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1.  INTRODUCTION 

1.1.  Background 

Salmon aquaculture is a key economic activity in 
cool temperate coastal areas, and its sustainable devel-
opment supports UN goals for the Blue Economy (Lee 
et al. 2020). However, key risks to sustainability must 
be controlled. In the case of salmon aquaculture, such 
a key risk is from sea lice arising from farms impacting 

on wild salmonid populations (Taranger et al. 2015). 
Sea lice are also responsible for high economic costs 
on salmon aquaculture (Abolofia et al. 2017, Boxaspen 
et al. 2022, Boerlage et al. 2024). As sea lice are identi-
fied as a hazard, being a risk to both environmental 
and economic sustainability, controls must be imple-
mented. The aims of these controls are laid out 
through various national legislations and the manage-
ment methods developed through a range of specifi-
cally designed regulatory regimes, such as the ‘Traffic 
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Light System’ in Norway (Eliasen et al. 2021), or the 
‘Sea Lice Risk Assessment Framework’ in Scotland 
(https://consultation.sepa.org.uk/regulatory-services/
detailed-proposals-for-protecting-wild-salmon/).  

Implementing effective policies to protect wild sal-
monids requires sustained data collection. These data 
can provide a direct assessment (e.g. exceeded thres-
hold levels) and/or drive models to evaluate the im -
pacts of policies by providing forcing values and 
enabling validation. However, the marine environ-
ment is large, and resources are generally limited, so 
surveillance schemes must be devised to maximise 
the value of collected data. An understanding of sea 
lice biology and interaction with hosts is required in 
order to identify what surveillance schemes will pro-
vide the most relevant data. The practical efficacy and 
costs of sampling must also be considered in develop-
ing optimal strategies. 

The aim of the sampling and monitoring discussed 
here is to assess the impact of sea lice from salmon 
farms on wild salmonid fish. Given the life cycle out-
lined in Section 1.2, key data to monitor are (1) the 
production of lice from the salmon farms, (2) the dis-
tribution of planktonic lice, and hence infection pres-
sure, in the water, and (3) lice abundance on wild fish 
(Moriarty et al. 2023a). This gives specific areas for 

surveillance that we explore in this review to identify 
optimal technical means and strategies, which will aid 
management. We review existing and new techno -
logies, gaps for improvement, and how these techno -
logies can be implemented. Monitoring data, model-
ling and management can iteratively inform each 
strategy, allowing each component to improve with 
time, thus developing a closer understanding of the 
true environmental conditions (Lynch et al. 2009) and 
enabling better knowledge for effective management 
(Fig. 1). 

The scope of this review is restricted to surveillance 
(‘Observations’ in Fig. 1) to collect information on sea 
lice directly. Relevant data on wild and farmed salmo-
nid host populations and their physical environment 
are also required to assess the extent of sea lice infec-
tions and impacts relevant for management, but such 
data-collections are not covered in this review. An 
 exception is a discussion on monitoring or estimating 
numbers of fish on farms — but this is in the context of 
assessing sea lice population. Data on wild salmonid 
populations, such as smolt migration routes (e.g. 
Newton et al. 2021), are important for interaction with 
planktonic sea lice. Estimates of return rates of adult 
fish (Vollset et al. 2016, Shephard & Gargan 2021) or 
assessing smolt populations (e.g. by electrofishing in 
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Fig. 1. Conceptual framework showing the interconnected nature of scientific monitoring and evaluation through observations 
and modelling (leading to predictions), highlighting how it influences actions through management to reach a healthy envi-
ronment (expanding on the concept of the Observation/Prediction/Model triangle concept from Lynch et al. 2009). Erroro: 
error in observations; Errorp: error in predictions; Errorm: error in models. Solid arrows between dark grey boxes depict direct  

links while dashed arrows depict feedback and influences
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rivers; Malcolm et al. (2019) are key targets for sur-
veillance regimes for identifying risks to salmonid 
populations. Similarly, ocean currents and other phys-
ical environmental factors are key to sea lice transport 
and essential to drive dispersal models; examples of 
oceanographic surveillance programmes can be found 
in Asplin et al. (2014) and Salama et al. (2018).  Finally, 
sea lice are only one of a multitude of pressures on 
wild salmonid populations; other pressures or their 
monitoring, such as climate change,  invasive species, 
and river habitat issues (https://www.gov.scot/
publications/scottish-wild-salmon-strategy/), are not 
discussed here either.  

Following a brief review of sea lice biology (Section 
1.2), this review is divided into 3 main sections. Section 
2 explores the state of the art for sea lice surveillance 
techniques and methods. Section 3 discusses the ap-
plication of these techniques, when combined with 
modelling, how surveillance can be optimised to ad-
dress management concerns more efficiently, and how 
data can be used effectively beyond the local area. 
Section 4 investigates the potential for advancement 
and refinement of the sea lice management system in 
Scotland, and how data collection can be improved 
through iterative development of modelling and sur-
veillance structures underpinning sea lice controls. 

1.2.  Sea lice biology 

Sea lice on farmed salmon in the Northern Hemi-
sphere are largely Lepeophtheirus salmonis, but sev-
eral Caligus species can also parasitise the fish. L. sal-
monis is a specialist parasite of salmonids (Atlantic 
salmon Salmo salar and sea trout S. trutta in the North 
Atlantic, Arctic char Salvelinus alpinus in the far 
north, and a range of Oncorhynchus species in the 
North Pacific; Pike & Wadsworth 1999). Caligus lice 
are more generalists, although cryptic subspecies 
may infect different host species. Owing to the scale 
of aquaculture, the great majority of these salmonids 
are farmed salmon, and this greatly increased bio-
mass of hosts distorts the dynamics of sea lice epi-
demiology (Dempster et al. 2021). 

Both L. salmonis and Caligus spp. lice have a multi-
stage life cycle (Hamre et al. 2013). Adult females 
 produce egg strings containing hundreds of eggs, 
depending on environment and louse age (Brooker et 
al. 2018). Eggs hatch to produce planktonic non-
feeding nauplii, and after a second nauplii phase the 
survivors become infectious copepodids. These con-
tinue in the plankton until they either die or find a 
host. Planktonic phases last for a few days dependent 

on temperature (Samsing et al. 2016), and during this 
time the larvae may be transported over distances of 
kilometres by ocean currents (Salama et al. 2016b, 
Rabe et al. 2020). On infecting a host, the copepodids 
form a filament with which to attach, becoming para-
sitic chalimus. After a second chalimus stage the lice 
become mobile pre-adults and then sexually mature 
adults; it is these mobile lice that are associated with 
most impacts on the health and welfare of their hosts 
(Ives et al. 2023). 

2.  TECHNOLOGIES AND METHODS FOR SEA 
LICE SURVEILLANCE 

2.1.  Lice on farms: surveillance to estimate viable 
egg and larval production from farms 

The number of adult female sea lice on farms, 
through the production of viable eggs, determines the 
number of larval stages that enter the marine environ-
ment. The number of nauplii produced at any one 
time on a farm can be calculated from (1) the number 
of ovigerous lice per fish (Section 2.1.1), (2) the 
number of fish on the farm (Section 2.1.2), and (3) the 
number of viable eggs produced per ovigerous female 
louse (Section 2.1.3). The accurate estimation of these 
parameters is critical for assessing salmon lice pro-
duction by a farm. In addition to sea lice on farms, 
nauplii are also produced from infected wild salmo-
nids. These hosts can be important in acting as an ini-
tial source of infection on farms, following area fal-
lowing. However, for the main salmon farming areas 
of the Atlantic, such as Canada, the Faroe Islands, 
Scotland, and Norway, wild salmonids are estimated 
to account for only a small proportion of total sea lice 
larval production in coastal waters. In Scotland this is 
demonstrated by significant correlations reported 
between lice caught in plankton trawls and quantitiy 
of gravid Lepeophtheirus salmonis on local farmed 
fish, leading to the conclusion that it is the numbers in 
the farmed environment that drive numbers in the 
surrounding sea (Penston & Davies 2009). In Norway 
farmed hosts are estimated to account for 98% of 
ovigerous female lice in the coastal environment 
(Dempster et al. 2021). 

2.1.1.  Number of lice per fish 

The availability and resolution of the lice data re-
ported varies by country. For example, in Scotland, 
weekly average numbers of adult female lice per 
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farmed salmon (AF) at the farm level have been pub-
lished since April 2021 on Scotland’s aquaculture 
website (https://aquaculture.scotland.gov.uk/), with 
monthly averages published between January 2018 
and April 2021. Prior to 2018, only area-averaged 
counts were published by the Scottish Salmon Pro-
ducers Organisation (now Salmon Scotland), as de-
scribed in Hall & Murray (2018). These sea lice counts 
form the most comprehensive monitoring data set 
available on sea lice for Scotland, and these numbers 
are used to regulate for farmed fish welfare, as sea lice 
have detrimental effects on fish health. The Norwe-
gian farm level lice counts (average numbers of 
female lice per fish) are published weekly online 
(every 2 wk if water is <4°C) (www.barentswatch.no) 
(Thorvaldsen et al. 2019). In the Faroe Islands a third 
party, Firum, carries out lice counts every 2 wk, re-
porting adult females (mobile and attached sea lice 
stages). 

The count data for lice on farmed fish depend on an 
accurate sampling regime, based both on biological 
processes (e.g. louse development time and louse sur-
vival depend on temperature and salinity) and a 
standardised, statistically appropriate sampling de -
sign. Currently, farmed fish lice counts are done by 
catching fish from the cages where they are held and 
physically counting the lice on them. Bias or inaccu-
racy in sampling can result from poor techniques or 
gaps during the sampling procedure. For example, 
moribund fish may be easier to catch, but may also 
have higher lice loads, thereby exaggerating counts. 
During the process of catching and anaesthetising 
fish, sea lice may become detached. If sea lice detach 
during netting, they may be lost completely, thus 
reducing the count. If they detach during anaesthetis-
ing, the lice will be retained in the container where 
the fish are held and so can potentially still be 
counted; however, any detached lice cannot be attrib-
uted to a particular fish unless the fish are held indi-
vidually. Detachment is not an issue for reporting the 
averaged sample count but does weaken understand-
ing of the lice distribution on fish within the sample. 
The requirement to use anaesthetics introduces 
another problem because the need for a withdrawal 
period for human food safety reasons means lice 
counts may not be made in the days immediately 
prior to harvesting, which itself can occur over an 
extended period. Therefore, gaps can occur in mon-
itoring; gaps may also be caused by poor weather pre-
venting access to a farm for sampling of lice. Some 
evidence for bias occurring within sampling comes 
from reports from Canada that counts of L. salmonis 
were 18% higher in months when inspections were 

audited (Godwin et al. 2021). Jeong et al. (2023) also 
noted differences in sea lice counts above treatment 
thresholds in Norway relative to Canada, although 
these may relate to multiple factors, including differ-
ences in management, fish numbers, environments, or 
inherent population dynamics arising from frequency 
of delousing (Sævik & Sandvik 2023). 

For all countries there are statistical considerations 
to address when collecting a sample that can accu-
rately represent the population average of lice per fish 
on a farm. Sea lice populations are clustered between 
cages, and so sampling must be designed to account 
for this clustering (Revie et al. 2005, 2007, Heuch et al. 
2011). For these reasons it is important to review rou-
tine sampling methodologies and update, if they are 
found to have a low level of precision, as practises on 
aquaculture farms change. Sampling methodologies, 
which require salmon lice to be re corded as adult fe-
male, mobile stages and attached stages, are adjusted 
seasonally and spatially in Norway (https://lovdata.
no/dokument/SF/forskrift/2012-12-05-1140). During 
the wild salmon migration period, regulation requires 
that salmon lice must be counted on at least 20 random 
fish from each cage, while outside this period salmon 
lice must be counted on at least 10 random fish from 
each cage in the aquaculture facility. In Nord-Trønde-
lag and in the management areas to the south of this 
region the higher fish sampling is required from April 
(start of Week 14) to May (end of Week 21), whereas 
further north, in Nordland, Troms, and Finnmark, the 
higher fish sampling is required from mid-May (start 
of Week 19) to the end of June (end of Week 26). In 
Scotland, minimum sampling levels are specified 
under the ‘Code of Good Practice for Finfish Produc-
tion’ (CoGP, https://thecodeofgoodpractice.co.uk). 
The CoGP requires a minimum sample of 25 fish ob-
tained as 5 fish per cage, or 25 distributed evenly 
across cages, if there are fewer than 5 cages. A 25 fish 
sample means that a farm on the CoGP treatment 
threshold of AF = 0.1 has a 7% chance of returning 
zero lice under a binomial distribution and so may be 
statistically indistinguishable from a farm that is free 
of lice. However, this sample size is effective at detect-
ing breaches of the official reporting threshold of AF = 
2 lice fish–1. At lower prevalence, lice numbers may be-
come negatively binomially distributed (Stien et al. 
2005, Heuch et al. 2011), meaning that if sampling the 
minimum recommended number of fish, there is an in-
creased chance of only sampling unaffected fish, lead-
ing to a potential underestimation in the sea lice 
numbers. In this situation, prevalence may be used as 
an estimator of sea lice numbers, rather than abun-
dance, therefore increasing the efficiency of the sam-
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pling effort (Baillie et al. 2009, Jeong & Revie 2020). In 
practice, farms often sample more than the minimum 
number of fish (for example one company’s count pro-
tocol specifies 10 fish per cage), so lice detection is in 
practice more powerful than the CoGP minimum 
standard implies. Reporting only AF is specifically 
criticised by Jeong et al. (2023) because comparison of 
AF data with other lice stages provides a test that 
 allows anomalies in these data to be identified. 

2.1.2.  Number of fish on farms 

Data on host numbers are a critical factor for under-
standing sea lice numbers on the farm. However, data 
on the numbers of fish on farms are not publicly avail-
able in many salmon producing countries, as they can 
be considered as commercially sensitive (Moriarty et 
al. 2024). This issue is overcome in Norway by confi-
dential data sharing between farmers and regulators. 
In Scotland, no such data sharing exists at present; 
therefore other data must be used to estimate 
numbers of farmed salmon indirectly, e.g. estimates 
made from consented biomass (e.g. Moriarty et al. 
2023a) for which data are published on Scotland’s 
aquaculture website. This lack of explicit fish number 
data is identified as a major gap in data required for 
calculation of viable egg production, and hence 
source of infection pressure (Murphy et al. 2024). 
Estimates of biomass are published monthly, in 
arrears, so mean fish weight would allow an estimate 
of fish numbers. Producers closely monitor fish 
weight, as this is valuable information in preparing for 
harvest, and low weight can indicate poor health. His-
torically, both numbers and biomass of fish mortal-
ities were reported (Salama et al. 2016a), allowing 
individual fish weight to be calculated. By assuming 
that dead fish weight was comparable to average fish 
weight, it was possible to estimate the number of fish 
from concurrently reported live biomass; however, 
fish numbers derived in this way would not be perfect. 
As  numbers of dead fish are no longer reported, such 
estimations can no longer be currently made. 

2.1.3.  Production of viable eggs per  
ovigerous female 

Egg production per ovigerous louse is not generally 
monitored and assumptions are currently made as to 
the appropriate average number of eggs produced, 
e.g. 30 eggs d–1 (Murray & Moriarty 2021, Moriarty et 
al. 2023a). However, production of viable eggs varies 

with temperature, salinity, host factors, and age of the 
adult female louse (Brooker et al. 2018, Moriarty et al. 
2024). Without improved modelling of the relationship 
between egg production and viability with environ-
mental and maternal factors, monitoring such data 
would currently be of limited value for assessing 
viable egg production due to small effort/return ratio. 
Viable egg production rate per ovigerous female (and 
risk factors associated with its variation) is therefore 
more of a gap for research than for monitoring per se. 

2.2.  Lice in the environment: surveillance of 
 planktonic stages and infection pressure 

Larval lice interact with migrating salmon smolts, 
resulting in infection rates assumed to be propor-
tional to the lice concentrations encountered by the 
fish as they move through the coastal zone. Therefore, 
if concentrations are known, infection rates can be 
surmised from the models. Models of this process 
imply a threshold concentration of larval lice associ-
ated with an impact on smolt health (Sandvik et al. 
2020, Murray et al. 2022, Moriarty et al. 2023a). Con-
centration can be predicted from the production of 
viable larvae (see Section 2.1.3), dispersal processes, 
and estimated mortality rates of the larvae (Moriarty 
et al. 2023a), or they can be sampled directly (the 
focus here). However, for managing and minimizing 
sea lice dispersal from farms, the fine-scale patchi-
ness of planktonic lice in space and time (á Norði et 
al. 2015) is not relevant to practical management. 
Instead, simulating larval lice concentrations at 
coarser scales is less prone to error, particularly when 
considering the equally unpredictable movements of 
wild salmonids (Middlemas et al. 2009, Thorstad et al. 
2012). Therefore, surveillance should aim to assess 
average concentrations or infection pressure over 
time periods (e.g. the few weeks in spring when sal-
mon smolts migrate to sea) and areas (e.g. fjordic sys-
tems or sounds with high farmed salmon densities or 
high-risk wild salmonid populations) to best support 
sea lice management modelling. A range of surveil-
lance methods have been used to sample sea lice in 
the water column and to assess the sea lice infection 
pressure in the environment (e.g. Penston et al. 2008, 
Salama et al. 2018, Skarðhamar et al. 2019, Pert et al. 
2022). Lice concentrations and infection pressure 
from the planktonic phases of the sea lice life cycle 
require different metrics for assessment. Lice concen-
trations can be assessed by counting larval lice (Sec-
tion 2.2.1), infection pressure can be assessed via sen-
tinel cages (Pert et al. 2014a) (Section 2.2.2), and 
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proxies for sea lice concentrations can be evaluated 
by developing sampling technologies, such as envi-
ronmental DNA (eDNA) (Krolicka et al. 2022) or 
semiochemicals (Ingvarsdóttir et al. 2002), to improve 
detection and potentially reduce effort (Section 2.4). 
The techniques required to implement these methods 
have been recently described in Pert et al. (2022), and 
so we will keep discussion of the methods to a mini-
mum and review the issues behind their application to 
provide surveillance data to assess infection pressure. 

2.2.1.  Counting planktonic larvae 

Sampling of plankton in the marine environment is 
well established; existing methods include the use of 
specifically designed nets towed by vessels, raised 
through the water column or, in shallow water, nets 
dragged by hand. Samples can be collected from spe-
cific point locations (i.e. vertical tows) or along tran-
sects (i.e. horizontal tows). Electric pumps can be 
used to extract plankton from a specific volume of 
water, forced through a collection net over a given 
time at specific locations, or by towing by boat. 
Advantages and disadvantages of plankton sampling 
overall and of individual sampling techniques are 
listed in Table 1. 

One disadvantage for surveying plankton in the 
water column is the small area sampled, relative to the 
environment. Larval sea lice, like most zooplankton, 
tend to be patchy in both space and time (Haury et al. 
1978), requiring sampling at multiple locations and 
times to provide confidence in population density as -
sessments. Additional complications arise because, 
while other zooplankton species may be found at den-
sities of 100s ind. m–3 or even 1000s ind.m–3, densities 
of sea lice are typically less than 1 ind. m–3. In Loch 
Linnhe (Scotland), total zooplankton densities are 
typically around 1000 ind. m–3 (Heath 1995), but den-
sities can be substantially higher (Thompson et al. 
2021). The relative low density of sea lice means vol-
umes of water sampled must be 3 or 4 orders of magni-
tude larger than for other zooplankton species sam-
pling regimes. Once sampled, identification from the 
other zooplankton needs to have a specificity >99.9% 
given their high concentration relative to salmon lice 
larvae to avoid a high proportion of false positives 
(Bui et al. 2021). Currently, sea lice collected in 
plankton samples need to be identified and counted 
manually under a microscope by experienced staff. 
This is a labour-intensive process requiring the iden-
tification of sea lice (and their life stages, if required) 
from a complex sample that may contain many other 

species (and stages) of copepods (Penston et al. 2004, 
2011, á Norði et al. 2015, 2016, Skarðhamar et al. 
2019). In some locations (e.g. Loch Torridon, Scot-
land; Penston et al. 2004, 2008) persistent concentra-
tions of sea lice can be found; in other locations, these 
are transitory, and the samples may contain a high 
proportion of zero detections. 

2.2.2.  Sentinel cages 

The methodology of deploying anchored or ‘fixed’ 
sentinel cages to estimate the infectious pressure ex -
perienced by Atlantic salmon residing in a region has 
been developed and used in Scotland and Norway 
(e.g. Pert et al. 2014a,b, 2022, Sandvik et al. 2016, 2020, 
Salama et al. 2018). Published sentinel cage designs 
(i.e. Pert et al. 2022) are cylindrical (usually 0.8–1.5 m 
in diameter and 0.9–2 m deep), with each cage being 
supported by 3 or 4 weighted-down rings made of 
polyethylene pipe covered with 10–13 mm knotless 
mesh netting. A weight hung from a bridle under the 
cage is used to keep the tension in the net. Cages are 
stocked with salmon smolts (20–30 cm), typically 
originating from farmed stock (Pert et al. 2014a, 2023, 
Sandvik et al. 2016, 2020). Cages extend down in the 
top 3 m of the water column and, in Scotland, the de-
ployments typically last around 1 wk (up to 4 wk in 
other countries). The length of deployment allows the 
origin of the population structure of the settled sea 
lice to be inferred due to the known maturation rates 
for L. salmonis (Johnson & Albright 1991) and C. elon-
gatus (Piasecki & MacKinnon 1995) to develop from 
copepodid (first attachment stage) to mature louse: 
short deployments of sentinel cages mean that any 
mobile stages found on the fish would have to have 
been transported to the sentinel cage, rather than 
have developed from a resident lice population on the 
sentinel fish (Pert et al. 2014b). Further instrumenta-
tion can be attached to the outside of the cage, for 
 example current meters or conductivity/temperature/
depth (CTD) instruments, to provide additional rel-
evant information. After the allocated deployment 
time, fish are removed from the cages and screened 
for sea lice (lice numbers, developmental stage, loca-
tion on host). The anaesthetic water used during fish 
handling, together with handling nets, should also be 
examined to count any detached lice. 

Sentinel cages directly sample infection rates. 
However, it should be noted that sea lice impacts are 
associated with mobile lice stages (Ives et al. 2024) 
and lice experience mortality between copepodid 
infection and becoming mobile (Tucker et al. 2002), 
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so estimates of impact from sentinel cages have to be 
adjusted for this mortality (Moriarty et al. 2023a). As 
sea lice in the sentinel cages have not completed their 
maturation, their mortality is less than mobile lice 
would have experienced. The infection pressure to 
which fish in a sentinel cage are exposed is integrated 

over the deployment period, smoothing out potential 
effects of short-lived copepodid patchiness (com-
pared to plankton samples at specific points in space 
and time). This infection pressure is for a specific 
location, though, and does not account for variability 
due to behaviour and migration of free-swimming 
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Table 1. Advantages and disadvantages of surveying planktonic sea lice in the water column in general and focussing on  
(1) plankton pumps  (fixed deployment), (2) plankton pumps (towed deployment), and (3) plankton tows

Option Advantages Disadvantages

Surveying plank-
tonic sea lice in the 
water column in 
general

• Potentially sampling all planktonic stages 
• Importance of all plankton stages: it allows 

age of larvae to be estimated 
• Fixed area/depth sampling, possibility of 

programming to allow synchronous sampling 
strategies 

• Little to no ethical/conservation considera-
tions relative to other methods where fish 
welfare is of greater concern

• Catchability unknown 
• Many counts with zero lice — lots of samples 

needed (therefore time consuming for 
analysis) 

• Labour intensive — laborious processing of 
samples requiring specialised expertise 

• Large potential for identification errors 
depending on analyst expertise 

• Larval lice decay rapidly (time sensitive) 
• Potential for lice damage, lice escape after 

collection 
• Relatively small area/volume sampled 

(might miss patches of plankton in time and 
space) 

• Nets/pumps can clog, and clogging can go 
unnoticed during tows or deployment 

• Sampling is weather dependent 
• Caligus copepodids and naupllii difficult to 

positively identify without suitable micros-
copy (i.e. using maxiliped spurs), subtle 
difference in carapace can be used but 
requires experienced viewer 

• Boat sampling (used in all but very shallow 
and confined locations) is logistically 
complex and costly

(1) Plankton pump, 
fixed deployment

• Identify depth of lice 
• Allows targeted measurements in both space 

and time of specific water volumes 
• Complementary CTD monitoring possible

• Time and labour-intensive deployment 
• Potential for retrieval to be delayed by 

unexpected weather change, leading to 
spoiled samples 

• May require frequent cleaning in summer 
due to biofouling 

• Clogging issues
(2) Plankton pump, 

towed deploy-
ment

• Spatial coverage 
• Large transects can be achieved and sub -

divided 
• Different depths can be examined 
• Combining techniques of pumping and 

towing 
• Complementary CTD possible

• Requires a larger boat with lifting capacity 
(e.g. derrick) 

• Need to maintain constant depth which can 
be challenging 

• Potentially difficult to deploy and retrieve

(3) Plankton tows • Spatial coverage 
• Can be deployed on any boat (e.g. commer-

cial, ferries) 
• Smaller boat is more appropriate due to 

displacement of water (depending on net 
deployment) 

• Can be done from shore in some circum-
stances 

• Vertical and horizontal tows possible

• Need to maintain constant depth (for 
horizontal tows) which can be challenging 

• Net can clog reducing effective sampling
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wild fish. In Norway, an experiment was carried out 
towing a sentinel cage containing Atlantic salmon 
smolts from the river Vosso along the fjord and 
towards the open sea to simulate a migration (Vollset 
et al. 2014), and Vollset et al. (2016) modelled the ef -
fect of migration behaviour on mortality. Research in 
Scotland has examined the feasibility of towing senti-
nel cages to assess infection pressure on actively 
migrating fish (Pert et al. 2022, 2023). Table 2 lists 
advantages and disadvantages of fixed vs. towed sen-
tinel cage methods to assess direct sea lice infection 
pressure on fish. 

2.3.  Lice on wild fish: surveillance of lice numbers 
on wild fish to determine exposure levels 

Surveillance of sea lice numbers on wild salmonids 
can be used as a direct assessment of the infection 
pressure encountered by these fish. Regular surveil-
lance of lice counts on sea trout has been carried out in 
Scottish coastal waters as an indicator of lice numbers 
on wild fish (Middlemas et al. 2013, Marine Scotland 
2022). It is difficult to statistically link numbers on sea 
trout, given their migrations and that relatively few 
trout are sampled, often from 1 location in an area, to 
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Table 2. Advantages and disadvantages of fixed vs. towed sentinel cage methods for infestation pressure on fish — captured  
fish in general and focussing on (1) fixed sentinel cages and (2) towed sentinel cages

Option Advantages Disadvantages

Infestation pressure 
on fish—captured 
fish in general

• Samples attached stages 
• Can attach other instrumentation to sentinel 

cage for environmental monitoring (e.g. 
CTD) 

• Dislodged samples in anaesthesia can be 
retained and enumerated 

• Majority of attached stages can be retained 
and enumerated 

• PCR can be used to identify small attached

• All parasitic stages missed 
• Only picks up copepodids 
• Immune status of fish regarding infection 

success (consideration) 
• Negative welfare impacts on fish 
• Sea state dependent 
• Fish constrained 
• Expensive in terms of time and processing 
• Risk of dislodging infesting animals 
• Usually only a small number of locations in a 

system is sampled (may not be represen-
tative) 

• Limited to accessible area 
• Due to fish welfare issues only a small 

sampling period permissible 
• All fish euthanised at point of sampling 
• Cannot be used in intertidal areas

(1) Fixed sentinel 
cages

• Well-established methods 
• Provides data on actual infestation pressure 

at a point 
• Integrates data over deployment time (e.g. 

1 wk) allowing estimation of infestation 
pressure

• Stationary fish less indicative of typical wild 
fish 

• Fixed locations only (indicative of fixed 
location area plus ‘upstream’ areas) 

• Requires larger vessel with lifting capacity to 
put moorings in place 

• Requires moorings and permissions 
• Risk of predator damage 
• Risk of loss from storm damage / collisions 

etc. 
(2) Towed sentinel 

cages
• Spatial coverage 
• Fish swimming at reasonable speed 
• Integrates data over space allowing estima-

tion of infection pressure 
• Method can be deployed at relatively short 

notice as logistically simpler 
• Mirrors experience of migrating fish 

• Fixed depth (possibly limited towing 
distance) 

• Careful monitoring of natural swimming 
speed is required 

• Requires small, manoeuvrable, suitable 
vessel equipped with navigation equipment 
to maintain slow speeds 

• Methodology not fully established 
• Deployment difficult 
• Movement of cage must closely follow pre-

established migration route, speed of 
escapement and timing of salmon smolts (if 
used as a realistic index of infection for 
actual river populations)
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local farm lice loads. Therefore, these data only pro-
vide a valuable metric for sea lice infection on wild fish 
more generally (Middlemas et al. 2009, 2013). This 
section evaluates wild fish netting (Section 2.3.1) and 
smolt trawls (Section 2.3.2), while Table 3 lists advan-
tages and disadvantages for data collection method-
ologies to assess direct infection pressure on migrating 
wild fish caused by sea lice, split into (1) sweep netting 
(sea trout targeted), (2) fixed netting (fyke) (both spe-
cies), and (3) pelagic trawling (salmon targeted, sea 
trout sometimes caught). 

2.3.1.  Wild fish netting 

Wild salmon and sea trout can be captured by sweep 
netting, fyke nets, bag nets or rotary screw traps (e.g. 
Middlemas et al. 2013, Serra-Llinares et al. 2020), 
which are types of fixed traps that can be de ployed in 
inshore shallow water. The fixed nets are cylindrical 
netting bags, mounted on rings or other rigid struc-

tures, and anchored to the bottom (https://www.
fao.org/fishery/geartype/226/en). Captured fish can 
then be assessed for sea lice (Urquhart et al. 2008, 
Thorstad et al. 2015). Gill nets have been used in Nor-
way (Bjørn et al. 2011), but as these result in fish being 
killed, this method is not suited for examining fish 
populations under pressure. 

Wild sea trout sampling, utilizing the different 
methods, is well established, and has been used to 
statistically assess if there is an association between 
lice on farms and wild fish (Middlemas et al. 2009, 
2013, Shephard et al. 2016, Marine Scotland 2022, 
Vollset et al. 2023, Ives et al. 2024). While standard 
sample sizes are aimed for, in practice these can vary 
considerably, even at the same location. Sea trout can 
move extensively within and between sea lochs (types 
of fjords) (and in and out of fresh water), so that sam-
ples represent an integration over an area of unknown 
extent, timespan, and location, relative to salmon, 
which are more likely to display a more directional 
migration route from natal rivers to the coastal envi-
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Table 3. Advantages and disadvantages of data collection methods for infestation pressure on fish — free swimming in general 
and focussing on (1) sweep netting (sea trout targeted), (2) fixed netting (fyke) (both species), and (3) pelagic trawling (salmon  

targeted, sea trout sometimes caught)

Option Advantages Disadvantages

Infestation pressure 
on fish—free 
swimming in general

• Samples all attached stages of lice 
• Locally relevant studies 
• Integrates infection pressure over time 

(provided the sampling location is represen-
tative) 

• Well established methods 

• All planktonic stages missed 
• Negative welfare impacts on fish 
• Can Caligus be easily identified? 
• Risk of dislodging lice 
• Handling causes stress

(1) Sweep netting • Wider spatial coverage, long record                   
• Fish health/fish condition can be assessed

• Usually only 1 location in a system is 
sampled (may not be representative) 

• Limited to accessible areas 
• Risk of dislodging lice 
• Damage to bycatch 
• Usually requires small boat use and skilled 

crew 
• Handling causes stress

(2) Fixed netting • Longer sampling/deployment time (com-
pared to sweep netting) 

• Fish health/fish condition can be assessed      
• Can involve local fisheries trusts 
• Less damage to fish 
• Lower risk of dislodging lice than alter-

natives 
• Methodologies for tidal and marine sampling 

exist (compared to freshwater)

• Fixed location/low spatial coverage 
• Limited to accessible areas 
• Time and spatially dependant 
• Possibility of resampling same fish, adding 

unknown bias 
• History of fish unknown 
• At risk to predator damage 
• Net may need to be removed during 

spates/storms to prevent fish mortality

(3) Pelagic trawling • Large spatial coverage 
• Collects wild salmon during their natural 

migration 
• Can provide information on infestation 

pressure

• Boat required 
• Difficult to capture enough salmon 
• Can result in large wild fish mortality
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ronment. It is possible to constrain the timespan com-
ponent if fish are found to be infested with early ses-
sile stages of lice, as their development time can be as 
short as ~3 d at 15°C (Hamre et al. 2019). However, 
irrespective of the above uncertainties, the informa-
tion collected on lice infestation of netted sea trout 
has been useful for comparing among years in rela-
tion to the fish farm production cycles and in relation 
to distance from the nearest salmon farms (Middle-
mas et al. 2009, 2013, Shephard et al. 2016). 

2.3.2.  Smolt trawls 

Sea lice counts on wild migrating salmon have been 
collected in Norway by trawling for smolts (Holst et al. 
2003) and, more recently, a similar methodology has 
been trialled in Scotland (https://blogs.gov.scot/
marine-scotland/2018/05/11/salmon-smolt-surveys-
on-the-sunbeam/). For salmon, returning adults have 
historically been sampled by commercial salmon fish-
eries, but the reduction of coastal salmon netting has 
therefore reduced availability of such data. Lice 
numbers on returning fish have been assessed for 
some Scottish east coast rivers, although sea lice 
numbers attained from these mature fish are unlikely 
to reflect infestation experienced by smolts during 
their outmigration through the coastal environment 
(Todd et al. 2000). Mobile seine and fixed fyke netting 
(discussed in Section 2.3.1) can be carried out to 
assess sea lice burdens on wild salmon to inform local 
environment monitoring, but low numbers of samples 
have made it difficult to draw any firm conclusions 
 regarding population impacts (e.g. Argyll Fisheries 
Trust 2021). To minimise potential damage to the sam-
pled migrating salmon smolts, one option is to use a 
Fish-LIFT device to divert the smolts caught during 
trawling into an integral floating live box (Holst & 
McDonald 2000). The practicality of lice counts on 
smolts using this Fish-LIFT method needs to be eval-
uated but is recommended, although welfare concerns 
may arise as fish must be sedated for counting. Other 
capture methods, such as standard trawls, may cause 
physical harm by abrading scales and undermine the 
value of the sample by dislodging lice. 

2.4.  Future and alternative sampling methods 

Future and alternative sampling methods have the 
potential to improve surveillance in terms of, for ex-
ample, enhanced time and space resolution, efficiency 
or cost. Migrating salmon smolts are difficult to sam-

ple, requiring substantial investment of re source. For 
sea lice counts on farms, automated counting using 
camera surveillance and machine learning for identifi-
cation could be used (Pettersen et al. 2019). Such tech-
nology would allow counting under adverse weather 
conditions and would be standardised, and therefore 
not be influenced by variation among individuals and 
teams in counting efficiency and technique; this 
means that reported values would be expected to have 
a reduced bias and be less affected by the level of oper-
ator experience, although some degree of standardisa-
tion (e.g. optical resolution, positioning) would be re-
quired for consistency and quality assurance. Camera 
counting would not require use of anaesthetics on the 
fish, as manual counting does, and therefore could 
occur right up to harvest, with no risk of residue pre-
sent in a product destined for human consumption. 
Technology for automated image-based lice counting 
is commercially available (e.g. ‘The Stingray System’, 
https://www.stingray.no/delousing-with-laser/?lang
=en). The accuracy and reliability of automated 
counting needs to be established, as estimates could 
be biased by factors such as water clarity. Currently, 
manual counting can be a formal, legal, requirement 
for data collection (Thorvaldsen et al. 2019), limiting 
the incentive in the short term for the use of automated 
camera technology. Requirements for manual count-
ing could be relaxed, if automated counting can be 
confirmed to meet or exceed the standards of such 
manual counts. Technological advances, such as cam-
era assessment of fish size, and hence weight, could 
also be a useful development in combination with lice 
counting cameras (Li et al. 2020).  

Alternative methods to manual plankton sample 
identification, such as eDNA (McBeath et al. 2006, 
Krolicka et al. 2022) or fluorescence illumination of 
plankton (Thompson et al. 2021, 2022) and automated 
counters using image analysis, have the potential to 
complement identification, so to improve efficiency, 
if applied effectively. However, studies showing val-
idation of individual automated counting techniques 
for sea lice are not readily available in the literature. 
Some examples exist of more general validation of 
automated plankton counting and identification, 
where studies using convolutional neural networks 
show an average precision of 84% (Luo et al. 2018). 

One potential area, which may help in monitoring 
data on egg string length, temperature, or salinity, 
may be found through utilizing automated systems, 
such as holocams (taking 3-dimensional images of 
particles passing through it), image analysis (egg 
string lengths), and CTD measurements (salinity and 
temperature), all of which require validation as well. 
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When combined with laboratory data on viable hatch-
ing rates as functions of temperature and salinity, 
automated egg counting systems might be useful in 
determining egg production for the future develop-
ment and refinement of models. Holographic cameras 
(such as the weeHolocam; Thevar et al. 2023) count 
sea lice in a volume of water, but currently the vol-
umes of water sampled are small, so the technology is 
only effective when lice are at high concentrations. 
The eDNA technique is reviewed by Pert et al. (2022) 
and is used for sampling environments for the pres-
ence of L. salmonis DNA. Since L. salmonis is almost 
ubiquitous in marine salmonid populations in the 
northern hemisphere, DNA detection per se is not 
particularly useful; what is required is quantification 
and its relationship to the local population of sea lice, 
ideally identifying copepodids, so there is a need for 
additional technological development. Semiochemi-
cal and light technologies attract lice into traps, 
where the concentrated lice can be sampled (Ingvars-
dóttir et al. 2002). Such technologies have existed for 
a considerable time but are not widely applied. One 
challenge is quantifying the relationship between the 
numbers trapped and overall concentrations in the 
environment. As new technologies emerge and refine, 
their usage within an adaptive surveillance monitor-
ing scheme needs to be investigated. 

3.  OPTIMISING SURVEILLANCE AND 
 EFFECTIVE USAGE OF DATA BEYOND  

THE LOCAL AREA 

Section 2 discussed methods for sea lice surveil-
lance, but the question is how can the data obtained 
be used to inform managers/stakeholders/research-
ers about the state of the system and likely impacts 
on wild fish? Data of different types from multiple 
sources can be synergised to optimise surveillance, as 
used in other disease surveillance regimes (Martin et 
al. 2007). Various types of data can also be used for 
cross checking. For example, counts of individual lice 
stages can identify anomalies in adult female lice 
counts (Jeong et al. 2023), and lice counts on trawled 
smolts can identify inconsistencies with sentinel cage 
data (Stige et al. 2022). The use of multiple data 
sources can both identify anomalies, where there is 
disagreement, and increase statistical confidence in 
the results, where different approaches agree. 

Surveillance data, even from multiple sources, can 
never give a complete picture of a system, particu-
larly for a parasite with active behaviour dispersing in 
a complex and highly variable environment, which 

can only be sampled in a limited way (Lynch et al. 
2009, Skogen et al. 2021). As noted above (Tables 1–
3), all current observational data collection methods 
have limitations and restrictions. Surveillance data 
must be collected with a specific aim if resources are 
spent on their collection (Brugere et al. 2017). Sur-
veillance is likely to be most effective when sea lice 
numbers are high, as the signal to noise ratio is 
greater. In the case of low lice numbers, even an 
extensive (and thus expensive) surveillance regime is 
unlikely to provide a meaningful return. Historically, 
sea lice numbers tend to be highest in late summer 
and autumn, when waters are warmest, and not in 
spring, which happens to be when smolt runs tend to 
occur (Hall & Murray 2018). Valuable data, e.g. for 
model validation, can thus be obtained most cost 
effectively at a time when salmon smolt populations 
are not at risk, something which may be counter-
 intuitive to some stakeholders. 

By combining years of surveillance data, local 
abundances in lice can be estimated which may com-
pensate for individual sampling periods that are 
insufficient to give a good estimate of true average 
sea lice levels for the system. This may be especially 
true of sweep net data, for which records exist for 
many years. Year-to-year comparison of these data 
allows the assessment of trends in lice numbers in a 
particular system. Understanding of a system based 
on surveillance data is leveraged using models that 
interpolate observations into areas where observa-
tions are lacking (Fig. 1). Moriarty et al. (2024) pro-
vide an overview of the types of models used in var-
ious stages of sea lice modelling, their classification 
and examples of their applications. Here, we explore 
3 model types: (1) statistical models of the obser -
vations (Section 3.1), (2) simple stochastic models, in 
this case to assess effectiveness of potential sur -
veillance regimes (Section 3.2), or (3) mechanistic 
 coupled hydrodynamic–particle tracking models, in 
this case to evaluate surveillance effectiveness (Mori-
arty et al. 2024) (Section 3.3). The last 2 types are par-
ticularly useful given the complicated and non-linear 
system of sea lice infection transmission. 

3.1.  Statistical models 

Regression analysis (generalized additive models) 
of sea lice counts from farms has been used to assess 
the regional and national trends in sea lice numbers. 
These show considerable variation between years in 
Scotland (Hall & Murray 2018). Although averaging 
processes across time and regions differ post-2018, 
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sea lice numbers continue to show year-to-year varia-
tion but are considerably lower than in the pre-2018 
period (Murray et al. 2021) (Fig. 2). This is an impor-
tant output for assessing the efficacy of sea lice con-
trol policies at the larger scale. 

At smaller scales, sea lice count surveillance data, 
accessed directly from producers, has been used his-
torically with other farm level data to investigate sea 
lice population dynamics and risk factors (Revie et al. 
2002, 2003), including providing evidence of the de -
clining efficacy of the anti-lice medicine Slice® (Lees 
et al. 2008). However, the publicly available data have 
not been used for such statistical analyses at the farm 
or local area level to date (in any analyses we are 
aware of). This is a potentially powerful use of surveil-
lance data, that needs to be exploited in combination 
with other available data sets in Scotland to maximise 
understanding of factors influencing sea lice counts. 
In Norway, where high quality count data are avail-
able from farms, farm surveillance data have been 
used to develop statistical models of kernels of infec-
tion pressure, with distance between farms as a key 
risk factor (Aldrin et al. 2013, Elghafghuf et al. 2020), 
identifying farms within 30 km as a risk factor for sea 
lice infestation (Kristoffersen et al. 2013). 

In Norway, Scotland and Ireland, regression models 
(e.g. generalized linear models, generalized linear 
mixed models, logistic regression) of sea lice count 
data from sea trout sweep net surveillance have been 
used to identify risk factors behind elevated sea lice 

counts (Middlemas et al. 2013, Serra-Llinares et al. 
2014, 2016, Helland et al. 2015, Shephard et al. 2016, 
Vollset et al. 2018, Shephard & Gargan 2021, Bøhn et 
al. 2022, Ives et al. 2024). These analyses have high-
lighted a link between farms, especially in the second 
year of production, and sea lice numbers on neigh-
bouring wild sea trout. They also identify that such 
risk is affected by environmental factors, being el-
evated during periods of higher temperatures (Serra-
Llinares et al. 2016, Shephard et al. 2016, Vollset et al. 
2018) and dry conditions (Shephard et al. 2016). 

Statistical modelling (generalized linear mixed 
model) of sweep netting data has provided strong ev-
idence for the link between environment, farms, and 
elevated risk of sea lice infection (Ives et al. 2024). 
How ever, it is difficult to assign infection pressure to 
specific farms because of potential interactions be-
tween farms in an area, infections being quantified on 
mobile hosts and a lack, until recently, of sufficiently 
time-resolved farm level data. The complexity of in-
teractions is better described via detailed coupled hy-
drodynamic–particle tracking models (Section 3.3). 

Similar to sweep netting data analysis, planktonic 
larval sea lice data obtained in Loch Torridon (Scot-
land) demonstrated a negative statistical relationship 
between lice in the environment and distance from 
farms (Penston et al. 2004, 2008, 2011). Since this 
modelling described spatial trends across the loch, it 
allowed for interpolation of likely larval population 
density conditions at locations where sampling was 

not available, but such statistical 
models need further validation. Patchy 
plankton distributions and samples 
containing many zero lice counts, 
together with large numbers of other 
planktonic organisms, make larval lice 
difficult to identify, unless relatively 
large quantities are present in the sys-
tem (Thompson et al. 2021, Fernandez-
Gonzalez et al. 2022). 

Sentinel cage infection levels are 
easier to observe than larval plankton 
counts and can be used to assess infec-
tion rates on fish by dividing the ob-
served numbers of lice by the duration 
of deployment. Surveillance data col-
lected using sentinel cages in Loch 
Linnhe, Scotland, from 2011 to 2013  
(Pert et al. 2021) were used to estimate 
the variation in infection rates in time 
and space. The rate of infection in 
spring was extremely low in all years, 
while autumn rates were much higher 
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Fig. 2. Average adult sea lice count for December 2010–February 2024. Counts 
for December 2010–December 2017 are based on regionally averaged data 
(dashed line) and smaller reporting area averaged data (dotted line) averaged 
to the national level weighted by area production (methodology from Hall & 
Murray 2018), while January 2018–February 2024 (solid line) are simple aver-
ages across all farms unweighted (source data publicly available: Ives et al. 
2021; https://scottishepa.maps.arcgis.com/apps/webappviewer/index.html? 

id=2218824350e5470e8026076d4138da58)
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in 2011 and 2013 (Fig. 3). In 2011, a number of sites 
had an average infestation rate above 1 louse fish–1 
d–1, and this could be used as an indicator of levels of 
environmental lice that may be cause for concern.  

Results from surveillance (either through plankton 
trawls or sentinel cages) within a single system (in this 
example, Loch Linnhe), show that lice concentrations 
can vary by an order of magnitude or more between 
times of sampling, and between locations by a factor 
of 2 at the same sampling time (Salama et al. 2013). 
This means a single sampling location or time period 
is unlikely to be representative of a system. 

3.2.  Simple stochastic models 

Stochastic processes, like system dynamics models, 
may be used to design a surveillance regime that 
could provide a given level of confidence in the true 
lice concentrations in a system, leading to effective 
management strategies (e.g. Jeong et al. 2021). These 
models provide a methodology for studying and man-
aging complex feedback systems, to simplify the 
problem. These, like other modelling approaches, 
rely on assumptions and generalisations made about 
various aspects of the system such as the distribution 
patterns (e.g. Murray & Moriarty 2021 use a kernel 
estimate of complex ocean currents). To illustrate the 
utility of stochastic processes for sea lice surveillance 
we have produced a simple example for a sentinel 
cage monitoring regime. As stated in Section 2.2.2, 
sentinel cages aggregate numbers of lice over time at 
point locations and hence overcome the issue of 

highly patchy temporal changes in abundance, mak-
ing them a useful data set for model validation, if 
adequate sample locations are included. However, in 
deciding where and how many sentinel cages need 
to be deployed to adequately quantify lice densities 
for modelling purposes, a trade-off has to be made 
against what is realistically achievable. Increasing 
the number of sentinel cages decreases uncertainty 
around an estimate of lice levels, but also increases 
the cost of deployments and potentially has in -
creased welfare considerations. 

We use simple models of distribution (Text A1 in the 
Appendix) of infectious copepodids in the water to il-
lustrate how confidence ranges on estimated system 
infection pressure are affected by the number of senti-
nel cages used. We carried out 1000 simulations, ran-
domly varying the number of notional sentinel cages 
(1–20), to assess the efficacy of predicting true prev-
alence of sea lice in the environment (Fig. 4). In Fig. 
4a, infection pressure at any particular location in the 
environment varies randomly be tween 0 and 1 with a 
linear distribution, and randomly located sentinel 
cages detect an infection pressure p in this range. The 
mean and median ob served p is always 0.5, but with 
small numbers of sentinel cages, the range observed is 
highly variable. Where there are less than about 6 
sampling locations the estimated infection pressure is 
very poorly constrained. To simulate a patchy distri-
bution of infection pressure (Fig. 4b), a distribution of 
p2 is used, where p is distributed from 0 to 1. Under 
this distribution the true mean infection pressure is 
0.35, but even the median observed value tends to be 
an underestimate of true mean prevalence. Variation 

is larger than for the linearly distrib-
uted infection pressure (Fig. 4a), with 
observations tending to underestimate 
true prevalence. It should be noted that 
in a few cases, where sentinel cages lie 
on simulated ‘hot spots’, the observa-
tions considerably over-estimate the 
prevalence. This model is intended 
only as a simple illustration of how 
variation in distribution of sea lice in-
fection pressure can lead to inaccu-
racies in estimations based on small 
numbers of observations. 

3.3.  Coupled hydrodynamic–particle  
tracking models 

Coupled hydrodynamic–particle 
track ing models (also known as bio-
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Fig. 3. Infection rates per deployment for the 6 sampling periods. Solid central 
line represents the median, the box represents the first and third quartiles with 
the whiskers showing 1.5 × the interquartile range. Outlier values are plotted  

as solid black circles
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physical or physical biological models) are individ-
ual-based models which simulate actions and interac-
tions of individual particles within a system (e.g. 
Myksvoll et al. 2020, Ounsley et al. 2020). These can 
generate outputs on the distribution of larval sea lice 
but are computationally more de manding than sto-
chastic models (e.g. Sandvik et al. 2016, 2020, Salama 
et al. 2018). Outputs can include maps of sea areas 
where concentration is simulated to be elevated, and 
therefore identify places that both sentinel cage and 
plankton sampling surveillance can target. Targeting 
depends on the purpose of the sampling, for example 
predicted areas of high and of low concentration to 
validate models, while in Loch Torridon (Scotland) 
areas of elevated concentrations near the River Shiel-
daig have been a target for longer-term surveillance 
(Penston et al. 2004, 2008) as these strongest signals 
give the most informative time series of results for 
assessing variation with time. Even where high con-
centrations are not persistent, observed in fection 
pressure, especially from sentinel cages, can be com-
pared with model predictions for specific scenarios, 
and so make optimal usage of the surveillance data 
(Salama et al. 2018), provided there are sufficient 
samples to capture likely variation. 

The use of sophisticated models can generate new 
predictions, such as predicted rates of infection gen-
erated both by self-infection from the farm site and 
input from neighbouring farms (Kragesteen et al. 

2021). These predictions may introduce opportunities 
to use new sources of observational data for model 
validation, for example attached copepodid count 
data from farms could give new validation data for 
dispersal models by testing the different self-
infection and external infection signals across multi-
ple farms (Kragesteen et al. 2018, 2021). Multiple 
sources of surveillance data may be able to be used 
for coupled hydrodynamic model validation, and the 
use of these multiple data sources in model assess-
ments re duces the vulnerability to bias that could 
result from relying on a single validation data set. 

4.  USING SURVEILLANCE TO IMPROVE 
 EXISTING SEA LICE MANAGEMENT SYSTEMS 

Surveillance data play multiple roles for supporting 
management: (1) provision of forcing data re quired to 
run models, (2) validation of the models, (3) provision 
of direct values of sea lice numbers to indicate an 
infection threshold exceedance, and (4) where dis-
crepancies between model results and observations 
are identified, identification of areas where modelling 
or surveillance need to be improved. Items 1 to 3 are 
for day-to-day application of the modelling or man-
agement, while item 4 concerns improvement of the 
modelling as part of an adaptive management 
strategy (see Section 4.3). These improvements can 
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Fig. 4. Prevalence estimates from 2 different modelled population distributions based on the number of samples taken. (a) A 
population randomly distributed across the system with local prevalence varying uniformly with infection pressure p of 0 to 1.  

(b) A clustered population where local prevalence varies with p2
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be in response not only to discrepancies between 
models results and observations, identified from on -
going surveillance, but also to incorporate new exter-
nal information, such as data from new scientific 
studies. Empirical data are necessary for model devel-
opment and model data are useful to optimise empiri-
cal data collection. 

4.1.  Forcing and validation data 

Forcing data are the data required for inputs to a 
model, which drive the outputs, while validation data 
are needed to assess the model skill; both can be 
based on surveillance data. Data for local physical 
forcing of the hydrodynamic model require data col-
lection of key variables, such as wind and freshwater 
inputs, in that region. For sea lice modelling, the key 
biological forcing input to a system is the rate of 
viable egg production. For each farm, this is deter-
mined from the surveillance data collected on adult 
female lice per fish and the estimated number of fish 
on the farm; this is established practice at the moment 
but use of lice production models or other types of 
empirical data (e.g. free-swimming lice larval counts 
in the water in the cages using optical counters, for 
example) could be used in the future. Without such 
surveillance data the model outputs are driven by 
assumptions, which could lead to spurious results, if 
inadequate data are used. Fortunately, sea lice count 
data are now widely available from systematic sur-
veillance (within limits discussed). Unfortunately, in 
Scotland a lack of reported data on fish numbers 
requires estimates from consented biomass in asses-
sing this critical factor driving input of larval lice to 
the system. 

For the validation of sea lice dispersal models in 
Scotland, sentinel cage data have proven the most 
valuable surveillance data (Salama et al. 2018, Marine 
Scotland 2023, Moriarty et al. 2023b) despite limited 
deployments (Pert et al. 2014b, 2023, Salama et al. 
2018). The 2 main factors that make sentinel cage data 
particularly useful for model validation are the known 
location of the fish in space and time and the relative 
ease of lice counting and processing. One commonly 
collected form of data (particularly in Scotland and 
Norway) is single-site netting of sea trout (i.e. sweep 
net, fyke net). Despite extensive spatial and temporal 
coverage (e.g. Middlemas et al. 2013, Serra-Llinares 
et al. 2020, Ives et al. 2024) these data have not been 
utilised in dispersal model validation. Here, the main 
disadvantage (as it is perhaps the core advantage of 
sentinel cage data) is the unknown location of the sea 

trout during and after infection with lice, making the 
potential area covered by the fish and the lice too 
large to be useful. 

Beside sentinel cage and wild sea trout count data, 
data on planktonic sea lice larval numbers should also 
have the potential for assisting model validation as 
planktonic concentrations are the outcome predicted 
in dispersal models. However, the high level of vari-
ability does mean that point-by-point comparability is 
unlikely to be achieved for transient concentrations. 
However, averaged concentrations, or comparison of 
patterns of variation in observed and modelled con-
centrations, could be very useful for model valida-
tion. In the future, new methods of automated collec-
tion and counting of larval sea lice could lead to high 
frequency, even continuous, monitoring and/or at 
larger spatial scales. This role might also be covered 
by eDNA sampling, albeit its limitations (Pert et al. 
2022). If results are reported rapidly, continuous 
monitoring might allow for short-term responsive-
ness, such as emergency treatments, to reduce further 
outputs from farms, and to adjust management. 

4.2.  Direct indication of salmon lice load  
threshold exceedance 

Sampling can also be used to directly obtain 
evidence of impacts from sea lice. For example, ob -
servation of sea lice loads from sweep net data or 
trawled smolts can indicate that salmon lice loads are 
exceeding levels that are likely to cause welfare or 
mortality problems for the population of sea trout 
(Middlemas et al. 2013) or salmon smolts (Ives et al. 
2023). This is unlikely to be more than indicative 
because sample sizes are generally small; there is 
generally only 1 sampling location per area (and this 
is not usually  randomly determined), at least in Scot-
land (Ives et al. 2024), and the exposure times of the 
smolts are unknown. Therefore, the data’s represen-
tativeness of a specific system is very uncertain. Fur-
thermore, elevated lice loads will indicate elevated 
lice infection rates with the system some week(s) pre-
viously, even if data are reported promptly, because 
they represent the end of the exposure process. This 
makes it difficult to apply short-term management 
changes. However, data can be used to identify 
changes in lice loads associated with specific risk fac-
tors, such as farms in the local area being in their sec-
ond year of production (Middlemas et al. 2013) or 
trends in lice numbers over time. Areas with persis-
tently elevated lice loads may be identified over 
years, but as the sampling locations representative-
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ness of the particular system is generally unknown, 
this is only indicative. 

Compared to the delayed information from smolts, 
lice counts from plankton tows have the potential for a 
somewhat earlier indication of an emerging problem. 
Currently, its use is limited by the time and cost of 
sampling and identification of larval lice. Plankton 
distribution concentrations are patchy (Haury et al. 
1978), so non-detection at a sampling location does 
not mean an absence of larval lice elsewhere in the im-
mediate area, nor does a detection of an isolated peak 
confirm a problem. More information on the nature of 
the patchiness is required, which needs large quan-
tities of surveillance data and sophisticated statistical 
analysis. Assessing distribution patterns is possible 
(Penston et al. 2008) but collection of data to accu-
rately assess lice concentrations requires extensive ef-
fort, less so at high concentration (Skarðhamar et al. 
2019, Fernandez-Gonzalez et al. 2022). Future im-
proved and automated sampling methods of collec -
tion and identification are identified as a priority for 
sea lice research (Murphy et al. 2024) and could make 
the acquisition of these data more practicable. 

At the moment, sentinel cage data are a useful indi-
cator of infection pressure (Pert et al. 2014a, 2022). If 
sampling effort is sufficient and ‘Erroro’ is small 
(Fig. 1), these data can indicate infection pressure 
over a system, and hence give evidence of infection 
rates that may be causing problems to smolt health 
(Ives et al. 2023). It should be noted, however, that if 
sampling effort is sufficient and ‘Erroro’ is small, then 
any type of relevant data could give evidence of a 
potential problem to smolt health. Collection and 
reporting of such data take time, and this may limit 
their use to short-term management. Identification of 
high sea lice infection pressure directly, however, 
could indicate potentially high infection pressure 
without the need for modelling, for example the much 
higher infection pressure in autumn shown in Fig. 3. 

4.3.  Feedback for adaptive management 

If validation data indicate a significant lice infesta-
tion pressure (important to management) that the 
models do not detect, then the models and manage-
ment strategies should adapt to resolve these issues, 
i.e. improvement of model skills or measure to be put 
in place to reduce infestation pressure. As new devel-
opments occur in the understanding of sea lice bio-
logy, and of their modelling, then — even without the 
detection of specific anomalies between model pre-
dictions and surveillance data — this may also require 

further modelling adaption. Continuous develop-
ment of sea lice management and associated improve-
ment in modelling is part of an adaptive management 
process (Fig. 5). While monitoring results are in satis-
factory agreement with the model output, this mon-
itoring information is used to adjust management to 
keep the sea lice impact within accepted limits (single 
loop). However, if it becomes apparent that model 
outputs are deviating from monitoring data, or new 
scientific knowledge should be incorporated in the 
model, then the model approach itself needs to be re-
assessed (main loop). If required, the model design 
will be updated with the new/modified model/struc-
ture in place, and monitoring data continue to be col-
lected and used to evaluate performance. 

The accumulation of more information from mon-
itoring data and from developing science means that 
the system managers continuously acquire more un-
derstanding, and therefore the potential to im prove 
practices. This can be applied to acquire more infor-
mation on where surveillance would be most effec-
tively targeted, either to detect a potentially emerging 
problem (such as locally persistently elevated infec-
tion pressure) or to further evaluate the modelling. 
Thus, surveillance improves, generating better data to 
identify where further adaptations to the modelling 
can be made. Adaptive management allows the man-
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Fig. 5. The continuous cycle diagram shows the high-level 
process involved in a double looped adaptive monitoring 
programme (adapted from Williams & Brown (2014, 2018 
under the Creative Commons Attribution 4.0 License), pro-
posed to assess and control the risk posed by sea lice from 
marine fin fish farm developments to wild fish, emphasising 
the connection between each component in the programme
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agement system to incorporate these new data as they 
become available, and thereafter improve model pre-
dictions with the best available data. It is possible that 
the adaptive process may lead to re-evaluation of key 
indicators, and thus the elements of a system that are 
targeted for management intervention. This process 
also allows managers to adapt to changing production 
systems, for example the development of larger farms, 
increased production, the movement of production 
sites to offshore locations, or climate change. 

5.  DISCUSSION AND CONCLUSIONS 

In this review we assessed the efficient use of sur-
veillance in support of management of sea lice im pacts 
on wild salmonids. While improvements can be made 
in the presentation of these data and assurance of their 
quality, adult female lice counts per fish are the most 
reliable and extensive data set available at present. 
However, the value of this data set is undermined, in 
some countries (e.g. Scotland), by the absence of ex-
plicit data on fish numbers from farms, since a farm’s 
larval lice production depends on the product of lice 
per fish and number of fish on the farm. These data are 
already being collated by farmers for the efficient 
management of their stock’s health and productivity, 
so their absence from published data is a serious ob-
stacle to environmental lice management. Reporting 
of data on numbers of fish counted, and ideally each 
individual fish’s lice count, broken down by life stage, 
would allow an assessment of the power of the sam-
pling. In jurisdictions where AF counts are the only life 
stage reported, shifting from AF to ovigerous lice 
counts could increase uncertainty in the count due to 
the smaller number of ovigerous lice (the subset of AF 
which are currently producing eggs), and the potential 
for underreporting due to egg strings becoming de-
tached during sampling events. If both counts were re-
ported, this would be informative. Weighing of fish 
when they were sampled during lice counting would 
be an alternative to direct data on number of fish on a 
farm, which could improve accuracy. 

The published surveillance data of lice counts on 
farms also have substantial potential for analysis of 
sea lice population dynamics (particularly if more life 
cycle stages are included in counts, such as in the 
Faroe Islands), and for analysis of regional and 
national scale trends. These data have been used for 
assessments at the national and regional levels (Hall 
& Murray 2018, Murray & Moriarty 2021), and data 
from privately accessed company records have been 
used historically (e.g. Revie et al. 2002, 2003). Farm 

level count data can also be used to assess interac-
tions of infestation between farms, as undertaken in 
the Faroe Islands (Kragesteen et al. 2021). 

Surveillance data obtained directly from sampling 
sea lice larvae in the water have potential, and, in 
certain systems, have been effective to understand 
dispersal dynamics (Penston et al. 2008, á Norði et 
al. 2015). However, the high costs of collecting and 
identifying planktonic lice, plus difficult logistics, 
have limited their application. Developing auto-
mated technologies to improve future data collection 
has the potential to provide details on age (using 
development stage) as well as vertical distribution of 
larval lice, depending on which methods are used for 
model evaluation. The existence of transient patches 
of larval lice makes it difficult to effectively sample 
the areas of interest. If sampling is limited, high vari-
ability means that samples are unlikely to be repre-
sentative, and are therefore difficult to use in either 
management or modelling. Where persistent con-
centrations are known to exist (i.e. areas where lice 
accumulate), these may be targets for sampling. 
These concentrations are not representative but do 
allow worst cases to be identified and may provide 
valuable data for model validation (Section 4.1). 
Intensive or continuous sampling to obtain extensive 
data sets that can be analysed and averaged to re -
move the irrelevant high variability may offset the 
problems caused by the high variability in the data, 
especially if lice identification can be automated 
with a high level of precision. If sufficient data were 
available to quantify lice concentration levels at 
appropriate scales, then the plankton data could be 
valuable for model validation, as planktonic concen-
tration is explicitly what models predict. Planktonic 
larval sampling, if depth-resolved, can inform on lice 
depth distributions, which is important for dispersal 
modelling (Garnier et al. 2024), and can characterise 
nauplii and copepodid distributions — data which 
can be used to estimate time elapsed since the re -
lease of lice and therefore provide additional infor-
mation for detailed model validation. 

Indirect surveillance of lice in plankton through 
sentinel cages, fixed or towed, has proven the most ef-
fective means of surveillance for model evaluation to 
date (Salama et al. 2018, Pert et al. 2022, Marine Scot-
land 2023, Moriarty et al. 2023b). The number of cages 
that can be deployed is limited due to costs and de-
ployment logistics and cages can be lost in adverse 
weather conditions (Pert et al. 2014a). Another data 
source is count data from sweep netting of wild sea 
trout, which has proven useful for evaluation of factors 
associated with lice risk at the national level. Problems 

257



Aquacult Environ Interact 16: 241–262, 2024

with linking infection pressure to exposure of mobile 
fish, and the limited potential for sparse and potentially 
unrepresentative sampling sites, does limit its value 
for assessment of risk to individual systems. The sea 
trout data may be supplemented by smolt trawling, 
which would extend the salmon data, as occurs in Nor-
way. It may be possible to develop a more strategic 
netting sample strategy, e.g. including randomisation 
and spatial replication within sampling locations, as 
more information becomes available on behaviours of 
sea trout. This could be complemented by, for exam-
ple, the use of genetics to infer which fish remain in an 
area or move away, or where they came from, and 
hence how they were moving. In particular, notable 
negative impacts on wild fish welfare must be consid-
ered when contemplating the use of wild fish sampling, 
given the various pressures these fish already face 
(https://www.gov.scot/publications/scottish-wild-
salmon-strategy/).  

Small numbers of observations are likely to produce 
results with large levels of variability, and therefore 
sampling 1 or 2 locations does not provide an accurate 
assessment of the true status of a system. However, 
data collected by similar means from different loca-
tions and/or times may be pooled for validating a 
model. This increased confidence in the validation of 
the model allows increased confidence in prediction at 
all the sampled locations, and indeed in locations lack-
ing samples. Sampling may be targeting areas of pre-
dicted high and low lice counts, identified from a fore-
cast or climatology-based sea lice distribution model, 
to give the strongest signal to verify the modelling re-
sults. Therefore, with validation in one area a model 
can be applied, with caution, in other areas. This also 
means that surveillance data from different regions 
can be used to validate the models, since each piece of 
surveillance data increases the skill of the fitted model 
with standardised parameterisation, based on data 
from different regions. However, such standardised 
models still require local farm sea lice count data as an 
input to the model. 

Data on sea lice numbers in the environment are 
most important to management at the time of smolt 
runs to the sea in spring. However, when the aim of 
surveillance is to validate models, targeting the times 
of highest lice loads (typically in the autumn; Hall & 
Murray 2018) is most likely to provide statistically 
useful data for this purpose, when the signal to noise 
ratio is greatest. The models can then be applied in 
both autumn and spring to assess exposure to sea lice 
infection, and hence risk to smolts. Validation of 
models in spring is likely to be more difficult but 
could still be beneficial to assess confidence in their 

applicability in the spring smolt run period. In ad -
dition, since wild salmon smolts may enter seawater 
in spring, surveillance to detect problems specifically 
affecting smolt health would be best targeted to the 
spring period, if the lice numbers are high enough to 
resolve a detectable signal. 

If alternative models, or modelling approaches, are 
available then they may identify a better option or 
strengthen the knowledge to support decision mak-
ing. The combination of improved model interpolation 
combined with surveillance data can enhance our 
 understanding of system behaviours (Skogen et al. 
2021). In particular, discrepancies between observa-
tions and predictions identify areas where less confi-
dence can be placed in the model or possibly the ob-
servations. If the difference is large, then this may be 
evidence for adaptive management to require model 
updating (or improved observations) (Section 4.3). 

Overall, data collated as part of a well-designed sur-
veillance monitoring program are important for the 
purpose of supporting management decision making. 
Different factors are important for strategic planning 
of new locations, or changed production levels, com-
pared to short-term management to avoid specific 
problems. Models can be improved as more data 
become available from ongoing surveillance or spe-
cific validation exercises. A synergy of improving 
models as better observational data become avail-
able, and better directed surveillance for collection of 
further data using these models, drives the adaptive 
management process. 
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Result<-matrix(nrow=20,ncol=1000) 
for(Mfun in 1:20){ 
Ms<-Mfun 
for(run_no in 1:1000){ 
tot<-0 # total detected 
for(Ns in 1:Ms){ 
# select function for lice runif(1) for uniform population, runif(1)^2 for clustered population 
lice_count<- runif(1) #runif(1)^2 
tot<-tot+lice_count*1/Ms 
} # end set of samples 
tot<-tot 
Result[Mfun,run_no]<-tot 
} # end Ns average for a given number of sample sites 
}

Appendix 
 

Text A1. R code for simple model used to generate data for Fig. 4
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