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1.  INTRODUCTION 

Fish escapes are a significant problem for aquacul-
ture in most farming regions (Soto et al. 2001, Naylor 
et al. 2005, Jensen et al. 2010, Atalah & Sánchez-Jerez 
2020). Aside from causing considerable economic 
losses, they can have drastic ecological, genetic, patho-
genic, and socio-economic consequences. Escaped 
fish can compete for resources with wild fish (Soto et 
al. 2001, Valero-Rodriguez et al. 2015), predate on 
wild assemblages (Arismendi et al. 2009, Sepúlveda et 
al. 2013), modify native habitats (Sala et al. 2011), and 
reduce local diversity (Crowl et al. 1992, Bolstad et al. 

2017). Introducing escapees to wild populations in -
creases the risk of genetic introgression, which can 
alter the genetic composition, negatively affect the 
fitness and adaptability, and reduce the survival of 
wild populations (Glover et al. 2010, Miralles et al. 
2016, Bolstad et al. 2017). Fish escapes can also in -
crease the risk of disease and parasite transmission to 
wild fish (Arechavala-Lopez et al. 2013, Madhun et al. 
2015). There is growing evidence that these interac-
tions threaten the sustainability of wild fisheries, local 
biodiversity, and ecosystem functioning, highlighting 
the importance of preventing fish escapes and finding 
practical solutions to mitigate their consequences. 
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Large-scale escape events are often the result of 
operational accidents, equipment failure, predator 
attacks, and storms, which are becoming more fre-
quent and intense due to climate change (Sánchez-
Jerez et al. 2008, Jensen et al. 2010, Arechavala-Lopez 
et al. 2018). Sabotage, the deliberate destruction or 
damage of farms, although less common (Jensen et 
al.  2010, Jackson et al. 2015), is also a significant 
cause of fish escape that generates substantial eco -
nomic losses in biomass and infrastructure repair. Farm 
sabotages have been fuelled by conflicts between the 
aquaculture industry and other coastal users because 
of competition over fishing grounds, potential eco -
logical impacts of aquaculture, and aesthetic con-
cerns (Schlag 2010, Galparsoro et al. 2020). It has 
been hypothesised that farm sabotage may be carried 
out by poachers, as they would benefit from selling 
illegally recaptured fish. Examples of farm sabo -
tage exist in most farming regions and have affected 
a wide range of farmed species (Irish Times 1996, La 
Verdad 2014, Molinari 2020, Undercurrent News 
2020). For example, ca. 12 500 coho salmon escaped 
from a Chilean fish farm after a cage net was allegedly 
sabotaged in 2022 (Fish Farming Expert 2022). Recur-
rent farm sabotage in the Spanish Mediterranean Sea 
has led to repetitive large-scale fish escapes with an 
economic impact of millions of euros (La Verdad 
2014). Unlike escape events due to storms, sabotage-
mediated massive escapes occur when the sea condi-
tions are favourable for reaching aquaculture facilities 
(i.e. summer season). The latter may entail differences 
regarding post-escape survival and spread, since rec-
reational and professional fishing can recapture es -
caped fish immediately after the sabotage. In con -
trast, fishing activities during sea storms are limited, 
preventing recapture in the first days/week after the 
escape event. Although farm sabotages are recurrent 
events with significant financial and socio-economic 
implications, no study has described nor quantified 
the spatio-temporal dispersion and persistence of 
resulting massive fish escapes. 

Environmental interactions arising from a massive 
fish escape, such as sabotage-mediated events, depend 
fundamentally on the dispersal capacity, resilience, 
and fishing mortality of the escapees (Jensen et 
al. 2010, Arechavala-Lopez et al. 2011, 2012, Toledo-
Guedes et al. 2014). Redirecting fishing efforts to 
recapturing escapees can be fundamental in optimis-
ing recapture success, and represents one of the few 
management actions to mitigate environmental and 
socio-economic risks (Toledo-Guedes et al. 2014, 
Izquierdo-Gomez & Sánchez-Jerez 2016, Izquierdo-
Gomez et al. 2016). Quantitative information on 

spatio-temporal dispersal and survival of escapees 
can help develop cost-effective recapture actions, 
and help in understanding the extent of escape event 
impacts. Previous studies have documented rapid dis-
persal and high post-escape mortality, for example, 
by tagging experiments (Uglem et al. 2008, Arecha-
vala-Lopez et al. 2011, 2018) or visual censuses con-
ducted after an escape event caused by a storm 
(Toledo-Guedes et al.  2014). However, no quanti-
tative studies have described post-escapee persist-
ence after an escape event caused by sabotage. The 
lack of quantitative studies on post-escape persist-
ence in the case of sabotage highlights the need for 
further research in this area to inform contingency 
plans and mitigate socio-environmental risks. 

Between July 8 and 9, 2014, a seabass farm on the 
SE Spanish coast in the Western Mediterranean Sea 
(Fig. 1) suffered sabotage, which provided a unique 
opportunity to evaluate the spread potential of fish 
after a massive escape event. The news and communi-
cation with the farming company indicated that sev-
eral cages were sabotaged. Hundreds of thousands of 
European seabass Dicentrarchus labrax with sizes 
between 10 and 20 cm escaped into adjacent habitats. 
Here we quantify the spatio-temporal patterns in the 
persistence and spread of escaped seabass, as well as 
changes in the size structure of these fish assem-
blages. Such knowledge provides crucial information 
on the spread potential and survival of fish after a 
massive escape event that is necessary to inform con-
tingency plans to mitigate the ecological impacts of 
escaped fish. Finally, we suggest specific features of 
contingency plans, including recapture actions, to 
enhance their cost-effectiveness in mitigating the 
adverse effects of escape events. We also offer pre-
vention and control measures through monitoring. 

2.  MATERIALS AND METHODS 

2.1.  Survey design 

Surveys were conducted on 14 July 2014, 5 d after 
the escape event, and then in August 2014 and Sep-
tember 2014. Visual censuses of escaped European 
seabass were carried out in shallow coastal waters 
(1 to 5 m). European seabass can be found at depths of 
up to about 100 m, but they are more commonly found 
in shallow waters (densities <0.1 individual per 
100 m2; Jouvenel & Pollard 2001, Toledo-Guedes et al. 
2009), where escapees tend to concentrate after an 
escape event (González-Lorenzo et al. 2005). Snorkel-
based dive surveys determined fish density and size 
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at 8 locations (Fig. 1). These were located at increas-
ing distances in both the east and west directions 
from the escape point at the sabotaged farm. Four 
were located east of the escape point: El Gorguel 
(0.7 km), Portman (4.4 km), Atamaría (10.1 km), and 
Cabo de Palos (23.7 km); and 4 were located west of 
the escape point: Escombreras (6.4 km), Cala Cortina 
(12.6 km), El Portús (26.4 km), and La Azohía (45.3 km, 
Fig. 1). The distances to the farm were calculated fol-
lowing the coastline since this is the distance that 
escaped seabass are most likely to swim. At each loca-
tion, 2 sites were surveyed, with 6 transects per site. 
Transects were visually sampled by snorkelers swim-
ming 100 m in a straight line and observing the area 
within 2.5 m on either side (500 m2). Snorkelers esti-
mated the abundance and size of all seabass indi -
viduals encountered in each transect. Surveys were 
conducted by a 6 person snorkel team with at least 
3  members sampling in all monthly surveys. Before 
sampling, pilot surveys were conducted to cali-
brate methods and ensure consistency between team 
members to allow direct comparability of the data. 

2.2.  Statistical analyses 

Fish density data were standardised to fish density 
per 100 m2, resulting in a continuous variable contain-
ing many zero values (73.6% of the 276 transects), and 
the non-zero data was highly overdispersed. As such, 
density data was analysed using generalised linear 
models fitted with Tweedie error distribution, which is 
more robust to overdispersed and zero-rich data than 

other distribution families (e.g. negative binomial or 
gamma). Zero inflation was tested with the ‘test -
ZeroInflation’ function of the R package DHARMa 
(Hartig 2022), showing that the expected zero distribu-
tion was not significantly larger than that of the ob-
served values. Thus, there was no need to incorporate 
zero inflation in the model. Therefore, we modelled 
density as a function of distance as a continuous co-
variate in km, month (July, August, and September), 
orientation (W and E) and the interaction (Distance × 
Month). To incorporate the dependency among obser-
vations of the same location and to quantify small spa-
tial scale variability (hundreds of m), we used site 
nested in location as a random intercept. Models were 
selected by comparing the Akaike’s information cri-
terion (AIC) values of the full model and models with 
sequentially dropped non-significant terms. The final 
model with the lowest AIC value was validated by 
 inspecting simulated residuals using the ‘simulate -
Residuals’ function in the package DHARMa. The con-
tribution of fixed and random effects to the model's 
performance was calculated using marginal R2 (ac-
counting for fixed effects only) and conditional pseudo-
R2 (accounting for fixed and random effects, Nakagawa 
& Schielzeth 2013). Length frequencies were compared 
between months using a random isation Kolmogorov-
Smirnov test using the function ‘clus.lf’ in the fish-
methods package (Nelson 2019). This test compares 
length frequency distributions for non-independent 
data derived from clustered sampling methods, such as 
transects. Seabass larger than 30 cm were excluded 
from the analyses because of the low probability that 
they originated from the escape event. 
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3.  RESULTS 

3.1.  Spatio-temporal patterns of fish distribution 

Escaped fish density significantly declined with in-
creasing distance from the escape location in both 
orientations (east and west, Fig. 2, Table 1). In July, the 
average (±SE) density at the closest location from the 
escape (El Gorguel) was 114 ± 44.7 fish per 100 m2, 
which declined to <1 fish per 100 m2 at 10 km from the 
escape location. At 1 and 2 mo after the escape (i.e. in 
August and September), fish density had dropped to <1 
fish per 100 m2 at all locations (Figs. 2 & 3). Escapees 
were at very low densities or absent at distant locations 
(e.g. Cabo Palos) throughout the study (Fig. 3). The 
most parsimonious model, which included the effects 
of distance, month, and their interaction. confirmed 
these patterns. Orientation was not significant and was 
excluded from the model. The final model also in-
cluded the random effect of site nested in location. The 
model predicted an overall average fish density (inter-
cept of the model) of 43 individuals per 100 m2 (95% CI: 
10.49–178.96) at the escape location. The model indi-
cated that fish density decreased by 17% for every km 
away from the escape location (Table 1, Fig. 3). Fish 
density was predicted to fall to 2 and 1% at 1 and 2 mo 
after the escape event, respectively. The expected 
 density decay rate varied significantly with month 
(Distance × Month, p < 0.05, Table 1), being lower in 
August compared to July (8% decrease for every km 
away from the escape location). Additionally, there was 
relatively small site-to-site variability in fish density, 
evidenced by the slight variance for the random inter-
cepts (τ00 = 0.60, Table 1), the relatively small intraclass 
correlation coefficient (ICC = 0.19, Table 1) and the 
subtle difference be tween the conditional and marginal 
R2 values (0.66 and 0.73, respectively, Table 1). 

3.2.  Fish size distribution 

The average (±SD) fish size in July across all lo -
cations was 14.7 ± 2.4 cm, which increased to 24.5 ± 
2.7  cm in August and 26.3 ±4.9 cm in September 
(Fig. 4). The randomisation Kolmogorov-Smirnov test 
showed significant differences in fish size frequency 
distribution in July compared to August and Septem-
ber (p < 0.05). Fig. 4 shows patterns in the size dis-
tribution of the escaped seabass over time and across 
locations. There was a clear shift in size distributions 
toward larger size classes during August and Septem-
ber when a few larger fish (>25 cm) were recorded pri-
marily in locations adjacent to the escape location 
(Fig. 4). In July, thousands of fish between 10 and 
30  cm were observed around the escape location 
immediately after the escape event. 

4.  DISCUSSION 

Here we provide the first quantitative evaluation of 
the dispersal of escaped farmed fish from a sabotaged 
marine net-pen farm. The results showed that the fish 
dispersed rapidly in time and space from the escape 
area. This knowledge provides crucial information on 
the spread potential of fish after a massive escape 
event, and it is critical in informing contingency plans 
to mitigate potential socio-ecological and economic 
effects. The study results align with the expected dis-
persal patterns of massive fish escape events, with a 
significant decrease in fish density over time and 
distance from the escape location. Seabass density 
dropped by 2 orders of magnitude at the escape loca-
tion after the first month and by 3 orders of magnitude 
after 2 mo. These findings are consistent with pre-
vious studies on the dispersal patterns of escaped 
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farmed fish and restocking efforts for other species 
(Valencia et al. 2007, Toledo-Guedes et al. 2009, 2014, 
Solem et al. 2013, Skilbrei et al. 2015, Izquierdo-
Gomez & Sánchez-Jerez 2016). Our results provide 
further evidence of this trend, and highlight the 
importance of monitoring and understanding the dis-
persal patterns of escaped farmed fish to inform effec-
tive mitigation strategies. 

The strong spatio-temporal decay in the density of 
escaped farmed fish is underpinned by either fish 
mortality or migration outside the study area. Al -
though our study does not allow for a distinction 
between these two processes, it is most likely that the 
described changes in fish density are a result of a 
combination of factors. However, we considered 
migration along the coastline less likely given the rare 
occurrence of escapees at distant sites (<1 fish per 
100  m2). It is possible that escapees migrated to 
deeper waters or outside the surveyed area. However, 
low densities were also recorded at depths of up to 
24  m during SCUBA censuses as part of a parallel 
study (authors’ unpubl. data). Although estimates of 
escapee survival rates are scarce, previous tagging 
and release studies have evidenced high mortality 
rates in natural habitats (Arechavala-Lopez et al. 

2011, 2014). Post-escape stress and reduced food in -
take can increase mortality (Samaras et al. 2018), as 
farmed fish will likely be unsuccessful in foraging for 
live foods. Predation by large fish and birds immedi-
ately following an escape is another significant source 
of mortality (Handelsman et al. 2010). This is exacer-
bated by the poor ability of farmed fish to avoid pred-
ators in the wild and the small size of the fish that 
escaped (ca. 10 to 20 cm). Size-dependent natural 
mortality is a well-known driving factor in the success 
of restocking efforts (Olla et al. 1998). 

Along with migration and natural mortality, fisheries 
can significantly contribute to the recovery of fish bio-
mass following massive escapes with corresponding 
density reductions. For example, local professional 
fishers captured 22% of the 1.5 million seabreams and 
seabass that escaped from a farm in La Palma, Canary 
Islands (Toledo-Guedes et al. 2014). Similarly, profes-
sional fishers captured 64.7% of nearly 100 tons of sea-
bream after a massive escape event near our study site 
(Izquierdo-Gomez & Sánchez-Jerez 2016). However, 
professional fishing played a marginal role in recap-
turing fish after the escape event at El Gorguel, since 
escaped fish were smaller than the minimum legal size 
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Predictors                         Estimates             CI                   p 
 
(Intercept)                             43.33      10.49–178.96   <0.001 
Distance                                 0.83            0.79–0.87        <0.001 
August                                    0.02            0.00–0.08        <0.001 
September                             0.01            0.00–0.04        <0.001 
Distance × August              1.11            1.02–1.20         0.012 
Distance × September        1.12            0.98–1.27         0.086 
 
Random effects 
 
σ2                                              2.61 
τ00                                             0.60 
ICC                                          0.19 
Nlocation                                       8 
Nsite                                             2 
Observations                         276 
Marginal R2 /               0.664 / 0.727 
 conditional R2

Table 1. Results of the generalised linear mixed model fitted 
with Tweedie errors and a log link testing the fixed effects of 
distance, months, and the random effect of site nested in loca-
tion on escaped European seabass Dicentrarchus labrax den-
sity per 100 m2. Estimates and associated 95% confidence in-
tervals (CI) are exponentiated to represent the ratio of the 
expected values of the response variable (escapee density per 
100 m2) for a 1 unit increase in the predictor variables (dis-
tance and month), with July used as the baseline level. ICC: in-
traclass correlation coefficient; σ2: residual variance; τ00: vari-
ance of the random intercepts across sites nested in location

Fig. 3. Predicted escaped European seabass Dicentrarchus la-
brax density per 100 m2 (log scale) by month across the study 
area as estimated by the final generalised mixed linear model 
with Tweedie errors to quantify dispersal from the sabotaged  

farm in El Gorguel. (a) July, (b) August, (c) September



Aquacult Environ Interact 16: 203–211, 2024208

(25 cm) and too small for the gear. This was confirmed 
by the absence of anomalies in seabass catches at the 
local fish market on subsequent days after the escape 
event. Although we did not monitor fishing effort, the 
number of recreational fishermen at proximate sites 
after the escape event was high (authors’ pers. obs.). 
Therefore, we  hypothesise that recreational fisheries 
significantly reduced escapee densities, including 
small-size classes, as legal-size controls are seldom en-
forced. The efficient role of fishing highlights the im-
portance of relying on local fishermen to carry out the 
recapture actions to maximise rapidness and success. 
Fishermen own the logistics (e.g. fishing gear sets and 
boats) and know the coastline features. Such a co-
management ap proach should be strongly coordinated 
between aquaculture facilities (escape alarms), fisheries 
(recapture actions), and administration (control of re-
capture plan effectiveness). Such management strat-
egies could also benefit local communities when es-
caped fish have not been recently treated with 
therapeutics; otherwise, it could pose a public health 
risk (Figueroa-Muñoz et al. 2022). Implementing co-
management strategies provides a synergistic ap-
proach that is beneficial for the aquaculture industry, 
local fisheries, administration, and, ultimately, the eco-
system. 

As escapee density declined throughout time and 
space, the size distribution of seabass shifted towards 
larger sizes. The smallest classes (10 to 18 cm) were 
not recorded at 1 mo after the escape event, while 

large escapees were recorded 2 mo after. Al though 
the dispersal of small individuals remains a possibil-
ity, the most plausible explanation is size-dependent 
natural mortality, with smaller individuals struggling 
to adapt and survive. Another possibility is that larger 
individuals may have been wild fish, as it is impossible 
to visually differentiate between wild seabass and 
escapees. In a study by Dempster et al. (2018), small 
escapees faced high mortality, hampering recapture 
efforts. The shift towards larger escapees holds sig-
nificant implications for wild population conserva-
tion, as survival and establishment success are posi-
tively correlated with fish size (Olla et al. 1998, 
Handelsman et al. 2010). While all escapee sizes can 
impact ecosystems negatively, larger es capees pose 
heightened risks due to their increased reproductive 
and predatory potential (Brown et al. 2015). Farmed 
fish, with limited parental diversity, often have 
smaller populations and less genetic variation than 
their wild counterparts. Larger escapees can worsen 
genetic mixing, reducing diversity and increasing 
inbreeding, thereby endangering regional wild popu-
lations (Glover et al. 2017, Šegvić-Bubić et al. 2017, 
Alvanou et al. 2023). Additionally, the higher ener-
getic demand of larger escapees could exacerbate 
several ecological impacts, such as predation and 
competition with wild species for trophic resources 
and habitat (reviewed by Arechavala-Lopez et al. 
2018). It is crucial to consider these factors when devel-
oping management strategies, such as prioritising the 
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recapture of larger individuals and adapting the fea-
tures of the recapture gear (e.g. net mesh size), par-
ticularly when resources are limited. 

Escape events are not considered in the Spanish 
aquaculture regulations, nor is their management, in -
cluding monitoring programs. However, the European 
Union discourages member states from farming gen-
etically modified organisms to mitigate the potential 
risk to wild populations from escapes (European Par-
liament, Council of the European Union 2014). A solid 
foundation of knowledge is paramount to prevent 
and/or mitigate potential adverse effects of escapees, 
especially in areas of ecological importance or con-
flict with other coastal users. Therefore, during the 
potential feralisation process of escapees, monitoring 
programs should assess genetic broodstock man-
agement, dispersion, their role as disease vectors, 
trophic interactions both as prey and predators, fish-
ing mortality, and their role as a fishing resource. 
Marine protected areas (MPAs) are of particular 
concern regarding impacts, as these areas generally 
sustain endangered or vulnerable habitats and high 
species diversity. In our study area, the MPA Cabo 
de Palos e Islas Hormigas is about 20 km west of the 
sabotaged farm. No escapees were recorded at the 
closest site, and the model predicted low densities 
nearby. Thus, the spread risk within this MPA is neg-
ligible. However, to minimise risk, we recommend 
buffer zones around aquaculture areas. For instance, 
a 20 km buffer zone around fish farms could protect 
MPAs and other sensitive habitats. 

The rapid expansion of finfish aquaculture within 
increasingly limited water space is likely to exacer-
bate already contentious social conflicts among the 
industry, fishermen, and other stakeholders. As a 
result, farm sabotages, such as the one described here, 
are becoming increasingly common across farming 
bioregions worldwide, including the Mediterranean. 
Three cages in the same facility were sabotaged 4 yr 
before the incident reported here, and thousands of 
seabass escaped. A few months later, a storm caused 
another massive escape event. Such incidents are 
likely to become more prevalent with the increasing 
frequency and magnitude of extreme weather events 
predicted under future climate scenarios (Sánchez-
Jerez et al. 2022, Shukla et al. 2022). As such, our 
results have direct implications for guiding contin-
gency plans to mitigate the impacts of escapees after 
massive escape events. We quantified for the first 
time the spatio-temporal patterns of a massive escape 
event caused by sabotage, showing that despite being 
a high-intensity event, escapees dispersed rapidly, 
displaying little persistence in adjacent areas over 

time. We strongly recommend the development of con-
tingency plans under a co-management framework, 
with active roles for aquaculture facilities (in forming 
about the escape event), local fishermen (adapting 
recapture actions), and administration (evaluating 
the effectiveness of the contingency plan). Ideally, 
aquaculture companies should inform the authorities 
and fishermen as quickly as possible about the es -
cape event, species, and sizes of escapees. Recapture 
actions should be carried out 24 h after the escape 
and within <20 km from the event. Only fishermen 
have the potential to meet this requirement cost-
effectively since they possess the know-how, boats, 
diverse gear, and solid knowledge of the coastal area. 
The recapture of larger escapees should be priori-
tised, and fishing gear should be specifically selected 
to meet this requirement. Rapid reporting and timely 
activation of these plans are essential for mitigating 
the negative impacts of escapes, including reducing 
the risks to wild fish populations, local biodiversity, 
and ecosystem functioning. From a prevention per-
spective, we recommend installing effective security 
systems on fish farms that can trigger rapid responses 
to dissuade intruders. We also recommend enforcing 
sanctions according to the damage incurred, to deter 
future sabotage attempts. By working closely with 
local fishermen and administration, aquaculture com-
panies can help prevent sabotage-mediated escape 
events, maximise recapture rates and reduce the as -
sociated socio-environmental risks. This will ensure 
that the negative impacts are minimised and that the 
benefits of finfish aquaculture can be maximised while 
promoting sustainable development in harmony with 
other users of the coastal zone. 

 

 
Data availability. Data and scripts used in the analyses are 
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