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INTRODUCTION

The species–area relationship is considered one of
the few ‘laws’ in ecology (Scheiner 2003), although less
thoroughly studied in the marine realm compared to
terrestrial systems (Kostylev 1996, Neigel 2003, Kosty -
lev et al. 2005). More recently, habitat quality has also
been shown to play an important role in determining
species’ distribution patterns in fragmented land-
scapes since area per se is not always a resource.
Instead, the resources or the ‘habitat quality’ found

within the areas might be the crucial factor (Gaston &
Matter 2002). Habitat quality, although still badly con-
ceptualized, is usually measured in the form of struc-
tural attributes, resources, or direct effects on popula-
tions (Mor tel liti et al. 2010). In addition, the relative
patch edge has been found to influence marine com-
munities, and it has been suggested that changes in
the ratio of perimeter length (P) to area (A), P:A, and
patch shape might affect the number of species able to
inhabit a patch (e.g. Bologna & Heck 2000, Tanner
2003, Jelbart et al. 2006). However, there is very little
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experimental evidence confirming this in marine eco-
systems.

Studies in mussel and seagrass beds suggest that
patch size affects the number of taxa present (Tsuchiya
& Nishihira 1985, Witman 1985, Bell et al. 2001, Bow-
den et al. 2001, Norling & Kautsky 2008). Nonetheless,
few studies have clearly distinguished its role in deter-
mining the faunal communities, and the relationship
can sometimes be non-linear and scale dependent
(Kelaher 2003). For example, there might be distinct
thresholds after which the influence of habitat struc-
ture changes in direction and/or magnitude, or there
might be a minimum amount of structure that is re -
quired before positive benefits are implemented (Coull
& Wells 1983, Gotceitas & Colgan 1989). Also, upper
thresholds, beyond which increased habitat structure
no longer has an effect or even negatively affects the
associated fauna, may exist (Fonseca et al. 1996, Kela-
her 2003). Not only patch size, but also the architec-
tural complexity (e.g. Kostylev et al. 1997, Commito &
Rusi gnuolo 2000, Erlandsson et al. 2005), as well as the
density and size of the habitat-forming species itself
has been shown to influence the diversity and abun-
dance of associated species (Tsuchiya & Nishihira 1986,
Palomo et al. 2007, O’Connor & Crowe 2007, Koivisto
et al. 2011).

On structurally simple substrates, such as bare sand
or rocky substrates, blue mussels Mytilus edulis L.
aggregate into patches and provide the surrounding
habitat with complex physical structures, covering a
broad spectrum of mussel size compositions, patch
sizes and vast areal coverage. The mussel structures
promote the existence of rich faunal communities by
providing settling substrate (Dayton 1971, Laihonen &
Furman 1986, Kostylev 1996), food and shelter (Rag-
narsson & Raffaelli 1999) and by modulating the hydro-
dynamic forces within and above the patches (Kautsky
& Wallentinus 1980), thereby functioning as ecosystem
engineers (sensu Jones et al. 1997). It is well known
that blue mussels enhance macrofaunal diversity, but
we still have limited knowledge about the underlying
processes in various systems. Especially sublittoral
blue mussel beds on rocky shores have remained
largely unstudied in a patch-architecture-related sense,
e.g. the interacting effects of patch size, shape, in-
patch location and amount of edge are poorly known
(however, see Svane & Setyobudiandi 1996).

In the northern Baltic Sea, blue mussels exist at the
margin of their distribution, due to the low salinity,
where they uphold rich faunal communities despite
their small size and fluctuating coverage (Norling &
Kautsky 2008, Koivisto & Westerbom 2010). They ex -
hibit natural expansion, fragmentation and contraction
due to seasonal growth, die-off, storm events, fluctuat-
ing salinity conditions and ice scour (Westerbom et al.

2002). The varying spatial patterns of blue mussels and
bare areas, as well as structures associated with mus-
sel beds, e.g. macroalgae, sand and organic sediment,
may directly or indirectly affect associated faunal
assemblages through a number of mechanisms such as
alteration of predator abundance and foraging behav-
ior (e.g. Leber 1985, Main 1987, Irlandi et al. 1995),
modifications of water flow (Kautsky & Wallentinus
1980), accumulation of secondary structure, such as
drifting algae (Norkko et al. 2000), and changes in ani-
mal behavior. In the present study, we were interested
in examining how the mussel bed structure on a
within-shore scale influences faunal communities. We
tested the effects of (1) patch size, (2) patch shape and
(3) ‘patch quality’ in terms of algal and sand presence
in rocky shore mussel patches. We hypothesized that
not only patch size, but also patch shape and the pres-
ence of sand and algae may influence the associated
communities, with supplemental structures having a
positive impact on the fauna.

MATERIALS AND METHODS

Study site and sampled patch types. All field work
was carried out at 2 rocky sites in the Hanko-Tvär-
minne area in the Gulf of Finland (59° 48’ N, 23° 12’ E),
northern Baltic Sea during the summer seasons 2008
and 2009. The Spikarna site is a group of small islands
and sublittoral reefs with a fragmented distribution of
mussel beds interspersed by pockets of sand fields,
stones and gravel. Långskärsklack is a large rocky reef
area with dense and homogeneous mussel beds. We
chose these sites because they contain a structural
range of blue mussel beds — from large continuous
areas to small patches surrounded by bare rock.

To study how patch size and shape, as well as the
presence of algae and sand, influence macrofaunal
communities, equal areas (10 × 10 cm) from differently
structured hard-bottom mussel patches were sampled
from the Spikarna site at 5 m depth (n = 10). Sampling
was done in October 2009 using SCUBA. Square
patches (sq) with a high P :A ratio and rectangular (rec)
patches with both large perimeter and large area were
sampled to study the effects of the edge portions and
shapes of blue mussel beds in 2 size categories (Small
sq, Small rec; Big sq, Big rec). To study how the pres-
ence of algae and sand influence communities, square-
shaped mussel beds containing sand (Sand) and
square-shaped mixed patches of mussels and the red
algae Coccothylus truncatus (Algae) were sampled.
Finally, to increase the range of patch size, very small
(XS) and very large (XL) square-shaped mussel
patches were sampled. All patches were sampled from
the middle of the patch and taken by scraping off the
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total contents of a 10 × 10 cm quadrate frame into an
attached fabric sampling bag (see Westerbom et al.
2002). After the sample was taken, the shapes of the
original patches were redrawn on a transparent plastic
film and the perimeter and area were calculated. The
sizes of the smallest patches were calculated from pho-
tographs, taken prior to sampling. A mean shape index
(MSI) was calculated for each patch using the formula
presented in Saura & Carballal (2004). The MSI is
attained by calculating the sum of each patch perime-
ter divided by the square root of the patch area. It
attains a minimum value of 1 when the patch is fully
circular and increases with no theoretical upper limit
as the shape becomes more irregular and elongated
(Saura & Carballal 2004). Table 1 summarizes the dif-
ferent habitat characteristics in the sampled blue mus-
sel patches.

Experimental patches. To further test the effects of
patch shape on macrofaunal communities, we con-
structed mussel patches into large homogeneous mus-
sel beds at the Långskärsklack site. In May 2008, blue
mussel patches of 4 different shapes were created in 10
blocks, each spanning approximately 7 × 2.5 m. Blocks
were arranged in a row over a transect with approxi-
mately 10 m between blocks at 5 m depth. These
blocks of patches were created in areas with close to
full coverage of mussels, thus producing fragmentation
in terms of patches in an unfragmented seascape. In
addition to patch shape effects, we were interested in
elucidating how the assemblage structure changes
when a previous homogeneous area is turned into a
fragmented area consisting of patches. Moulds were
placed in large homogeneous mussel beds, and the sur-
rounding was removed by scraping and brushing so
that all mussels, barnacles and algae outside the
moulds were removed from the block. Patch designs
used were (1) a large square (0.5 × 0.5 m) and (2) a
large rectangle with the same area and perimeter
(0.4 × 0.625 m). Additionally, to separate the possible

effects of area and perimeter, (3) a rectangular patch
with the same perimeter but different area was created
(0.2 × 0.8 m). Finally, to test for differences in the in-
patch location, (4) another square-shaped patch (0.5 ×
0.5 m) was created and sampled from the edge; Fig. 1).
Patch types were randomly distributed to the block,
and distances between patches and all edges in the
block were ca. 1 m. The patches were left open for col-
onization during 5 mo, after which they were sampled
with a 20 × 20 cm metal frame with an attached sam-
pling bag. The fauna in the patches was also compared
with unmanipulated, continuous-control mussel beds
from the same area, sampled outside each block (n = 10).

In addition, smaller square (20 × 20 cm) and rectan-
gular (10 × 40 cm) blue mussel patches were created in
the Spi kar na area in May 2008. Patches were created
by placing transplanted blue mussels into plastic-bot-
tom and roofless frames (mesh size: 0.5 cm) attached to
the bottom by wedges (see setup in Koivisto & Wester-
bom 2010). Before transplantation, all associated inver-
tebrates were removed from the mussels except for
Balanus impro visus Darwin and Electra crustulenta
(Pallas), which grow as epi fauna on the shells. Frames
were re moved 1 mo after attachment, leaving behind
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Fig. 1. Schematic renderings of 4 experimental patch designs.
Replicates of all treatments (n = 10) were placed in 10 blocks
over a transect. Black parts mark the sampling site in each 

patch. A: area; P: perimeter

Patch type Biomass Mussel density Perimeter Area Size range P:A ratio MSI Sand Algae 
(g DW) (ind. cm–2) (cm) (cm2) (cm2) (g AFDW) (g DW)

XS 5 ± 0.8 3.4 ± 0.3 29 ± 1 40 ± 3 30–100 0.77 ± 0.05 26 ± 1 1.5 ± 0.3 0
Small sq 73 ± 9 3.0 ± 0.3 63 ± 4 204 ± 20 150–300 0.32 ± 0.01 56 ± 3 8.0 ± 2.6 0.2 ± 0.1
Small rec 24 ± 3 1.4 ± 0.1 62 ± 2 158 ± 8 150–300 0.39 ± 0.01 53 ± 1 2.4 ± 0.7 0.01 ± 0
Algae 90 ± 16 4.8 ± 0.3 60 ± 5 193 ± 29 150–300 0.34 ± 0.02 54 ± 4 4.7 ± 1.0 1.8 ± 0
Sand 91 ± 13 3.0 ± 0.1 87 ± 10 284 ± 29 150–300 0.33 ± 0.05 73 ± 6 44.1 ± 9.3 0.1 ± 0.1
Big sq 151 ± 16 2.6 ± 0.3 102 ± 7 471 ± 46 300–600 0.22 ± 0.01 89 ± 5 15.1 ± 2.0 0.2 ± 0
Big rec 138 ± 15 2.6 ± 0.2 113 ± 7 390 ± 34 300–600 0.29 ± 0.02 91 ± 5 12.5 ± 2.5 0.1 ± 0.1
XL 235 ± 29 2.2 ± 0.2 149 ± 12 850 ± 71 600–1000 0.18 ± 0 126 ± 8 25.9 ± 5.1 0.03 ± 0.01

Table 1. Patch characteristics of the sampled blue mussel Mytilus edulis beds (mean ± SE; n = 10). Patch abbreviations — XS: very
small; sq: square; rec: rectangle; Algae: small square containing algae; Sand: small square containing sand; XL: very large. Other 

abbreviations—DW: dry weight; AFDW: ash-free dry weight; P: perimeter; A: area; MSI: mean shape index
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only the blue mussels, to minimize cage effects and to
ease later sampling. The patches were open for colo-
nization during 5 mo, after which the total contents of
the patches were sampled using a metal frame corre-
sponding to each of the 2 patch sizes and shapes with
an attached sampling bag. Replicate treatments (n =
15) were randomly assigned to positions and located at
least 1 m apart from each other. The mussel densities
and sizes in the patches were equivalent to those found
in natural control blue mussel patches of the same area
(density, ANOVA: F2, 27 = 0.99, p > 0.05; size, Kolmo -
gorov- Smirnov: p > 0.05).

Processing of samples. After sampling, the fauna
was sorted by size through a series of sieves (mesh
sizes: 9.5, 4, 2, 1 and 0.5 mm) to ease the counting of all
individuals; subsequently the fauna was identified to
the lowest taxonomic level possible. The smallest frac-
tion in all samples was analysed using a preparation
microscope (Leica S6E). While the barnacles Balanus
improvisus were in cluded in the counts from natural
samples, they were ex cluded from the analysis in the
experimental patches, since they were already present
as epifauna on mussel shells at the beginning of the
experiment. The bryozoa Electra crustulenta was also
excluded from all analyses. Blue mussel biomass was
estimated according to the formula presented by West-
erbom et al. (2002). The amount of sand in each sample
was measured as ash-free dry weight (AFDW), after
combustion of the sand samples at 500°C for 4 h. The
amount of organic content (g) in the patch was deter-
mined as the weight difference between initial sand
dry weight (after 48 h in 60°C) and AFDW after com-
bustion. Also, the algae present (Coccothylus truncatus,
small amounts of trapped filamentous algae) were dried
for 48 h in 60°C and weighed to test for correlations
with diversity variables (species richness, abundance
and individual taxa), since they might affect the fauna.

Data analyses of natural patches. To assess how spe-
cies diversity, abundance and individual taxa differ in
the sampled patch types, 1-way ANOVA was used. All
data were log-transformed before analysis to meet
assumptions for parametric testing. Hydrobia spp.
were left out of the analysis when comparing the abun-
dance of gastropods, since they strongly dominated the
gastropod fauna. Instead, they were tested for sepa-
rately. To find the best explanatory variables for differ-
ences in diversity (species richness, abundance, indi-
vidual taxa), we performed a multiple linear regression
(forward stepwise) with faunal species richness, abun-
dance and individual taxa as dependent variables as a
function of patch area, perimeter, P:A ratio, MSI, blue
mussel biomass, the amount of organic content (g) and
the amount of sand (g AFDW). Density was left out of
the analysis since it showed collinearity with biomass.
There was no problem with multicollinearity between

other variables (tolerance > 0.80, condition index <
7.00). To reduce the risk of inflating Type I errors in
multiple regressions, we reduced α to 0.01 for rejecting
the null hypothesis (see Grafen & Hails 2002). Algal
weight (g) was also left out of the analyses, since it
failed to meet assumptions for parametric testing.
Instead, the correlation between algal weight and the
above-mentioned diversity variables was tested with a
Spearman rank test.

To test whether the species composition in the differ-
ent natural mussel structures differed, a 1-way fixed-
factor, distance-based permutational multivariate ana -
lysis of variance (PERMANOVA) was performed with
4999 random permutations of appropriate units with
patch type as a fixed factor (Anderson 2001). Analyses
were carried out on Bray-Curtis dissimilarities on
square-root-transformed data. The data were further in-
vestigated using appropriate pairwise comparisons
among patch types. Since pairwise comparisons were
highly significant, a canonical analysis of principal coor-
dinates (CAP; Anderson & Willis 2003) was performed
to visually compare the assemblages associated with
the different patches, and individual taxa with strong
correlations with the ordination axes (≥0.3) were plot-
ted as arrows in a biplot (Anderson & Willis 2003).

Data analyses of experimental patches. To study dif-
ferences in diversity indices (species richness, abun-
dance and individual taxa) in the big experimental blue
mussel patches and the natural, continuous mussel beds
(n = 10) from the same area, a 1-way ANOVA with patch
type as a factor was used. Prior to analysis, Kolmogorov-
Smirnov’s and Levene’s tests were used to test whether
data fulfilled assumptions for para metric testing. If neces-
sary, data were log transformed to fulfill these assump-
tions. Since area was found to highly affect the fauna in
the natural patches, we chose not to include the rect -
angles with the smaller area in the analysis (Fig. 1;
Type 3 patches). The square patches sampled from the
edge were also ex cluded from the ANOVA, but were
compared with the other square patches with an inde-
pendent-samples t-test to test if the in-patch location
 affects the fauna. To examine differences in species
 assemblages, a 1-way PERMANOVA with patch type as
a fixed factor was performed on Bray-Curtis dissimilari-
ties on square-root-transformed data. The overall pat-
terns were visualized with a CAP plot, and species with
strong correlations with the axes were plotted as arrows
in the biplot (≥0.3).

Differences in diversity in the small transplant
patches (20 × 20 cm and 10 × 40 cm) were tested for
using an independent-samples t-test. All ANOVAs
were followed by an a posteriori Student-Newman-
Keuls (SNK) test to identify means that differed signifi-
cantly at α = 0.05. All tests were performed with SPSS
16.0. The small experimental patches were visualized
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with a non-metric multidimensional scaling plot, and
species responsible for differences were investigated
using the similarity percentage (SIMPER) procedure,
since we only had 2 different treatments (N = 30). All
analyses were carried out with the Primer 6 package
with the PERM ANOVA+ add-on.

RESULTS

Effects of patch size, structure and shape in
natural samples

Patch size of Mytilus edulis beds significantly influ-
enced species richness and the abundance of Amphi -
poda, Isopoda, Polychaeta, Platyhelminthes, Nemer -
tea, Bivalvia and Gastropoda. All small patch types

(XS, Small sq, Small rec) differed significantly from
bigger patches with regard to species richness (SNK,
p ≤ 0.05; Fig. 2a). Abundance (ind. cm–2) was highest in
the sandy patches compared to all other patch types,
whereas it was significantly the lowest in the very
small (XS) and the small rectangular patches (Small
rec) (Fig. 2b). Patch size had a positive impact on spe-
cies richness up to ca. 500 cm2 patch area, thereafter
dampening off and even showing a negative trend
(Fig. 3).

The stepwise forward linear regression identified
overall mussel patch biomass, sand weight and patch
area as the best explanatory variables for species rich-
ness, together explaining 44% of the variance (ad -
justed R2 = 0.44, p ≤ 0.001). The best predictors for fau-
nal abundance were, likewise, mussel biomass, sand
weight and patch area, together accounting for 83% of
the variance (adjusted R2 = 0.83, p ≤ 0.001). The best
predictor for the abundance of gastropods, excluding
Hydrobia spp., and amphipods was mussel biomass,
whereas the amount of organic content was the best
predictor for the abundance of isopods, polychaetes,
nemerteans, flatworms, bivalves and Hydrobia spp.
Algal weight correlated positively, but weakly, with
both species richness and abundance (Spearman’s rS =
0.35 and 0.41, respectively, p ≤ 0.001).

Amphipods were most abundant in the algal patches,
whereas isopods and nemerteans were most numerous
in both algal and sandy patches. Bivalves, other than
Mytilus edulis, were most abundant in the sandy patches
and gastropods in the small square-shaped (Small sq)
and algal patches. The number of flatworms was small-
est in the very small patches (XS) and the big square-
shaped (Big sq) patches. Polychaetes were  significantly
more abundant in sandy patches than in other patches
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(SNK, p ≤ 0.05; Fig. 4). Significant differences were de-
tected in faunal composition between all patch types, ex-
cept between big rectanglular patches and very large
patches (PERMANOVA, pseudo-F7, 72 = 3.96, p < 0.01 for
all pairs; Fig. 5a). The largest differences were found be -
tween algal vs. sandy patches and the very small (XS)
patches vs. algal, sandy and big square-shaped (Big sq)
patches. Isopods, cirripeds, some gastropod species and
amphipods were associated with the algal patches,
whereas polychaetes and clams were more tightly linked
to the sandy patches (Fig. 5b).

Aquat Biol 12: 261–270, 2011266
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Effects of patch shape and in-patch location in
 experimental patches

There were no differences in species richness or
abundance in the large experimental mussel patches
of differing shapes. However, when compared with the
natural, undisturbed patches from the same area, there
were significantly more isopods in the natural beds
compared to both manipulated patches, and there
were significantly fewer oligochaetes and nematodes
in the square-shaped patches (ANOVA: F2, 27 = 4.83,
p ≤ 0.05; F2, 27 = 3.01, p ≤ 0.05; and F2, 27 = 4.01, p ≤ 0.05;
respectively). Species assemblages differed between
the natural beds and the square patches (PERM -
ANOVA: pseudo-F2, 27 = 1.69, p < 0.05), whereas there
were no differences between the differently shaped
patches. The multitude of species, except for the clam
Cerastoderma glaucum, was more associated with the
natural beds, as revealed by the correlations in the
CAP plot (Fig. 6). There were also significantly more
species in the squares sampled from the core com-
pared to squares sampled from the edge (18.6 ± 0.5 vs.
16.6 ± 0.7 species; t = 2.15, p < 0.05).

In the smaller transplant patches, there were more
clams in the rectangular patches and more gastropods
(both excluding and including Hydrobia spp.) in the
square patches, indicating that the amount of edge
might influence the colonization of patches and that
this varies among taxa (t = –2.2, p ≤ 0.05; t = 2.17, p ≤
0.05; and t = 2.14, p ≤ 0.05; respectively). Likewise,
assemblages associated with the rectangular and
square shapes differed significantly from one another
(PERMANOVA: pseudo-F1, 29 = 3.96, p < 0.01; Fig. 7).

Differences were caused by gastropods (Hydrobia spp.,
Limapontia capitata), clams (Macoma balthica, Ceras-
toderma glaucum), amphipods (Gammarus sp.) and
isopods (Iaera sp.), as revealed by the SIMPER proce-
dure. There were more gastropods and amphipods
in the square patches compared to rectangles, while
clams and isopods were more abundant in the rectan-
gular patches compared to squares.

DISCUSSION

Consistent with the species–area relationship, the
present study shows an increase in the number of
macrofaunal species in blue mussel patches up to a
patch size of ca. 500 cm2, thereafter dampening off. In
addition to size, the study shows that other patch qual-
ities have a large impact on faunal diversity and abun-
dance. Especially mussel biomass, the amount of sand
and algae, as well as organic content shape species
assemblages. Furthermore, the shape and amount of
edge influence the prevalence of individual taxa, such
as clams, which benefit from elongated patches. Our
data therefore confirm both a positive species–  area
relationship and a taxon-specific edge effect in blue
mussel beds. Differences were also found at the spe-
cies level between the manipulated mussel patches
and the continuous mussel beds, showing that frag-
mentation in continuous mussel landscapes may alter
the species composition.

The positive relationship between island area and
number of species is one of the most persistent theories
in landscape ecology (MacArthur & Wilson 1967).
However, the mechanisms underlying this causal rela-
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Fig. 6. Canonical analysis of principal coordinates (CAP) plot
from the experimental Mytilus edulis blocks and natural, con-
tinuous M. edulis patches, and correlations of individual taxa 

with the axes

2D Stress: 0.12

Square
Rectangle

Fig. 7. Non-metric multidimensional scaling plot showing the
faunal assemblages associated with the small experimental
Mytilus edulis patches of differing shapes. Analysis based on
Bray-Curtis dissimilarities on square-root-transformed data
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tionship are somewhat debated, and its validity has
been questioned for marine ecosystems (Anderson
1998). Three general models have been proposed to
explain the ecological processes for the species–  area
relationship. First, the ‘random placement hypothesis’
(Arrhenius 1921, Coleman 1981) predicts that larger
areas generate a higher abundance of organisms and
therefore increase the number of species as a random
process. According to this model, equal areas sampled,
regardless of the size of the patch, should result in the
same average number of species. This was not the case
in the present study, where clear differences were
seen in the different patch types. An alternative expla-
nation is the ‘habitat diversity hypothesis’, which pos-
tulates that the number of species is greater in larger
areas be cause more microhabitats or niches are avail-
able (Connor & McCoy 1979). A third hypothesis
explaining the  species–  area relationship is the equilib-
rium theory of island biogeography, which predicts
that the number of species is lower on smaller ‘islands’
because the immigration rates will be lower and the
extinction rates will be greater compared to larger
islands (MacArthur & Wilson 1967). In accordance with
Kostylev et al. (2005), the present study supports the
second hypothesis, since many species that require
specific resources, such as soft sediment or microalgal
cover, were virtually absent from the small patches
(Marenzelleria viridis, Fabricia stellaris, Oligochaeta
sp., Limapontia capitata, Radix pe re gra). These re -
sources are likely to be absent or scarce in small blue
mussel patches that are frequently wave-swept. Due to
their physical structures, larger blue mussel beds are
likely to serve a greater ecological function for associ-
ated organisms by creating substrates and refuges and
trapping resources, such as sediment and sand (Coco
et al. 2006). Diversity variables (species richness, abun-
dance) were also positively related to variables such as
mussel biomass, patch area and sand weight, which
may be connected to the physical structures of the
patch. Especially abundance was almost entirely ex -
plained by patch area, biomass and sand weight.

The shape of the patch and the amount of edge in
this system were less important and were taxon spe-
cific. For instance, in the small transplant patches,
clams (Macoma balthica, Cerastoderma glaucum) were
most abundant in the high P:A rectangular patches,
whereas the opposite was true for Hydrobia spp.,
which had a higher prevalence in the square-shaped
patches. Compact habitat patches can support more
species and greater population sizes than elongated
patches, as the probability of animals emigrating and
being lost from the system is reduced (Diamond &
May 1976, Bevers & Flather 1999). However, elongated
patches can also receive a greater number of immi-
grants than compact patches, especially if they are ori-

ented across the flow of dispersing individuals (Hama -
zaki 1996). As the majority of clams found in the pre-
sent study represented recruits of the year, the hypo-
thesis of greater larval encounter for elongated
patches is supported. Bivalves have also been found
to preferentially settle along the edges of seagrass
beds (Bologna & Heck 2000). The higher prevalence
of gastro pods in compact habitat patches could be ex -
plained by a higher content of organic matter that
Hydrobia spp. feeds on (Bick & Zettler 1994), and the
abundance of Hydrobia spp. was, indeed, related to
the amount of organic content, as seen in the stepwise
linear regression model, where it was recognized as
one of the explaining variables. The abundance of gas -
tropods and periwinkles has also been shown to
decrease with higher architectural complexity in mus-
sel beds (Kostylev 1996, Kostylev et al. 1997, Koivisto
et al. 2011). In-patch location in fluenced species rich-
ness, where higher species richness was associated
with the interior parts of patches. The in-patch location
has also been found to influence the fauna in seagrass
patches, where results have been highly variable for
different taxa (for review, see Boström et al. 2006).

The present study clearly underpins the importance
of scale in the outcome of experimental studies. Differ-
ences in faunal communities were seen between patch
shapes in the smaller transplant patches, whereas they
were absent in the bigger experimental mussel
patches. The species–area relationship was evident in
mussel patches up to ca. 500 cm2, but a further increase
in patch size had no effect on the species richness, de -
monstrating that there is a threshold beyond which
increased patch size no longer affects the associated
species (Fig. 3). For blue mussel communities on soft
bottoms, Norling & Kautsky (2007) found a relationship
for faunal and floral diversity of up to only 150 cm2. The
spatial scale on which measurements are taken is
 crucial: based on the group of species, the spatial scale
determines the type of structural variable that has to
be chosen, as different scales require different appro-
priate variables. Also, the effect of habitat heterogene-
ity relative to the structural variable measured may
vary depending on the spatial scale (Tews et al. 2004),
e.g. being positive on a micro- and meso-scale, but
non-significant on a macro-scale.

The present study highlights the importance of
small-scale habitat and patch characteristics in deter-
mining macrofaunal community structure and diver-
sity in subtidal blue mussel habitats. In our study, the
presence of algae benefited many species, such as
amphipods and gastropods (Fig. 5b), that are likely to
find both food and shelter in the algal stands (Koivisto
& Westerbom 2010). The presence of sand added a
new dimension to the blue mussel patches and facili-
tated soft-bottom species, such as polychaetes and typ-
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ical soft-bottom clams (Fig. 5b). Polychaete worms
 benefit from coarse-grained habitats with variable
interstitial spaces in mytilid beds, which function as
their main habitat on hard substrates (Tokeshi 1995).
The addition of sand has also been found to markedly
alter the fauna associated with coralline turfs (Airoldi
2003, Huff & Jarett 2007). Overall, our study suggests
that, although size is definitely important for species
diversity up to a certain threshold, the ‘patch quality’,
here defined as the presence/absence of additional
structural components in mussel beds, might play a
greater role in species diversity, composition and abun-
dance. There is compelling evidence that patch quality,
such as the presence of structural attributes, highly af -
fects species distribution and abundance (e.g. Denoel
& Lehmann 2006, Lloyd 2008). It is likely that species
dynamics are driven by multiple aspects of habitat
quality, but, in order to gain a better understanding,
more effort should be undertaken to appropriately
measure the quality of a habitat (Mortelliti et al. 2010).

Blue mussel habitats provide excellent opportunities
for determining how physical changes in a habitat’s
landscape, such as fragmentation or loss of structural
components, may influence ecosystem structure and
function. The present study clearly shows that both
habitat quantity and quality have important effects on
faunal assemblages in aquatic landscapes.
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