populations in the Danish Limfjorden constitute an important ecosystem component and a valuable resource for fishermen and industries, providing a large proportion of cockle landings in both Denmark and the European Union. However, processes driving cockle recruitment and mortality are not well understood, and prevent sustainable fisheries management and species protection efforts. We report a thorough study of processes that are the main drivers of population recruitment, namely larval dispersal and settlement. Outputs from biophysical modelling of cockle larval dispersal, connectivity analysis and derived graph theory metrics were used to analyse potential demographic connectivity or isolation between known cockle populations and other parts of Limfjorden. The results show that the most productive and commercially important cockle beds are almost exclusively dependent on larval imports from unexploited spawning biomass elsewhere rather than on self-recruitment, allowing for exploitation levels that would be unsustainable otherwise. Other parts of Limfjorden are relatively isolated, relying mostly on self-recruitment. The results also show that in some areas where predicted larval settlement potentials are highest, the absence of a cockle population indicates that other factors, likely environmental, are more important. This study provides an example of contrasting population dynamics and connectivity, suggesting that the vulnerability of cockle populations to exploitation or natural mortality may be highly variable and interlinked. Ignoring processes affecting larval dispersal may jeopardise cockle populations and fisheries in Limfjorden. This study highlights the importance of understanding processes of marine connectivity for the protection of bivalve populations and sustainable fisheries management.


KEY WORDS: Larval dispersal · Connectivity · Agent-based modelling · Cockles · Cerastoderma edule · Limfjorden


Full text in pdf format
Supplementary material
Cite this article as: Hansen FT, Erichsen AC, Saurel C, Freitas PS (2024) Assessing the demographic connectivity of common cockles in a shallow estuary as a basis for fisheries management and stock protection efforts. Mar Ecol Prog Ser 731:293-313. https://doi.org/10.3354/meps14297

Export citation
Share:    Facebook - - linkedIn

 Previous article