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1.  INTRODUCTION 

Acoustic signal communication in fish is ubiquitous 
in nature (Looby et al. 2022). Certain fish transmit in-
formation through vocalizations, which include acous-
tic communication between conspecifics, courtship 
calls during reproduction, schooling signals, alarms for 
predator avoidance, and tentative calls made during 
foraging (Myrberg & Lugli 2006). For instance, the 
spotted toadfish Porichthys notatus emits a ‘buzzing’ 
sound during courtship, which can last up to 2 h and 
may be repeated throughout the night’s courtship 
 activities (Tripp et al. 2021). The ‘grunts’ made by the 
large yellow croaker Larimichthys crocea during feed-

ing are single pulses, while the ‘gurgles’ during 
spawning are mostly double or triple pulses (Ren et al. 
2007). Fish vocal behavior also manifests in situations 
of antagonistic encounters and territorial defense 
(Hallacher 1974, Fletcher 1983). Furthermore, some 
fishes with awareness of territory protect their terri-
tories through vocal behavior (Ladich 1989), such as 
Scorpaeniformes marbled rockfish Sebasticus marmo-
ratus (Zhang et al. 2013) and black rockfish Sebastes 
vulpes (Matsubara et al. 2018). 

Different fish species are capable of producing a 
variety of sounds, and the principles and methods of 
their vocalization vary (Wall et al. 2012). Certain spe-
cies with swim bladders utilize the contraction and 
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vibration of their swim bladders and associated mus-
cles to generate sound (Tavolga 1971, Kaatz 2002, 
Ladich et al. 2011, Ladich 2014). Among many spe-
cies, members of the Sebastes genus, such as S. atro-
virens, S. carnatus, S. chryso melas, S. melanops, S. 
nebulosus, and S. schle gelii, are all capable of produc-
ing sounds (Hallacher 1974, Fletcher 1983, Nichols 
2005, Song et al. 2023). Comparative classification of 
swim bladder muscles in Scorpaeniformes fishes 
reveals that the swim bladder muscles of Sebastes can 
be divided into 2 groups: the first group, with muscles 
attached to the shoulder girdle bone, includes species 
like S. levis, S. crocotulus, and S. constellatus (Širović 
& Demer 2009); the second group, without attachment 
to the shoulder girdle bone, includes S. nebulosus, S. 
caurinus, S. maliger, and S. marmoratus (Nichols 2005, 
Zhang et al. 2016). It is hypothesized that all rockfish 
species possessing swim bladder muscles are capable 
of vocalization (Hallacher 1974). 

Passive acoustic monitoring (PAM) is a non-
invasive and non-damaging observation method that 
operates without noise input (Cato et al. 2005). PAM 
is versatile, used not only in research areas such as 
fish population assessment, monitoring fish habitat 
conditions, and locating spawning fish (Lindseth & 
Lobel 2018, Hossain & Hossen 2019, Matsubara et 
al.  2023) but also in efficiently collecting various 
types of under water acoustic data produced by 
organisms. This includes fish vocalizations (Aalbers 
&  Drawbridge 2008, Anderson et al. 2008, Picciulin 
et al. 2020), marine mammal vocalizations (Stimpert 
et al. 2011, Zhang et al. 2016, Sills & Reichmuth 
2022), and sounds associated with various behaviors 
in marine invertebrates (Fish 1966, Berk 1998, Patek 
2002). S. schlegelii, a major economic fish species pre-
dominantly found in the Bohai Sea, Yellow Sea, and 
East China Sea, exhibits a correlation where larger 
swim bladder sizes correspond to lower vocalization 
fre quencies (Dobrin 1947, Fish & Mowbray 1970). 
Vocalizations in Sebastes and other rockfish species 
are primarily produced through the swim bladder and 
its muscles (Hallacher 1974), suggesting that the 
acoustic properties of S. schlegelii may change with 
growth as the swim bladder and its muscles increase 
in size. 

In this study, we utilized the PAM technique to 
record the sounds of S. schlegelii in an experimental 
tank, described the acoustic characteristics of their 
vocalizations, and investigated the relationship be -
tween body length, swim bladder size, and vocal char-
acteristics. This research provides data to support the 
use of PAM in identifying the distribution and size of 
the S. schlegelii population in natural settings. 

2.  MATERIALS AND METHODS 

2.1.  Materials 

The Sebastes schlegelii used in this experiment 
were captive-bred individuals acquired in Dalian, 
Liao ning Province, China. They were temporarily 
housed in open cylindrical glass fibre reinforced plas-
tic tanks (∅ 100 × H 90 cm) for 7 d and fed with sink-
ing granular baits (∅ 5.0 mm) at 8:00 h daily. Water 
was changed daily, with half of the tank’s volume 
replaced each time. Ten experimental fish were ran-
domly selected and individually housed in cylindrical 
acrylic tanks (∅ 50 × H 60 cm) at a water temperature 
of 20.46 ± 0.32°C for 1 d. The standard length (SL) of 
these fish ranged from 21.7 to 24.8 cm (mean ± SD = 
23.33 ± 0.93 cm) (Table 1), and the body weight varied 
between 144.2 and 250.3 g (mean ± SD = 197.28 ± 
37.75 g) (Table 1). 

2.2.  Methods 

Vocalizations were recorded for each experimental 
fish using an AQH20k-1062 hydrophone (sensitivity: 
–193 dB re 1 V μPa–1, Aquasound) connected to a 
professional recorder. The recordings were saved off-
line in WAV format with a 16-bit rate and a sampling 
frequency of 96 kHz. Before starting the recordings, it 
was necessary to switch off the oxygenation pump 
and other noise sources to minimize external noise 
interference. Following the recordings, the experi-
mental fish were anesthetized using MS-222. Once 
the fish entered a deep anesthesia phase (character-
ized by complete loss of body balance and occasional 
belly-up posture) (Guan et al. 2011, Xiao et al. 2023), 
they were placed on a homemade fixation bracket. 
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No.         Standard      Weight                  Swim bladder 
             length (cm)         (g)            Length    Width  Height  
                                                               (mm)       (mm)     (mm)  
                                                                                                      
1                  21.7              144.2            32.3         18.1        19.6  
2                  21.8              145.6            33.1         18.6        18.9  
3                  22.1              160.4            35.7         19.2        19.8  
4                  22.8              166.7            36.1         19.5        19.5  
5                  23.3              210.5            37.8         21.2        21.8  
6                  23.3              213.6            39.4         23.2        22.1  
7                  23.7              222.5            39.8         24.1        23.8  
8                  23.8              213.6            39.4         23.2        22.1  
9                  24.4              245.4            41.3         25.6        25.8  
10                24.8              250.3            42.2         26.1        25.9

Table 1. Standard length, body weight and swim bladder size  
in each Sebastes schlegelii
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High-definition X-ray images were then taken of each 
fish’s swim bladder, and measurements of the swim 
bladders’ length, width, and height (mm) were re -
corded as shown in Fig. 1. 

2.3.  Data processing 

Sound files were parsed and processed using iZo-
tope RX 5 Audio Editor and AQ Level Meter1607 to 
generate frequency profiles. Statistical analyses ex -
ploring the relationships between sound characteris-
tics, SL, and swim bladder size were conducted using 
goodness-of-fit tests. 

3.  RESULTS 

3.1.  Measurement of swim bladder size  
in experimental fish 

Swim bladder lengths ranged from 32.3 to 42.2 mm, 
widths from 18.1 to 26.1 mm, and heights from 19.6 to 
25.9 mm. There was a significant positive correlation 
between swim bladder length and SL, with a high 
 co efficient of determination (R2 = 0.949, p < 0.001, 
goodness-of-fit test; the R2 is for the model’s good-
ness-of-fit, and the p-value is for whether the model as 
a whole is linearly significant, for post-hoc testing, the 
p-value suffices) as shown in Table 1 and Fig. 2. 

105

Fig. 1. Swim bladder of the Sebastes schlegelii. X-ray image of S. schlegelii. (a) Top view; (b) side view. Dashed lines with arrows: 
(1) length, maximum length of swim bladder in the cephalad and caudal direction of the fish; (2) width, maximum vertical aspect of 
swim bladder measured from the dorsal side; (3) height, maximum vertical aspect of swim bladder measured from the lateral side
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3.2.  Acoustic characteristics of Sebastes schlegelii 

The ‘cooing’ sound produced by S. schlegelii con-
sists of several individual pulses, as shown in Fig. 3a, 
with a pulse duration of 15.2 ± 2.4 ms, as shown in 
Fig. 3b. The main peak of the vocalization frequency 
for S. schlegelii is approximately 150 Hz, with a sub-
peak around 100 Hz. The primary vocalization fre -
quency band ranges between 100 and 350 Hz, as 
shown in Fig. 4. 

3.3.  Relationship between sound properties, SL, 
and swim bladder length 

The highest mean peak frequency observed was 
approximately 260 Hz, with the shortest mean pulse 
duration around 0.012 s. Conversely, the lowest mean 

106

Fig. 2. Relationship between standard body length and length  
of swim bladder

Fig. 3. Analytical graph of Sebastes schlegelii vocalisation audio. (a) Amplitude indicated by white arrow; (b) single pulse wave- 
form indicated by white arrow
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peak frequency was about 140 Hz, with the longest 
mean pulse duration approximately 0.019 s. Peak 
frequency showed a significant correlation with SL 
(R2 = 0.923, p < 0.001) (Fig. 5a), swim bladder length 
(R2 = 0.954, p < 0.001) (Fig. 5b), swim bladder width 
(R2 = 0.914, p < 0.001) (Fig. 5c), and swim bladder 
height (R2 = 0.776, p < 0.001) (Fig. 5d); all correlations 
were negative. No significant correlation was found 
be tween peak frequency and pulse duration (R2 = 
0.771, p > 0.05) (Fig. 5e). 

4.  DISCUSSION 

Many fish species are capable of producing a wide 
variety of sounds, and the mechanisms of vocalization 
vary among them (Wall et al. 2012). In this study, Se-
bastes schlegelii vocalized primarily in the frequency 
band between 100 and 350 Hz. In contrast, captive 
rockfishes vocalized within the frequency range of 
70 to 500 Hz (Širović & Demer 2009), and white-edged 
rockfish also vocalized within this same range (Matsu-
bara et al. 2023), supporting the research viewpoint 
that vocal characteristics can vary significantly even 
within closely related species. Additionally, pulse du-
rations varied among species, with S. schlegelii show-
ing pulse durations of 0.0152 ± 0.0024 s, S. taczanow -
skii ranging from 0.001 to 0.022 s (Matsubara et al. 
2023), and S. marmoratus at 0.0326 ± 0.0026 s in the 
present study (Zhang et al. 2013). These results indi-
cate that the spectral characteristics of S. schlegelii’s 
vocalizations are distinct, despite the similarity in 
body structure among fishes of the same population 
and genus. By spectral comparisons, it is possible to 
distinguish other Sebastes species. Hallacher (1974) 
hypothesized that all fishes of the genus Sebastes with 
swim bladder muscles are capable of vocalizing due 

to  the ability of the swim bladder muscle to drive  
vocalization through contraction (Tavolga 1971, Kaatz 
2002). The frequency bandwidth of vibrational sounds 
produced by the swim bladder ranges from 50 to 
1500  Hz, while that of friction sounds extends from 
50 Hz to 10 kHz (Fish 1954). Most friction sounds are 
impulses, whereas vibrational sounds from the swim 
bladder may be pulses, pure tones, continuous tones 
with frequency and amplitude variations, or a mixture 
of tones, which relate to the structure of the swim blad-
der and its mechanism of sound production (Demski et 
al. 1973). In this experiment, the specific dimensions of 
the swim bladder were obtained through the X-ray 
image acquisition method. How ever, this technique 
was not effective in capturing relevant data on the 
swim bladder muscle. High-resolution CT (HRCT) uti-
lizes the penetrative capabilities of X-rays to image the 
internal structures of organisms, offering high-resolu-
tion imaging that can clearly delineate both large dif-
ferences in density between soft tissues and bone 
structures, as well as subtle differences within soft tis-
sue structures and organs, typically without overlap 
between these structures (Zhang 2013). This technique 
has proven effective in detailing the structure and ar-
rangement of the swim bladder and swim bladder mus-
cle (Carpenter et al. 2004, Yang et al. 2021). For future 
studies, combining ana to mical methods with com-
puted tomography could more accurately obtain data 
on the swim bladder and swim bladder muscle of 
target fish species, and more precisely explore the re-
lationship between vocal frequency and the size of 
these structures in fish. 

PAM, also known as passive sonar, operates without 
a specialized acoustic source transmitting system. It 
detects underwater targets by receiving noise 
radiated by the targets themselves, which is used to 
determine the state and nature of the target for local-
ization, tracking, and identification (Cato et al. 2005, 
Song et al. 2023). Capturing the vocal audio of target 
species through PAM and exploring the relationship 
between their vocal characteristics and features such 
as swim bladder and SL are crucial for estimating the 
length composition of these species (Anderson et al. 
2008, Song et al. 2023). Our results indicate that SL is 
positively correlated with swim bladder size, whereas 
peak frequency is negatively correlated with SL, swim 
bladder length, and swim bladder height, both of 
which have been confirmed in vocalization studies of 
various fish with swim bladders (Dobrin 1947, Fish & 
Mowbray 1970, Colleye et al. 2009, Amorim et al. 
2013). These relationships between the sound charac-
teristics of S. schlegelii and SL suggest that PAM can 
be effectively used to estimate its length composition. 

107

Fig. 4. Spectrogram of individual vocalisations of Sebastes  
schlegelii
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However, some studies have shown that in fish from 
the group Sciaenidae, measuring 20–25 cm, there are 
very subtle changes in peak frequency of their vocal-
izations with SL (Connaughton et al. 2000, Tellechea 
et al. 2010). The standard body length of the experi-
mental fish in this study fell within this range (20 to 
25 cm), yet the peak fre quency varied significantly, 
likely due to differences in swim bladder structural 

characteristics among different fish populations 
(Ramcharitar et al. 2006, Ren et al. 2007). As the ex -
perimental fish in this study all had body lengths 
greater than 20 cm and lacked acoustic data from 
S. schlegelii with smaller body lengths, further re -
search aimed at using PAM to estimate length compo-
sition should involve setting up multiple body length 
gradients for acoustic characterization of S. schlegelii. 
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Fig. 5. Relationship between peak frequency and (a) body 
length, (b) swim bladder length, (c) swim bladder width, 
(d) swim bladder height, and (e) pulse duration. Error bars  

indicate SD of peak frequency
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This approach would enable a more precise extension 
of the range of estimated length compositions. 

The samples selected for this experiment were all 
farmed individuals, whose vocal characteristics may 
not be representative of wild populations (Matsubara 
et al. 2023). Additionally, the vocal data collected 
were from a single individual and did not include 
acoustic communication exchanges between groups 
displaying different behavioral outputs, such as 
spawning (Ramcharitar et al. 2006, Ren et al. 2007, 
Aalbers & Drawbridge 2008), competition for bait 
(Song et al. 2023), disturbance responses (Heyd & 
Pfeiffer 2000), and territorial defence (Fletcher 1983, 
Zhang et al. 2013). Moreover, fish vocalizations are 
also diurnally and seasonally related (Montie et al. 
2015), and some species exhibit changes in acoustic 
properties during the mating period (Luczkovich et 
al. 2008, Amorim et al. 2013), making the selection of 
specific seasons and time periods for monitoring 
essential. Therefore, comprehensive studies on the 
acoustic characteristics of S. schlegelii should include 
comparisons of acoustic traits between farmed and 
wild individuals, evaluations of vocal characteristics 
among individuals and groups across different sea-
sons and periods, and assessments of vocal variations 
among individuals of different SLs. 
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