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1.  INTRODUCTION 

The large Amazonian bony fishes commonly known 
as arapaima, pirarucu, or paiche (genus Arapaima 

Müller, 1843) have garnered particular interest for 
commercial aquaculture development due to their 
rapid growth rate and high market value (Valladão et 
al. 2018, Ohs et al. 2021). Also present in the global 
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ABSTRACT: Fish in the South American genus Arapaima Müller, 1843 (hereafter referred to as ara-
paimas) have attracted interest for commercial aquaculture development thanks to their rapid 
growth rate and high market value. However, management agencies in the United States have 
expressed concerns about importing and culturing arapaimas due to records of non-native estab-
lishment in certain other countries where arapaimas were released or escaped from captivity. We 
used the Freshwater Fish Injurious Species Risk Assessment Model (FISRAM) to estimate the prob-
ability that arapaimas would be injurious (able to cause harm) to native ecosystems, humans, or the 
economy of the contiguous United States. Risk assessment model inputs were elicited from ara-
paima experts around the world. Model results were sensitive to the estimation of climate suitabil-
ity for arapaimas within the contiguous United States, with predicted probability of injuriousness 
ranging from 0.784 down to 0.321 with different climate suitability inputs. Expert assessors pre-
dicted that competition and predation on native species would be the most likely mechanism of 
impact and expressed a high degree of uncertainty about potential for impacts from pathogens and 
parasites. We concluded that due to the cold sensitivity of these tropically adapted fish, establish-
ment within the contiguous United States would be highly restricted geographically, limiting 
potential impacts if introduced outside climatically suitable areas. Existing regulations already 
mitigate risk of escape from aquaculture in areas where establishment is plausible, but further 
research into arapaima parasites and pathogens would help reduce uncertainties and suggest 
opportunities to enhance biosecurity measures if needed.  
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aquarium trade (Nijman 2010, Magalhães et al. 2017), 
arapaimas have been captured, cultured, and trans-
ported around the world to 28 countries on 5 conti-
nents (Pereira et al. 2022). In the United States, over 
12 000 live arapaimas (reported as A. gigas [Schinz 
1822]) were legally imported for commercial pur-
poses between 2017 and 2021 (Convention on Inter-
national Trade in Endangered Species of Wild Fauna 
and Flora [CITES] Trade Database 2023). 

Export of A. gigas from its native range is regulated 
under CITES as a response to overfishing and de -
clines in native populations. A. gigas and other Ara-
paima species are large-bodied, obligate air-breathing 
fishes that are susceptible to harvest via gill nets, 
harpoons, spears, and other techniques (Castello & 
Stewart 2010). Despite the vulnerable position of ara-
paimas within their native range, there are risks in -
herent in transporting them to locations outside the 
native range. Arapaimas have established non-native 
populations in southeastern Brazil, Bolivia, Peru, India, 
and Indonesia after escaping captivity during natu-
ral disasters or after intentional release (Miranda-
Chumacero et al. 2012, Kumar et al. 2019, Doria et al. 
2020, Marková et al. 2020, Bueno et al. 2021, Catâneo 
et al. 2022). Introduced arapaimas are suspected to 
harm native fish populations in some areas through 
predation and competition (Miranda-Chumacero et 
al. 2012, Van Damme et al. 2015, Fadjar et al. 2019). 
However, there have been very few attempts to mea-
sure the impacts of their introductions, and these 
attempts have been focused on consequences to com-
mercial and artisanal fisheries rather than local eco-
systems (Van Damme et al. 2017, Doria et al. 2020). It 
is unknown whether arapaima translocations have 
resulted in disease or parasite introductions that have 
negatively affected native fishes or locally adapted 
arapaima populations (e.g. genetically distinct sub-
populations identified by Farias et al. 2019; see also 
Sousa et al. 2022). 

Growing interest in arapaima aquaculture in the 
State of Florida in the United States prompted Hill & 
Lawson (2015) to assess the risk of invasiveness of ara-
paimas within that state using the Freshwater Inva-
siveness Screening Kit (FISK; Lawson et al. 2013). 
They concluded that arapaimas posed a medium risk 
of becoming invasive in Florida, and that low toler-
ance for cold temperatures would restrict potential 
populations to south or southeast Florida. The Florida 
Fish and Wildlife Conservation Commission (FFWCC) 
used these results to inform implementation of con-
ditional restrictions on arapaima aquaculture (Hill & 
Lawson 2015), and the Florida Department of Agricul-
ture and Consumer Services (FDACS) has allowed 

culture of arapaimas to proceed under strict adher-
ence to a set of Best Management Practices (BMPs) to 
prevent their release into natural waterways (FDACS 
2022). However, subsequent reports of deceased ara-
paimas discovered in the wild in Louisiana (in 2016) 
and Florida (in 2020; USGS 2023a), coupled with un -
certainty over the impact of climate change on future 
establishment potential via increased environmental 
temperature, renewed management agency concerns 
about arapaima invasion within Florida and beyond. 
Although the origin of the Louisiana specimen is 
unknown, the Florida specimen was apparently re -
leased after being stolen from an aquaculture facil-
ity in southwest Florida. Its farm origin was verified 
by  the presence of a passive integrated transponder 
(PIT) tag that the owner had placed in the animal 
(FFWCC 2021). 

Responding to management agency concerns, we 
present a new assessment of the risk of arapaimas 
becoming injurious to native ecosystems, humans, or 
the economy of the contiguous United States. The 
outcome of ‘injuriousness’ acknowledges that, under 
certain circumstances, an introduced species can 
cause direct harm without establishing and spread-
ing in the wild (e.g. venomous species, pathogen 
hosts; Marcot et al. 2019). We assessed arapaima 
injuriousness using the Freshwater Fish Injurious 
Species Risk Assessment Model (FISRAM; see our 
Fig. 1; Marcot et al. 2019), which allowed assessors 
the flexibility to integrate both the available pub-
lished literature and their own expert knowledge into 
the assessment. 

2.  MATERIALS AND METHODS 

2.1.  Note on arapaima taxonomy 

Although 5 arapaima species have been described 
based on morphology (Stewart 2013a,b, and refer-
ences therein), all published assessments of arapaima 
population structure in the past 2 decades have been 
based on genetics alone (e.g. Farias et al. 2019) and 
thus, there remain uncertainties about status and dis-
tribution of those nominal taxa. Integrative analyses 
simultaneously comparing genetics and morphology 
are needed to resolve those uncertainties (e.g. Oli-
veira et al. 2020). In the absence of better information, 
much of the available biological and distributional 
information has defaulted to the earliest scientific 
name, Arapaima gigas. We sought to consider these 
information limitations in the risk assessment inputs 
and interpretation of the results. 
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2.2.  Background on FISRAM 

We conducted the risk assessment using FISRAM, 
described by Marcot et al. (2019). FISRAM is a Bay-
esian belief network used to predict the probability of 
injuriousness of a non-native freshwater fish species 
based on species traits and expected interactions with 
the landscape into which the species is introduced. 
The model calculates a posterior probability distribu-
tion across 3 states of injuriousness, defined as follows 
(from Marcot et al. 2019): (1) Yes: Invasive — significant 
harm coupled with medium to high establishment and 
spread potential; (2) No: Not invasive — low estab-
lishment potential, low spread potential, and insig-
nificant harm; and (3) Evaluate Further — species has 
low potential for spread and establishment, but has 
high potential for harm. The model was tested and 
calibrated using data on 50 fish species introduced 
outside their native ranges with known outcomes; 
for every test case, the model was able to predict the 
correct outcome (Marcot et al. 2019). 

In FISRAM, the predicted probability of injurious-
ness is based on 11 input variables, each with 3 pos-

sible states (Fig. 1, Table 1; Table S1 in the Supple-
ment at www.int-res.com/articles/suppl/q016p175_
supp.pdf). Seven input variables (Habitat Disturbance, 
Predation, Competition, Bites & Toxins, Genetics, 
Pathogens, and Other Trait [e.g. zoonotic, physical 
impact]) relate to injuriousness via a latent variable 
representing overall harm caused by the non-native 
species introduction. Four additional input variables 
(Human Transport, Non-Human Dispersal, Habitat 
Suitability, and Climate 6 Score) relate to inju -
riousness via latent variables representing transport, 
establishment, and spread of the non-native species 
(Fig. 1). 

2.3.  Assessor recruitment and model inputs 

The assessment facilitator (K. Wyman-Grothem) 
invited participants to join the risk assessment pro-
cess based on authorship of published literature on 
arapaima biology, ecology, and introductions. Efforts 
were made to identify a diverse group of potential 
participants, representing different subfields of bio-
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Habitat 
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None, 
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Predation
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Competition
None, 

Insignificant, 
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Bites & Toxins
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Genetics
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Pathogens
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Insignificant, 
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Other Traits
None, 

Insignificant, 
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Ecosystem Effect 
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Insignificant, 
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Behavioral Effect 
None, 

Insignificant, 
Significant

Species Effect 
None, 

Insignificant, 
Significant

Human Effect 
None, 

Insignificant, 
Significant

Harm 
Insignificant, 
Significant

Human Transport
None, Seldom, Frequent

Non-Human Dispersal
None, Seldom, Frequent

Climate 6 Score
Low, Medium, High

Habitat Suitability
None, Insignificant, Significant

Transport 
Insignificant, 
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Establishment
Low potential,
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Spread
Low potential,
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High potential

Injuriousness
Yes, No, 

Evaluate further

Fig. 1. Freshwater Fish Injurious Risk Assessment Model (FISRAM) influence diagram. Each box represents a variable in the 
model, with the variable name (plain text) given above its possible states (italics). White boxes: input variables; gray boxes 
with dashed borders: latent variables; black box: model output; arrows: relationships between variables (arrow pointing in the  

direction of influence). See our Table 1 & Table S1 or Marcot et al. (2019) for variable and state definitions

https://www.int-res.com/articles/suppl/q016p175_supp.pdf
https://www.int-res.com/articles/suppl/q016p175_supp.pdf
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logy and different known arapaima populations. 
Within the email invitation to participate, the facili-
tator provided potential participants with back-
ground on FISRAM (Marcot et al. 2019) and a pub-
lished example of FISRAM application to another 
species (Wyman-Grothem et al. 2018). The facilitator 
communicated with each participant separately until 
after the assessors provided their initial inputs to the 
model. 

Seven experts from Brazil, the United States, and 
the Czech Republic (co-authors L. Castello, D. T. B. S. 
Catâneo, C. R. C. Doria, A. L. B. Magalhães, J. Patoka, 
D. Stewart, and C. Watson) agreed to participate in 
the project, representing expertise in arapaima tax-
onomy, biology, ecology, introduction history, and 
aquaculture. Together, the participating experts had 
experience with wild populations of arapaimas in 
both the native and introduced ranges, as well as with 

captive populations. The facilitator asked each expert 
assessor to use the literature and their own expert 
opinion to assign a predicted probability distribution 
to the 3 states of each of 10 input variables (all input 
variables except Climate 6 Score; see Section 2.4 for 
alternative method for Climate 6 Score) and provide 
justification for those probability distributions within 
a provided spreadsheet. Except for one pair of asses-
sors (C. R. C. Doria and D. T. B. S. Catâneo) who pro-
vided joint in puts, any assessors who happened to 
know the identity of other assessment participants 
were discouraged from discussing their inputs with 
each other prior to initial submission to the facilitator. 

Assessors were given written definitions for all 
input variables and their possible states from Marcot 
et al. (2019; our Table 1, Table S1) as well as a copy of 
the US Fish and Wildlife Service (USFWS) Ecological 
Risk Screening Summary (ERSS) report on A. gigas 
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Input variable                    Definition and variable states 
 
Habitat Disturbance       The capacity of the non-native species to cause habitat modification (erosion, siltation, bank  
                                              stability, eutrophication, sedimentation, etc.) thus causing destruction, degradation, alteration of  
                                              nutrient pathways, trophic effects, etc. for affected species (None, Insignificant, Significant) 
Predation                            The capacity of the non-native species to prey on affected native species, adversely affecting  
                                              native populations (None, Insignificant, Significant) 
Competition                      The capacity of the non-native species to adversely affect native species through competition for  
                                              food, space, or habitat (None, Insignificant, Significant) 
Bites & Toxins                   Direct adverse effect on human health from bites, stings, or other injections, ingestion, skin  
                                              contact, or absorption of venom from the non-native species; or other consequences that lead to  
                                              illness. Does not include effects from captive individuals; includes effects from wild and free- 
                                              roaming individuals (None, Insignificant, Significant) 
Genetics                              The capacity of the non-native species to adversely affect populations of the native species  
                                              through direct genetic influences including hybridization, GMOs, and introgression (None,  
                                              Insignificant, Significant) 
Pathogens                          Epizootic; Infectious diseases are caused by pathogenic microorganisms such as bacteria, viruses,  
                                              parasites, or fungi; these pathogens and parasites can be spread, directly or indirectly, from one  
                                               animal to another. Includes pathogens that cause WOAH-reportable diseases (None, Insignificant,  
                                              Significant) 
Other Traits                       Pertains to species traits that could impart adverse effect on human health from other than bites  
 (e.g. zoonotic,                and toxins that lead to illness, injury, paralysis, or death; or any other trait that characterizes any  
 physical impact)            form of risk to humans (None, Insignificant, Significant) 
Human Transport            Any assistance (whether intentional or unintentional) by humans for moving the subject species  
                                              from one location to another and introducing the species into an environment beyond a range  
                                              where it was established and can move from on its own (None, Seldom, Frequent) 
Non-Human Dispersal   Any assistance by non-human agents for moving the subject species from its current range  
                                              beyond a range where it can move on its own (None, Seldom, Frequent) 
Habitat Suitability           Habitat that matches the known habitats of the species, whether in the indigenous or invasive  
                                              range of the species (None, Insignificant, Significant) 
Climate 6 Score                Proportion of target points scoring above the median possible value for climatic similarity with  
                                              established locations of the species (Low, Medium, High)

Table 1. Input variables for the Freshwater Fish Injurious Species Risk Assessment Model (FISRAM; Marcot et al. 2019) and 
their definitions. Potential states of each input variable listed in italics. See Table S1 for unique definitions for each variable 
state. For further examples and references, see the supplementary material in Marcot et al. (2019). GMO: genetically modified  

organism; WOAH: World Organisation for Animal Health
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(USFWS 2022). ERSS reports serve as a precursor to 
the FISRAM process under the decision advisory sys-
tem presented in Marcot et al. (2019). Each report 
contains a summary of the available literature rel-
evant to assessing potential injuriousness of a species 
and a climate matching analysis (see Section 2.4) for 
the contiguous United States. 

After all assessors had submitted their inputs, the 
facilitator combined and anonymized the predicted 
probabilities and justifications for each input variable 
across all assessors. The collection of inputs was 
shared with assessors via email, initiating a 10 d 
written discussion period to share knowledge and 
better understand differences of opinion. The choice 
to use written discussion was intended to reduce bias 
due to different levels of fluency in spoken English 
among the assessors. All assessors participated in the 
discussion but only one chose to revise their inputs 
afterward. 

2.4.  Climate 6 Score 

Climate 6 Score is a statistic measuring climatic 
similarity between locations of established popula-
tions of a species and target locations to which it 
could be introduced (Bomford et al. 2010). Assessors 
were not asked to provide predicted probabilities for 
the variable of Climate 6 Score. Instead, the value for 
this input variable was taken from the climate match-
ing analysis included in the A. gigas ERSS (USFWS 
2022), as intended by the developers of FISRAM 
(Marcot et al. 2019). The ERSS climate 
matching analysis quantified climatic 
similarity between target locations 
across the contiguous United States and 
global occurrences of established ara-
paima populations, obtained from the 
Global Biodiversity Information Facil-
ity (GBIF; GBIF Secretariat 2021). All 
georeferenced occurrences of arapai-
mas in GBIF have been re ported as 
A. gigas, which we interpreted to rep-
resent occurrences of Arapaima spp. 
(see Section 2.1). The analysis was im -
plemented in the Risk  Assessment 
Mapping Program (RAMP; version 4.0; 
Sanders et al. 2021, USFWS 2023) using 
16 bioclimatic variables (Table 2) and 
CHELSA version 2.1 global climate 
data layers (Karger et al. 2017, 2018). 

The climate matching analysis in the 
ERSS used the CLIMATE algorithm 

developed by Pheloung (1996, Crombie et al. 2008) to 
calculate a target point score for each of 33 461 target 
points distributed on a 15 km grid across the contigu-
ous United States (Sanders et al. 2021) and then sum-
marized the set of target point scores with the Climate 
6 Score statistic. Individual target point scores were 
calculated as: 

                   (1) 

where k is the number of bioclimatic variables (Table 2), 
i indexes global source locations, j indexes target 
locations, yik is the kth climate variable for the i th 
source location, yjk is the kth climate variable for the j th 
target location, and σk

2 is the variance of all global 
points for the kth climate variable (Pheloung 1996, 
Crombie et al. 2008). The minimum function selects 
the source location with the closest match to the j th 
target as the location on which to base the overall 
score for that target point. Possible target point scores 
range from 0 to 10. A target point score of 0 indi-
cates no climate similarity between the target point 
and locations of established populations, while a tar-
get point score of 10 indicates a perfect match be -
tween the target point and locations of established 
populations. 

The Climate 6 Score was obtained from the target 
point scores by calculating the proportion of target 
points scoring above the median possible value for 
climatic similarity, i.e. 6 or higher on the 0–10 scale 
(USFWS 2023). According to the A. gigas ERSS, the 
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Code                    Description 
 
bio1                      Mean annual air temperature 
bio5                      Mean daily maximum air temperature of warmest month 
bio6                      Mean daily minimum air temperature of coldest month 
bio7                      Temperature annual range (bio5–bio6) 
bio8                      Mean daily mean air temperature of wettest quarter 
bio9                      Mean daily mean air temperature of driest quarter 
bio10                   Mean daily mean air temperature of warmest quarter 
bio11                   Mean daily mean air temperature of coldest quarter 
bio12                   Annual precipitation amount 
bio13                   Precipitation amount of wettest month 
bio14                   Precipitation amount of driest month 
bio15                   Precipitation seasonality (coefficient of variation) 
bio16                   Mean monthly precipitation amount of wettest quarter 
bio17                   Mean monthly precipitation amount of driest quarter 
bio18                   Mean monthly precipitation amount of warmest quarter 
bio19                   Mean monthly precipitation amount of coldest quarter 

Table 2. Sixteen derived bioclimatic variables used by the Risk Assessment 
Mapping Program (RAMP; Sanders et al. 2021) to evaluate climate similarity. 
Quarter: period of 3 mo. Variable values obtained from CHELSA 2.1 (Karger et 
al. 2017, 2018). Temperatures reported in °C and precipitation amounts in mm
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Climate 6 Score for A. gigas in the contiguous United 
States was 0.017 (USFWS 2022), which is classified as 
a Medium match (our Table S1; Marcot et al. 2019). 
Therefore, when running FISRAM for each set of 
assessor inputs, the facilitator plugged in the prob-
ability of 1.0 for the Medium state of Climate 6 Score. 

2.5.  Model outputs 

After obtaining the assessors’ inputs (revised after 
group discussion as desired), the facilitator conduct ed 
separate runs of FISRAM for each set of the 6 sets of 
assessor inputs (Table S2) using the Bayesian network 
development software Netica (version 6.05, Norsys 
Software). Predicted probability distributions for inju-
riousness from each individual model run were then 
averaged to obtain mean predicted probabilities. 

2.6.  Climate match sensitivity analysis 

One assessor shared concerns about the climate 
matching analysis in the ERSS based on past experi-
ence with arapaimas in Florida, suggesting that the 
Climate 6 Score may overestimate climate suitability 
in the contiguous United States because the model 
does not incorporate lower lethal temperature as a 
hard constraint on a species’ ability to establish a new 
population. With the support of all assessors to inves-

tigate the issue further, the facilitator repeated the 
runs of FISRAM for each individual assessor’s inputs 
with alternative probability distributions for the Cli-
mate 6 Score variable. The alternative probability 
distributions considered were (1) all probability as -
signed to the Low state of Climate 6 Score; and (2) 
probability evenly divided between Medium and Low 
states of Climate 6 Score. In these repeated runs, no 
other inputs were changed. 

3.  RESULTS 

3.1.  Assessor inputs related to potential harm 

Assessors predicted that arapaimas introduced to 
the contiguous United States would have potential to 
cause harm, particularly through the mechanisms of 
predation and competition (Fig. 2). In their written 
justifications, assessors referenced the wide range of 
potential prey items for arapaimas and the energetic 
requirements of rapid growth to a large body size. 
Some also noted the lack of studies to date on compe-
tition between arapaimas and potential competitors 
and that environmental limits on the establishment of 
arapaimas would restrict interactions with native spe-
cies. Most if not all assessors predicted no impacts 
due to habitat disturbance, bites or toxins, or genetic 
effects on native species (Fig. 2). A single assessor 
expressed concern about potential injury to aquacul-
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Fig. 2. Predicted probabilities for harm-related inputs to the Freshwater Fish Injurious Species Risk Assessment Model 
(FISRAM; Marcot et al. 2019), applied to the genus Arapaima within the contiguous United States. Solid bars: mean predicted 
probabilities; connected points: sets of individual assessor-predicted probabilities. Where multiple assessors supplied the same 
predicted probabilities, numbers in parentheses indicate the number of assessors with that set of predicted probabilities.  

Insig.: Insignificant; Sig.: Significant
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ture workers (included under Other Traits) if these 
large fishes are improperly handled. 

Across possible mechanisms for causing harm to 
native species or humans, the predicted impact from 
pathogens was the most variable across assessors 
(Fig. 2). In their written justifications, several asses-
sors mentioned a lack of information about arapaima 
parasites and pathogens, including information on 
host specificity and the susceptibility of native US 
biota. For example, one wrote: ‘To the extent patho-
gens are host specific (not well known for arapaima), 
there are no closely related fishes to arapaima in the 
[United States], and that could limit disease transfers. 
Since there have been no experiments to evaluate 
such possible transfers, natural experiments will start 
should they become established in the wild.’ 

3.2.  Assessor inputs related to potential transport, 
establishment, and spread 

Assessors agreed that human transport of arapai-
mas occurs for both aquacultural and ornamental pur-
poses (Fig. 3). Some assessors noted that the large 
body size of older arapaimas could affect rates of 
human transport, leading to aquarium dumping if 
owners cannot accommodate the fish’s size but reduc-
ing the frequency of transport between water bodies. 

On the probability of non-human dispersal of arapai-
mas, predictions were variable (Fig. 3); one assessor 
wrote that escape from aquaculture facilities is rare, 
while another wrote about personal observations of 
arapaimas jumping over or digging under barriers. 
Several assessors mentioned that the genus is capable 
of unassisted spread through connected waterways. 

Assessors predicted that at least a small amount of 
habitat suitable for arapaima establishment exists in 
the contiguous United States (Fig. 3). Many noted the 

importance of lentic habitat availability, especially 
floodplain habitat, and appropriate thermal conditions. 
Beyond temperature, assessors expressed divergent 
views on the sensitivity of the species to other abiotic 
environmental characteristics. 

3.3.  Model predictions of injuriousness and  
climate match sensitivity 

Mean predicted probability that arapaimas would 
be injurious within the contiguous United States was 
0.784 (range: 0.432–0.994 for individual assessors), 
assuming Medium Climate 6 Score (Fig. 4A). Mean 
predicted probability that the fish would not be inju-
rious was 0.152 (range: 0.005–0.491). Mean predicted 
probability of the Evaluate Further state was 0.064 
(range: 0.001–0.178). 

When different probabilities were assigned to the 
possible states for the Climate 6 Score, the mean pre-
dicted probability of the Yes state of injuriousness 
decreased, down to 0.576 under the intermediate sce-
nario (0.5 probability of Medium Climate 6 Score, 0.5 
probability of Low Climate 6 Score) and to 0.321 
under the Low Climate 6 Score scenario (Fig. 4B,C). 
The No state of injuriousness did not change substan-
tially across scenarios (range of mean predicted prob-
abilities: 0.133–0.162), but the Evaluate Further state 
(high potential for harm, low potential for establish-
ment and spread) increased such that it had the high-
est mean predicted probability (0.517) of all 3 states 
under the Low Climate 6 Score scenario. 

4.  DISCUSSION 

Drawing on published literature and expert opin-
ion, our FISRAM analysis of arapaima injuriousness 
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concluded that introduced arapaimas could cause 
harm within the contiguous United States, particu-
larly through competition and predation on native 
species. Potential for harm from arapaima parasites 
and pathogens represented a source of uncertainty in 
the overall prediction of harm. The climate match 
sensitivity analysis showed that varying predictions 
of climate suitability for the contiguous United States 
affect the predicted probability of an injurious out-
come for arapaima introduction. The probability of an 
injurious outcome declined with decreasing climate 
suitability, although lower climate suitability did not 
increase the probability of a non-injurious outcome. 
Instead, lower climate suitability increased the prob-
ability of substantial harm without substantial estab-
lishment or spread. For arapaimas, harm potential is 
likely to be greatest in areas where they can establish 
and have long-term impacts, but some degree of harm 
may also be possible even without establishment. 

4.1.  Potential impacts of arapaima introduction on 
native species and ecosystems 

Most assessors’ predictions about the predatory 
and competitive impacts of arapaimas in the contigu-
ous United States reflected the presumed impacts of 
non-native arapaimas on native fish populations else-
where in the world (e.g. Miranda-Chumacero et al. 
2012, Van Damme et al. 2015, Fadjar et al. 2019). In 
the absence of both stringent requirements for con-
tainment and effective oversight, arapaima aquacul-
ture may facilitate introductions into natural environ-
ments and endanger important species (Casimiro et 
al. 2018, Brosse et al. 2021, Raj et al. 2021). These 
global observations highlight the risk associated with 
arapaima introduction in regions such as the south-
eastern United States, a global hotspot for freshwater 
biodiversity with a relatively high proportion of 

threatened and range-restricted species, including 
fishes (Jelks et al. 2008, Collen et al. 2014). Based on 
current knowledge of arapaima diets (e.g. Watson et 
al. 2013, Carvalho et al. 2018, Jacobi et al. 2020), 
potential prey species of arapaimas in the southeast-
ern United States could include commercially and 
recreationally valuable fishes (Clupeidae, Centrar-
chidae; Murray et al. 2020, FFWCC 2023), small-
bodied native freshwater fishes (e.g. eastern mosqui-
tofish Gambusia holbrooki and Seminole killifish 
Fundulus seminolis), euryhaline fishes (e.g. common 
snook Centropomus undecimalis), crustaceans (e.g. 
riverine grass shrimp Palaemonetes paludosus; Ever-
glades crayfish Procambarus alleni) and amphibians 
(J. Gálvez, USFWS, pers. comm. 2023). Potential com-
petitors for fish, invertebrate, and amphibian prey 
could include native Florida bass Micropterus florida-
nus, wading birds, and alligators Alligator mississip-
piensis (Taylor et al. 2019, J. Gálvez pers. comm. 
2023). In the input variable definitions provided to 
assessors, predictions of harm were not conditional 
on establishment. However, if climatic constraints on 
establishment are considered (see Section 4.2), pred-
atory and competitive impacts of arapaimas on native 
species are more likely to be localized and transitory 
when the landscape lacks thermal refuges for arapai-
mas to overwinter. 

Potential impacts of parasites and pathogens of 
arapaimas remain a significant source of uncertainty 
in the overall prediction of harm. Pathogens and par-
asites do not necessarily exhibit the same physio-
logical tolerances as their hosts (Möller 1978, Franke 
et al. 2017), leaving the door open for non-host-
specific pathogens or parasites to survive and cause 
harm in areas where arapaimas are unable to do so. 
Therefore, it is crucial to have effective sanitary 
inspection of imported fish. Infection of arapaimas 
by both host-specific and generalist pathogens has 
been docu mented (e.g. Marinho et al. 2013), as has 
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at least 1 example of a parasite with zoonotic poten-
tial (Andrade-Porto et al. 2015). Although none of 
the 11 important fish diseases listed by the intergov-
ernmental World Organisation for Animal Health 
(WOAH) have been documented in arapaimas 
(USFWS 2022, WOAH 2022), and there have been no 
reports to date of novel disease agents or significant 
disease issues in native fishes due to arapaima impor-
tation into the United States (CITES Trade Database 
2023), rigorous sanitary measures and surveillance 
protocols remain essential to monitor and mitigate 
potential pathogen risks associated with arapaima 
imports. 

4.2.  Model sensitivity to climate match 

The CLIMATE algorithm (Pheloung 1996), imple-
mented in this study using RAMP (Sanders et al. 
2021), can be a useful tool for rapid assessment of 
establishment potential across diverse non-native spe-
cies (Bomford et al. 2009, 2010, Howeth et al. 2016, 
Moghaddas et al. 2020). The major advantages of this 
method include speed and simplicity due to the use of 
a standard set of continuous climate variables with 
global availability (Table 2). However, if the standard 
set of climate variables and their equal weighting by 
the algorithm are not appropriate for the species in 
question (e.g. a species highly sensitive to tempera-
ture but less sensitive to rainfall patterns, or vice versa), 
inaccurate estimates of climate suitability may be pro-
duced, skewing the results of the FISRAM process. 

An important question in our assessment was about 
the lower thermal tolerance of arapaimas. In a labo-
ratory study, Lawson et al. (2015) determined that 
captive-reared juvenile Arapaima gigas had a lower 
lethal temperature of 16°C. These data were sub-
sequently supported by observations from a fish farm 
in central Florida. Starting in 2017, the farm pur-
posely left a small number of arapaimas weighing 
between 3 and 16 kg in uncovered ponds to assess 
whether they could survive the winter. To date, not 
a  single fish has survived temperatures below 16°C 
(P. Price, Horse Creek Aquafarms, Arcadia, FL, pers. 
comm. 2023). In addition to survival, temperature 
plays a critical role in feeding, growth, and reproduc-
tive success, and therefore also in population estab-
lishment. In discussions subsequent to the formal FIS-
RAM analysis, multiple assessors reported personal 
observations made on wild and captive populations 
that arapaimas show signs of stress and have difficulty 
adapting to temperatures below 20°C. Within the 
native range, arapaimas are found in waters that 

remain above 20°C (Castello 2008, Arantes et al. 2013, 
Pereira-Filho & Roubach 2013, Stokes et al. 2021). 
Although arapaimas have been imported to 28 coun-
tries, successful establishment of wild reproductive 
populations has been limited to tropical regions 
(Pereira et al. 2022). We remain unaware of any wild 
or captive populations of arapaimas established in 
waters colder than 16°C. However, as arapaima tax-
onomy is clarified (see Section 2.1), further studies 
may be necessary to understand any variability in 
thermal tolerance across species and populations. 

Because RAMP does not have the flexibility to 
emphasize the cold sensitivity of arapaimas in its 
model of climate match to the contiguous United 
States, many areas regularly experiencing water tem-
peratures below 16°C were predicted to be suitable 
for establishment (Fig. 5). Similar to observations of 
butterfly peacock bass establishment (Lawson et al. 
2015), predictions for tropical catfish establishment 
(Tuckett et al. 2023), and earlier predictions for ara-
paima establishment (Lawson et al. 2015), the fre -
quency of water temperatures below 16°C in most 
areas of the southeastern United States suggests that 
the most suitable areas for arapaima establishment 
are in southern Florida (Fig. 5). When the Climate 6 
Score was reduced to the Low state to better match 
the data on temperature, the overall probability that 
arapaimas would be injurious to the contiguous 
United States fell by more than half, from 0.784 to 
0.321 (Fig. 4). From this example, we believe FISRAM 
would benefit from a more flexible definition of its 
climate suitability variable, allowing users to employ 
other models if those models have more relevance for 
the species in question. 

4.3.  Climate change implications 

Modeling studies for the Amazon Basin have pre-
dicted shifts in arapaima distribution due to climate 
change (Oberdorff et al. 2015, Dubos et al. 2022), and 
expanded establishment potential under climate 
change was one of the management agency concerns 
driving this risk assessment. Rapid risk screening 
appeared to support this concern. The Climate 6 
Score of 0.017 calculated in the A. gigas ERSS 
(USFWS 2022) and used in the FISRAM analysis was 
based on global climate data from 1979–2013 (Karger 
et al. 2017, 2018). A previous version of the ERSS 
(USFWS 2019) had found a Climate 6 Score of only 
0.002 based on global climate data from 1950–2000 
(Hijmans et al. 2005). The difference in these scores 
translated to different Climate 6 Score states, 
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Medium (0.017) versus Low (0.002). As discussed in 
the preceding section, however, neither of the Cli-
mate 6 Scores from the ERSS reports appropriately 
emphasized the cold sensitivity of arapaimas. 

The effects of climate change on cold weather are 
complex. Although annual minimum temperatures 
across the southern United States have increased in 
recent decades and the number of subzero (°C) days 
have declined (Osland et al. 2021), the number of 
extreme cold events has increased as well (Cohen et 
al. 2021). Sudden temperature swings can have severe 
negative impacts on fish (Szekeres et al. 2016), and 
there is evidence that non-native tropical species like 
arapaimas are more susceptible to extreme cold 
events than native species (Boucek & Rehage 2014, 
Boucek et al. 2016, Lopez 2022). When these climate 
change patterns are considered alongside the cold 

sensitivity of arapaimas, it is unlikely 
that the establishment potential of ara-
paimas within the contiguous United 
States will expand considerably in the 
near future. 

5.  CONCLUSION 

Because of their thermal tolerance, 
long-term survival of arapaimas in the 
wild in the contiguous United States is 
likely to be limited to the southeastern 
United States, particularly southern 
Florida and isolated warm water ref-
uges elsewhere (Fig. 5). Further fine-
scale modeling of invasion risk could 
assist managers in southern Florida 
with targeting prevention and surveil-
lance efforts toward locations where 
arapaimas would be most likely to 
establish in the wild. Study of intro-
duced populations elsewhere in the 
world led most FISRAM assessors to 
expect arapaimas to compete with 
and prey on native fish species, with 
sig nificant negative impacts, parti -
cularly if arapaimas were able to 
establish populations in the contigu-
ous United States. Continued re -
search into the pathogens and para-
sites of arapaimas would also help to 
address uncertainty over potential 
impacts of  introduction and allow for 
more robust assessment of existing 
biosecurity protocols. 

Stringent regulations, combined with robust sani-
tary inspection, can greatly mitigate the risks linked 
to arapaima aquaculture, rendering it highly improb-
able for this species to pose a threat to native species 
and ecosystems in the contiguous United States. In 
southern Florida, the state’s mandatory Aquacul-
ture BMPs for certified aquaculture operations 
(FDACS 2022), which include additional require-
ments for conditional non-native species like arapai-
mas (68 Florida Administrative Code 5.004), can sub-
stantially reduce aquaculture-related introduction 
risk for all life stages. Risk could be further reduced 
for particularly sensitive habitats or native species 
populations in southern Florida through regular 
surveillance to detect escaped arapaimas prior to 
population establishment and growth. Outside of 
southern Florida, arapaima aquaculture is limited 
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Fig. 5. (A) The Risk Assessment Mapping Program (RAMP; Sanders et al. 2021) 
estimated climate suitability for Arapaima spp. establishment in the south-
eastern United States (USFWS 2022), as compared to (B) the locations of 
US Geological Survey stream gages recording annual water temperature mini-
mums above 16°C from 2014 through 2021 (USGS 2023b). In (B), the outlier on 
the northern boundary of the map represents a location 1.0 mile (1.6 km) down-
stream of a hydroelectric power plant, and the outlier near the base of the Flor-
ida peninsula represents a location with tidal influence. Methods used to  

create the map in (B) are described in the Appendix
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to indoor recirculating aquaculture systems, and es -
capees from aquaculture or releases from private 
aquaria are unlikely to survive ambient temperatures 
as they fluctuate across a year. 

Although the BMPs in arapaima aquaculture in 
Florida are evident, aquarium dumping still repre-
sents a prominent alternative route of introduction, 
along with potential illegal aquaculture (Magalhães 
et al. 2017, Pereira et al. 2022). Therefore, we recom-
mend caution when making decisions related to ara-
paima importation and suggest that lessons learned 
from improper introduction and ineffective enforce-
ment in other regions of the world be considered. We 
encourage addressing these issues through (1) aware-
ness campaigns targeting importers, wholesalers, re -
tailers, and hobbyists (Magalhães et al. 2017); (2) pro-
vision of penalty-free opportunities for rehoming 
non-native fish pets (FFWCC 2024, San Marcos Parks 
and Recreation Department 2024); (3) enforcement 
of  existing Florida regulations (68 Florida Adminis-
trative Code 5.003, 5.005); and (4) consideration of 
new restrictions on arapaima possession and trade in 
southeastern US States that do not have existing reg-
ulations for the genus. 

Our risk assessment was restricted to the con -
tiguous United States and focused on current and 
near-future climate trends. Hawaii and several US 
Commonwealths and territories, not to mention 
other countries with tropical climates, would likely 
benefit from further assessment and mitigation of 
in vasion risk of arapaimas. In our model results, the 
predicted probability of injuriousness was very sen-
sitive to climate match with the region of intro-
duction. The concerns expressed by assessors in 
this study about the broad predatory and compet-
itive abilities of arapaimas are likely to be especially 
relevant in regions where seasonal cold tempera-
tures or extreme cold events do not limit arapaima 
establishment. 
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To visually compare RAMP results to recorded annual 
minimum water temperatures within the Southeast region 
of the United States, we obtained daily minimum water tem-
perature data from the National Water Information System 
(NWIS; USGS 2023b). We queried NWIS for all stream and 
lake sites recording daily water temperature data between 
2014 and 2021 in 8 states (Alabama, Florida, Georgia, Lou-
isiana, Mississippi, North Carolina, South Carolina, and 

Texas) using the ‘dataRetrieval’ R package (DeCicco et 
al. 2022) in program R (R Core Team 2022). We obtained 
annual minimum water temperatures by summarizing daily 
data by site and year using the ‘dplyr’ (Wickham et al. 
2022) and ‘reshape’ (Wickham 2007) R packages. Sites that 
did not record water temperature in any year between 2014 
and 2021 were excluded from the final dataset. Maps were 
produced using ArcGIS Pro version 2.9.5 (Esri).

Appendix. Water temperature data comparison
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