
1.  INTRODUCTION 

Viruses are highly abundant in the marine environ-
ment and comprise a diverse and dynamic compo-
nent of aquatic systems that infects autotrophic and 
heterotrophic prokaryotes and eukaryotes (Proctor & 
Fuhrman 1990, Breitbart & Rohwer 2005, Suttle 2005). 
Marine cyanophages are a morphologically and 
genotypically diverse group of tailed viruses that 
infect cyanobacteria in the genera Synechococcus and 
Prochlorococcus (Proctor & Fuhrman 1990, Suttle & 
Chan 1993, 1994, Waterbury & Valois 1993, Marston 

& Sallee 2003, Sullivan et al. 2003, Baran et al. 2022). 
Ubiquitously distributed in marine surface waters, 
cyanophages are significant agents of cyanobacterial 
mortality (Proctor & Fuhrman 1990, Suttle 1994, Sut-
tle & Chan 1994, Mann 2003), and affect the density, 
distribution, and clonal composition of cyanobacter-
ial communities (Wang et al. 2011, Marston et al. 
2013, Chow & Suttle 2015, Ahlgren et al. 2019, Carl-
son et al. 2022, Dart et al. 2023). 

Cyanophages are tailed double-stranded DNA 
viruses previously belonging to the order Caudovi-
rales. Depending on tail morphotype, viruses of this 

*Corresponding author: a.almutairi@ku.edu.kw

The hypersaline northwestern Arabian Gulf 
contains a phylogenetically diverse and highly 

uneven community of viruses related to 
cyanophages and pelagiphages 

Awatef Almutairi1,*, Curtis A. Suttle2, Julia A. Gustavsen3,4 

1Department of Biological Sciences, Faculty of Science, Kuwait University, Safat 13060, Kuwait 
2Departments of Earth, Ocean and Atmospheric Sciences, Botany, Microbiology and Immunology, 

and the Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, Canada 
3Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada 

4Present address:  Agroscope, Rte de la Tioleyre 4, 1725 Posieux, Switzerland

ABSTRACT: Cyanobacteria are the dominant primary producers in many marine waters, and are 
intimately connected with the cyanophages that infect them. The most commonly isolated marine 
cyanophages form a monophyletic group based on several marker genes including g20, a gene that 
codes the capsid assembly protein. Based on morphology, these viruses are typically referred to as 
cyanomyoviruses. Here, we used g20 sequences to interrogate the diversity of cyanomyoviruses at 
5 locations in the waters of the northwestern Arabian Gulf. The diversity and richness of g20 
sequences varied among locations and were highest at the southernmost sites. Most sequences 
belonged to a small number of operational taxonomic units (OTUs), with the rest belonging to low 
abundance rare OTUs. Phylogenetic analysis revealed that the most abundant genotypes fell 
within the ubiquitous cyanomyovirus Cluster II, while others clustered with metagenome assem-
bled pelagimyophage sequences and other environmental sequences across a broad diversity of 
clades. This study revealed a diverse community of cyanomyoviruses in the northwestern Arabian 
Gulf that is dominated by a few relatively abundant but phylogenetically diverse taxa.  
 
KEY WORDS:  Viruses · Cyanophage · Cyanomyovirus · Pelagimyophage · g20 · Synechococcus · 
Arabian Gulf · Kuwait 

Aquatic Microbial Ecology 
Volume 91:1–14

Published February 6, 2025 
https://doi.org/10.3354/ame02014

© The authors 2025 

Publisher: Inter-Research · www.int-res.com

https://crossmark.crossref.org/dialog/?doi=10.3354/ame02014&amp;domain=pdf&amp;date_stamp=2025-02-06


Aquat Microb Ecol 91: 1–14, 2025

order were historically subdivided into 3 families 
Myoviridae, Podoviridae, and Siphoviridae (Suttle & 
Chan 1993, Waterbury & Valois 1993, Marston & Sal-
lee 2003). Members of these families in aquatic envi-
ronments include viruses that infect SAR11 bacteria 
and cyanobacteria. However, with the recent updates 
of phage classification by the International Commit-
tee on Taxonomy of Viruses (ICTV), all tailed bacte-
rial and archaeal viruses with double-stranded DNA 
and icosahedral capsids are now members of the class 
Caudoviricetes (Walker et al. 2022). 

The previous classification described Myoviridae as 
genetically related to T4-like phages with contractile 
tails. Currently, these viruses are designated as myo -
viruses based on their morphology. Historically, myo-
viruses infecting cyanobacteria have been termed 
 cyanomyoviruses (Suttle & Chan 1993, Waterbury & 
Valois 1993, Marston & Sallee 2003, Sullivan et al. 
2008). Cyanomyoviruses and cyanopodoviruses are 
both abundant in diverse marine environments (Huang 
et al. 2015) with cyanomyoviruses being in high abun-
dance in coastal waters (Suttle & Chan 1993, 1994). 

Cyanomyoviruses generally have relatively broad 
host ranges (Suttle & Chan 1993, Waterbury & Valois 
1993, Sullivan et al. 2008) and high genetic diversity, 
often assessed based on genes coding the major cap-
sid protein (g23) (Filée et al. 2005, Marston & Amrich 
2009), DNA polymerase (g43) (Marston & Amrich 
2009, Finke & Suttle 2019), and the capsid portal pro-
tein (g20) (Fuller et al. 1998, Zhong et al. 2002, Short 
& Suttle 2005, Sullivan et al. 2008). 

Portal proteins can be used to classify abundant 
uncultured viruses (Lopes et al. 2014). In particular, 
analysis of g20 amplicon sequences has highlighted 
the high genetic diversity and prevalence of cyano-
myoviruses in space and time (Fuller et al. 1998, 
Zhong et al. 2002, Frederickson et al. 2003, Marston & 
Sallee 2003, Dorigo et al. 2004, Short & Suttle 2005, 
Sandaa & Larsen 2006, Sullivan et al. 2008, Matteson 
et al. 2011, 2013, Wang et al. 2011, Zhong & Jacquet, 
2013, Hanson et al. 2016). Moreover, studies have 
shown that g20 diversity varies with Synechococcus 
host abundance (Frederickson et al. 2003, Wang & 
Chen 2004, Wang et al. 2011, Hanson et al. 2016) 
and environmental changes, including temperature, 
salinity, and nutrient availability (Suttle & Chan, 
1994, Lu et al. 2001, Wang & Chen 2004, Wang et al. 
2011). Thus, amplicon sequencing of g20 gene frag-
ments is a robust way to infer the diversity of cyano-
myoviruses that can be compared to other studies and 
contextualized through phylogenetic analysis. 

Although the potential for off-target amplification 
can be minimized by using modified g20 primers that 

specifically target cyanomyophage isolates (Sullivan 
et al. 2008), a criticism of using g20 amplicon se -
quences to assay cyanomyovirus diversity is the po-
tential for the primers to amplify g20 sequences of 
other T4-like phages, or that some cyanomyoviruses 
may be missed (Short & Suttle 2005, Zhong & Jacquet 
2013). To date, phylogenetic analyses have identified 
4 clusters (I to IV) of g20 sequences with cultured cya-
nomyovirus representatives (Zhong et al. 2002, Sulli-
van et al. 2008), while other clusters are still known 
only from environmental sequences (Zhong et al. 
2002, Frederickson et al. 2003, Short & Suttle 2005, 
Jameson et al. 2011, Zhong & Jacquet 2013). It has 
been speculated that g20 sequences of these environ-
mental clusters belong to either undiscovered cyano-
myophages or to myophages that infect other bacterial 
hosts (Short & Suttle 2005, Sullivan et al. 2008). Inter-
estingly metagenomic studies of myophages infecting  
the globally abundant SAR11 clade (pelagimyopha -
ges) have shown a high similarity to cyanomyophages 
(Zaragoza-Solas et al. 2020). Metagenome-assembled 
genomes of putative pelagimyophages showed simi-
lar gene synteny with cyanophage isolates, and were 
closely related using a selection of concatenated 
genes (Zaragoza-Solas et al. 2020). 

Despite extensive investigations of cyanophage 
diversity, the waters of the Arabian Gulf (also called 
the Persian Gulf and hereafter the Gulf) are unex-
plored, with the exception of a recent study of 3 areas 
along the coast of Kuwait that used denaturing gra-
dient gel electrophoresis (DGGE) to show differences 
among months, and sequencing of 121 g20 amplicons 
to reveal the prevalence of cyanomyoviruses in Mar-
ine Cluster II (Almutairi et al. 2023). 

The Gulf is a semi-enclosed shallow marine system 
in the northwestern Indian Ocean, surrounded by 8 
countries and is a major region of oil production, 
refining, and shipping (Sheppard et al. 2010, Zhao et 
al. 2015). The northwest of the Gulf is affected by 
freshwater inflow from the Shatt Al-Arab River (Al-
Yamani et al. 2004, Naser 2013, Devlin et al. 2015) that 
enters near the confluence of the borders of Kuwait, 
Iraq, and Iran, and introduces nutrient-rich water, as 
well as creating a seasonal north to south salinity gra-
dient (Al-Yamani et al. 2004, Alosairi et al. 2011, Dev-
lin et al. 2015). However, evaporation exceeds fresh-
water input, resulting in salinities in excess of 38 ppt 
for much of the Gulf (Pous et al. 2015). 

Kuwait is situated at the western edge of the north-
ern Gulf, with a coastline of about 500 km that borders 
Iraq and is intersected by the Shatt Al-Arab River in 
the north, and borders Saudi Arabia in the south. The 
coastal waters of Kuwait are shallow, with a maximum 
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depth of about 30 m, and are well mixed year-round 
(Al-Yamani et al. 2004), but subject to wide shifts in 
temperature (15 to 19°C in winter and 30 to 32°C in 
summer) and salinity, and are affected by rapid coas-
tal development and anthropogenic influence (Shep-
pard et al. 2010, Naser 2013, Devlin et al. 2015). 

Proteobacteria constitute a major fraction of the 
bacterioplankton community in local waters, and the 
SAR11 clade is highly ubiquitous (Almutairi 2015, 
Ismail & Almutairi 2022). Phytoplankton biomass and 
primary productivity in the Gulf are similar to many 
other coastal areas (Al-Yamani et al. 2006, Sheppard 
et al. 2010), and seasonal phytoplankton blooms 
occur regularly in Kuwaiti waters (Al-Yamani et al. 
2004, Polikarpov et al. 2009, Sheppard et al. 2010). In 
particular, the waters are rich in picocyanobacteria in 
the genus Synechococcus. Picocyanobacterial abun-
dances range between ~1 × 105 and ~6 × 105 ml–1 (Al-
Hasan et al. 2001) and compose 25 to 100% of the total 
picophytoplankton in Kuwaiti coastal waters (Al-
Bader et al. 2011). Thus, Synechococcus spp. are major 
primary producers in local waters, and as cyanophage 
and Synechococcus abundances covary (Suttle & 
Chan 1993, 1994, Waterbury & Valois 1993, Marston 
& Sallee 2003), cyanomyoviruses would also be 
expected to be abundant in the waters of Kuwait. 

Given the limited data on cyanophage diversity in 
environments analogous to those in the northern Ara-
bian Gulf, we sequenced cyanomyovirus g20 ampli-
cons across 17 stations in Kuwaiti coastal waters. 

2.  MATERIALS AND METHODS 

2.1.  Sample collection and processing 

Seawater samples were collected during daylight 
hours from 2 m depth at 17 sites within the coastal 
waters of Kuwait (Fig. 1) from 12 to 22 March 2013. 
The sites were grouped by geographical location; 2 
sites (KB2, KB5) were 18 km apart in northern Kuwait 
Bay; 4 sites near Messila (M1, M3, M4, M5) were 6 to 
15 km apart; 5 sites near Fintas (F1, F2, F3, F4, F5) 
were <7 km apart; 4 sites (J1, J3, J4, J5) near Julaiah 
were 1 to 10 km apart; and 2 sites (KH1, KH2) near 
Khairan were 4 km apart. 

At each site, temperature, pH, salinity, and dis-
solved oxygen were measured using a Horiba U-10 
water-quality checker (Horiba), and 5 replicate 1 l 
samples were collected and kept on ice in the dark, 
and transported to the laboratory within 6 h. Repli-
cate samples from each site were combined and 
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sequentially filtered through 3 μm pore-size polycar-
bonate and 0.45 μm pore-size polyethersulfone filters 
(TPP) to remove most bacteria and larger particles. 
Tangential flow filtration (TFF) using a Vivaflow 
200, 30 kDa molecular-weight-cutoff polyethersul-
fone membrane (Sartorius) was used to concentrate 
the viruses in the filtrate to a final volume of approx-
imately 5 ml. The concentrates were stored at –80°C 
until use. 

2.2.  Viral DNA extraction and PCR 

Viral-size particles were collected from the con -
centrate using aluminum oxide 0.02 μm pore-size 
syringe-tip filters (Anatop, Whatman) and the filters 
were stored at –80°C until processing. DNA was 
extracted from the filters using the MasterPure total 
nucleic acid extraction kit (MasterPure, Epicenter) 
following the method of Steward & Culley (2010). 
DNA was resuspended in autoclaved 0.02 μm filtered 
MilliQ water and stored at –20°C. 

Fragments of the capsid assembly protein gene g20 
were amplified from the concentrates using the 
CPS1.1 (5’-GTA GWA TWT TYT AYA TTG AYG 
TWG G-3’) and CPS8.1 (5’-ART AYT TDC CDA YRW 
AWG GWT C-3’) revised primers (Sullivan et al. 
2008) with Ready-to-Go PCR beads (GE Healthcare). 
Each reaction mix (25 μl) contained 0.5 μM of each 
primer and 2 to 3 μl of DNA template. Triplicate PCR 
reactions were done for each sample using a Veriti 96-
well thermocycler (Applied Biosystems). The PCR 
was performed as described by Zhong et al. (2002) 
using the following conditions: denaturation at 94°C 
for 3 min, followed by 35 cycles of denaturation at 
94°C for 15 s, annealing at 35°C for 1 min, ramping at 
0.3°C s–1, and elongation at 73°C for 1 min, followed 
by a final elongation step at 73°C for 4 min. All PCR 
reactions were visualized on 1% agarose gels, 1× Tris-
acetate-EDTA (TAE) and stained with ethidium bro-
mide. PCR products of each sample with the expected 
fragment size (~590 bp) were pooled and then puri-
fied using the MinElute PCR purification kit (Qiagen) 
according to the manufacturer’s instructions and 
eluted in autoclaved 0.22 μm filtered MilliQ water. 

2.3.  Construction of g20 libraries 

PCR products for each sample were purified using 
AMPure XP beads (Beckman Coulter) at a ratio of 
1.2:1 beads:product. The purified products were 
resuspended in 30 μl EB buffer (Qiagen) and then 

quantified using the Picogreen dsDNA assay (Invit-
rogen) alongside the standardized Lambda DNA (In -
vitrogen). Concentrations were calculated using iQ5 
and CFX96 Touch systems (Bio-Rad). Libraries for 
each sample were prepared using NxSeq DNA sam-
ple prep kit 2 following the manufacturer’s recom-
mendations with either NEXTflex 48 (BioO) or 
NEXTflex 96 HT barcodes (BioO). Libraries were 
purified using AMPure XP beads (Beckman Coulter) 
at a ratio of 0.9:1 beads:library. 

2.4.  Sequencing library quantification and  
quality control 

Libraries were checked for small fragments using a 
2100 Bionanalyzer (Agilent) with the High Sensitivity 
DNA kit (Agilent). The concentration of libraries was 
quantified using the Picogreen dsDNA assay as 
described in Section 2.3. The libraries were quantified 
and checked for amplifiable adapters using the 
Library Quantification DNA standards 1 to 6 (Kappa 
Biosystems) with the SsoFast EvaGreen qPCR super-
mix (Bio-Rad) using 10 μl EvaGreen master mix, 3 μl 
of the F primer (0.5 μM), 3 μl of the R primer (0.5 μM) 
and 4 μl each of 1:1000, 1:5000, and 1:10000 dilutions 
of the libraries in triplicate on either a iQ5 (Bio-Rad) 
or a CFX96 Touch qPCR machines. The following 
cycling parameters were used: 95°C for 30 s, then 35 
cycles of 95°C for 5 s, 60°C for 30 s, and melt curve 
generation from 65 to 95°C in 0.5°C steps (10 s per 
step). The quantification values from the Picogreen 
assays and the qPCR assays were both used to eval-
uate the final pooling of the sequencing libraries. 
Libraries were sequenced using 2 × 250 bp PE MiSeq 
sequencer (Illumina) at the Génome Québec Innova-
tion Centre at McGill University (Montreal, QC, Can-
ada), and 2 × 300 bp PE MiSeq sequencer (Illumina) 
at Genoseq UCLA (Los Angeles, CA, USA). 

2.5.  Sequence analysis 

Libraries were demultiplexed using CASAVA (Illu-
mina). Initially, sequence quality was examined using 
FastQC (Andrews 2010). Any contaminating sequen-
cing adapters were identified and removed using 
Trimmomatic version 0.32 (Bolger et al. 2014) using 
the default settings. The sequencing library quality 
was examined in more detail using fastx_quality 
(Gordon 2010). Since the expected amplicon can be 
up to 594 bp long (Zhong et al. 2002, Sullivan et al. 
2008), the reads were not merged as they did not over-
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lap. Reads from the forward primer were the longest 
and of the highest read quality and thus were used for 
further analysis. Sequence alignment of the libraries 
to sequences retrieved from NCBI’s Conserved 
Domain Database (CDD, conserved protein domain 
family: PHA02531) was performed using align.seqs in 
mothur (Schloss et al. 2009). TBLASTX (Altschul et al. 
1990) queries were performed using a custom blast 
database containing the g20 gene constructed from 
cyanomyovirus isolates available in NCBI (for ac -
cession numbers see Text S1 at www.int-res.com/
articles/suppl/a091p001_supp.pdf). Reads matching 
the database with an E-value of less than 1 × 10–10 
were kept. Reads were translated using FragGeneS-
can (Rho et al. 2010) using the Illumina_10 method. 
Sequences were aligned using Clustal Omega 
(Sievers et al. 2011), then trimmed to the same posi-
tions using USEARCH (Edgar 2010), and gaps intro-
duced during the alignment step were removed using 
scripts in Biopython (Cock et al. 2009). Alignments 
were visualized using Aliview (Larsson 2014). Se -
quences aligning poorly or less than 66 amino acids 
long were removed. Chimera-checking of the se -
quences was performed using USEARCH denovo and 
reference methods (Edgar 2010). USEARCH was used 
to cluster sequences at 97% identity based on similar-
ity to cyanomyovirus reference sequences. Several 
studies have shown that the performance of the 
amplicon sequence variant (ASV) method is affected 
by sequence depth (Joos et al. 2020, Jeske & Gallert 
2022) and thus due to low sequencing depth in some 
samples, the operational taxonomic unit (OTU) pick-
ing method was used instead of constructing ASVs. 
To check the identities of the obtained OTUs, the top 
20 OTUs were queried against GenBank’s nr database 
using BLASTp. Raw sequence data are available in 
the NCBI BioProject database ID: PRJNA801482. 

2.6.  Statistical analysis 

Significant variations in environmental parameters 
among sites were determined by 1-way analysis of 
variance (ANOVA) using Excel (Microsoft), after 
checking for normal distribution of the data using the 
descriptive measures of normality skewness and ex-
cess kurtosis. Relative abundances of OTUs were nor-
malized by random resampling to address differences 
in sequencing depth among samples. Libraries were 
normalized to the library containing the fewest reads 
to generate equal sequence counts across samples. 
Rarefaction curves were generated using the vegan 
package (Oksanen et al. 2013) in R (R Core Team 

2021). Non-metric dimensional scaling plots were 
generated and analysis of similarities (ANOSIM) was 
performed in vegan using Bray-Curtis-generated dis-
tance matrices. Alpha-diversity metrics and heatmaps 
were generated using the phyloseq (McMurdie & 
Holmes 2013) and ggplot2 (Wickham 2016) packages 
in R. After testing for normality via visual inspection 
and applying the Shapiro-Wilk’s normality test as im-
plemented in R, differences in alpha diversity metrics 
among sites were analyzed using ANOVA and pair-
wise comparisons with t-tests and corrected for multi-
ple testing using Bonferroni correction in R (R Core 
Team 2021). Relationships among environmental and 
biotic variables were tested by canonical correspon-
dence analysis in vegan. 

2.7.  Phylogenetic analysis 

A reference alignment containing cyanomyovirus 
isolates (accession numbers are listed in Text S1) was 
created using Clustal Omega (Sievers et al. 2011) with 
default settings. Alignments were visualized using 
Aliview (Larsson 2014). Alignment masking was done 
using trimAl with the automatic heuristic (Capella-
Gutiérrez et al. 2009) and then the alignments were 
edited manually. ProtTest 3.2 was used for amino-
acid model selection (Darriba et al. 2011). An initial 
maximum likelihood phylogenetic tree was built with 
FastTree (Price et al. 2010). Environmental sequences 
from other studies (Zhong et al. 2002, Sullivan et al. 
2008, Jameson et al. 2011, Zhong & Jacquet 2013, Jing 
et al. 2014) were downloaded from GenBank, and 
28 pelagimyophage sequences (Table S4) were also 
included (Zaragoza-Solas et al. 2020). The unique se -
quences were clustered at 90% amino acid similarity 
(using centroid output) using USEARCH (Edgar 2010). 
These sequences were aligned to the reference align-
ment using Clustal Omega and then a reference tree 
was made using RAxML (Stamatakis et al. 2008) with 
rapid bootstrap analysis, using the amino-acid matrix 
LG with optimization for substitution rates and the 
Gamma model of rate heterogeneity using T4 virus 
(GI: NP 049782) as an outgroup. The top 50 OTUs at 
97% sequence similarity found in the normalized 
dataset were aligned with the reference and environ-
mental sequences using Clustal Omega and then the 
RAxML Evolutionary Placement algorithm (EPA) 
(Berger et al. 2011) was used to place the OTUs onto 
the reference tree using the amino-acid matrix LG, 
optimization for substitution rates, the Gamma model 
of rate heterogeneity and a threshold of 0.2. The 
resulting tree was viewed in Archaeopteryx (Han & 
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Zmasek 2009) and then the tree format was converted 
using biopython (Cock et al. 2009). Graphlan (Asnicar 
et al. 2015) was used to create the final tree with the 
placements and the relative abundance information 
for the top 50 OTUs. 

3.  RESULTS 

3.1.  Environmental parameters of study sites 

The environmental data are provided in Table S1. 
Water temperatures ranged from 18.3 to 20.3°C and 
differed significantly among sites (p < 0.001); the 
highest temperature was at Site M5 near Messila 
(20.3°C) and the lowest at Site KB2 in (Kuwait Bay 
18.3°C). At all sites, the waters were hypersaline, with 
salinity between 47 and 49 ppt and pH ranging 
between 9.0 and 9.2. Turbidity varied significantly 
among sites (p < 0.05) and was highest in Kuwait Bay 
at Site KB5 (8.2 nephelometer turbidity units [NTU]) 
and lowest near Messila at Site M3 (0.33 NTU). 
NMDS analysis of the environmental parameters 
clustered samples by location (Fig. S1). 

3.2.  Overview of sequence statistics 

1 472 055 quality-filtered sequences were obtained 
from the 17 samples with an average of 457 119 
sequences per sample with a range of 134 384 (J4) to 
2 114 372 (M4). These were clustered at 97% sequence 
similarity into 11 735 OTUs with an average of 1399 
OTUs per sample, with a range of 631 (KB4) to 6417 
(M4). After normalization, for the forward primer, 
there were 1623 OTUs with an average of 495 OTUs 
per sample (range 389 [M5] to 581 [J1]). The sequences 
associated with the forward g20 primer (CPS1.1) were 
chosen for downstream analysis since quality process-
ing of the sequences indicated that the forward primer 
recovered more reads than the reverse primer. 

The diversity of OTUs was estimated across lo -
cations. Alpha-diversity based on the Chao1 richness 
index revealed no significant differences among loca-
tions; whereas, the Shannon and InvSimpson diver-
sity indices showed significant differences among 
sites (p ≤ 0.0001) (Fig. 2, Fig. S2, Table S2), with alpha 
diversity highest in Julaiah and lowest in Kuwait Bay.  
In addition, estimates of beta diversity across loca-
tions using Non-metric dimensional scaling (NMDS) 
ordination (Fig. 3) showed separation among the 
5 locations (ANOSIM R = 0.9591, p = 0.0001), with 
more similarity among sites within the same location. 

However, the rarefaction curves did not saturate for 
any of the locations, indicating that sequencing 
depth was inadequate to capture the full diversity of 
g20 OTUs (Fig. S3). Relationships be tween biotic and 
abiotic parameters were not found to be significant 
(data not shown). 

3.3.  Cyanomyovirus distribution and phylogeny 

Analysis of the rank abundance and distribution of 
the top 50 OTUs (≥0.2% relative abundance) across 
locations showed that one to 3 OTUs were dominant at 
each location, followed by a long tail of low abundance 
OTUs (Fig. S4). OTU_1 was the most abundant at all 
locations except in Julaiah, where it was most abun-
dant at Site J3 only. OTU_2 was the second most 
abundant at all sites except also in Julaiah, and 
OTU_9 had a higher abundance at all Kuwait Bay sites 
(15%) compared to the rest of the sampling locations. 

The relative abundances and distribution of the top 
20 OTUs (≥0.8% relative abundance) varied across 
locations (Fig. 4). For example, the relative abun-
dances of OTU_8 and OTU_9 were highest in Kuwait 
Bay, while OTU_7 had a higher relative abundance in 
Julaiah. Overall, the top 20 OTUs comprised 75% of 
the total relative abundance of the dataset, with more 
than 20% of the sequences belonging to OTU_1. 

BLASTp analysis of the top 20 OTUs showed that 
most sequences were identified as gp20 portal pro-
teins (average E-value <4 × 10–34), half of which were 
80 to 98% similar to sequences in GenBank for cyano-
myoviruses infecting Synechococcus (Table S3). Most 
had highest similarity to cyanomyoviruses isolated 
from the coastal waters of Rhode Island; 2 others were 
98.4% similar to sequences for cyanomyoviruses 
infecting Prochlorococcus; 2 others were most similar 
to T4-like phages with unknown hosts; 5 were more 
similar to putative portal proteins from freshwater 
metagenomes. 

Phylogenetic analysis of the top 50 OTUs and 
sequences from representative cyanomyovirus iso-
lates and environmental samples (Zhong et al. 2002, 
Sullivan et al. 2008, Jameson et al. 2011, Zhong & Jac-
quet 2013, Jing et al. 2014) (Fig. 5) revealed that some 
sequences grouped with cyanomyophage isolates, 
others with pelagimyophages, and some with diverse 
environmental clades. A total of 53% of the OTUs 
fell within well-supported clades within cyanophage 
Marine Cluster II, and the remaining OTUs grouped 
with pelagimyophage sequences and various envi-
ronmental clusters, including 8 OTUs that fell within 
Clusters A, B, C, D, and F defined by Zhong et al.  
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(2002). No OTUs grouped with isolates from Marine 
Clusters I or III. OTU_1, with the highest relative 
abundance at all sites, fell within Environmental 
Cluster A, which contains sequences from the surface 
waters of estuarine and perialpine lakes. The next 
most abundant OTU_2 fell within Marine Cluster II, 
while OTU_3 clustered with environmental se -
quences collected along a north–south transect in 
the Atlantic Ocean. 

4.  DISCUSSION 

We analyzed amplicon sequences of the capsid 
 portal protein (g20) to examine cyanomyovirus diver-
sity in Kuwait’s coastal waters of the northwestern 
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Arabian Gulf. This semi-enclosed marine system 
forms an unusual negative estuary (where evaporation 
exceeds freshwater inflow) with freshwater inflow 
in  the northwest, setting up a strong north-to-south 
salinity gradient (Al-Yamani et al. 2004, Devlin et al. 
2015). This environmentally sensitive region is sur-
rounded by 8 countries that are responsible for nearly 
a third of global oil production; yet, little is known 
about the dominant cyanobacteria in the region or the 
viruses that infect them. We used the g20 gene as a 
proxy (Zhong et al. 2002, Short & Suttle 2005, Sullivan 

et al. 2008) to survey the genetic diversity of cyano-
myovirus populations in this region. Deep sequencing 
of g20 allowed us to sample genetic diversity and cya-
nomyovirus community composition from 5 different 
locations in Kuwait’s coastal waters. 

This first detailed analysis of the cyanomyovirus com-
munities of the Arabian Gulf leads to several striking 
observations. The relative abundance of OTUs was 
highly uneven, with only a few dominant but phylo -
genetically dispersed OTUs. Furthermore, despite the 
hypersaline conditions of the Gulf, most OTUs belong 
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to Marine Cluster II, a phylogenetic group that includes 
both isolates and representatives from a wide range of 
marine and freshwater habitats. These observations 
and their implications are discussed in detail below. 

Cyanomyovirus diversity varied across locations. In 
particular, the lower alpha diversity and richness in the 
semi-enclosed, highly productive Kuwait Bay coincides 
with urbanization, pollution, and other anthropogenic 
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activities that have affected water quality (Al-Abdul -
ghani et al. 2013, Devlin et al. 2015), shifted the phyto-
plankton community composition, and decreased pri-
mary productivity (Devlin et al. 2015, Ahmed et al. 
2022). Turbidity was also higher in Kuwait Bay, follow-
ing the typical pattern for Kuwait coastal waters of 
higher water clarity from north to south (Al-Yamani et 
al. 2004). This pattern is due to the effect of winds and 
tidal currents and discharges of plumes of suspended 
sediments released from Shatt Al-Arab (Al-Yamani et 
al. 2004, Al-Ghadban & El-Sammak 2005). Turbidity 
not only reduces primary productivity (Grobbelaar 
1985, Huisman et al. 1999, Bouman et al. 2011), but can 
affect the abundance of picocyanobacteria and their 
community structure (Stomp et al. 2007, Buzzani et al. 
2022). Along the coast of Kuwait, Synechococcus abun-
dance and diversity increase with increasing water 
clarity (Al-Bader et al. 2011), as seen in other studies 
(Stomp et al. 2007, Haverkamp et al. 2008, Xia et al. 
2018). High turbidity levels were also found to favor 
mostly filamentous cyanobacteria (Al-Bader et al. 
2011). Given that cyanophage and picocyanobacteria 
abundances co-vary (Waterbury & Valois 1993, Suttle 
& Chan 1994, Wang et al. 2011), the lower diversity of 
g20 sequences in Kuwait Bay is likely the result of 
lower abundance and diversity of Synechococcus. 

The samples were collected over 10 d and the top 20 
OTUs in relative abundance occurred at all 5 loca-
tions. This could be because well-mixed water col-
umns usually have stable viral communities (Wang & 
Chen 2004, Goldsmith et al. 2015), and Kuwait’s coas-
tal waters are typically well-mixed. In addition, the 
prevailing counterclockwise circulation pattern in 
Gulf waters (Sheppard et al. 2010) might also lead to a 
wide distribution of cyanomyoviruses and their hosts. 

Although the top 20 OTUs occurred at all locations, 
their relative abundances varied markedly. Given 
that environmental variation can affect viral abun-
dance and diversity (Chow & Fuhrman 2012, Brum et 
al. 2015) and that cyanomyovirus communities are 
reflected by the physical structure of the water col-
umn (Frederickson et al. 2003), we measured tem-
perature, salinity, and turbidity, and found significant 
variations among sites. However, unlike other studies 
that have demonstrated relationships between envi-
ronmental variables and viral dynamics (Weinbauer 
et al. 2009, Mojica & Brussaard 2014), we found no 
significant associations using canonical correspon-
dence analysis with the environmental data and the 
OTUs (data not shown). Potentially, more in-depth 
spatial and temporal sampling could disentangle the 
influence of abiotic and biotic factors on viral diver-
sity and abundance patterns. 

Despite the variation among sites, more than half of 
the g20 sequences at any location belonged to the top 
5 OTUs. Similarly, highly uneven OTU rank-abun-
dance curves are consistent with other cyanomyovi-
rus diversity studies (Jameson et al. 2011, Chow & 
Fuhrman 2012, Marston et al. 2013, Needham et al. 
2013, Pagarete et al. 2013, Goldsmith et al. 2015), in 
which most environmental viral sequences belonged 
to a few common and relatively abundant OTUs, 
whereas most OTUs were less abundant and rare. 
Such highly uneven rank abundance curves have 
been interpreted as evidence for a ‘seed-bank’ model 
(Breitbart & Rohwer 2005) in which widely dispersed 
virus genotypes come to prominence when suitable 
hosts are available. Similarly, in the ‘kill the winner’ 
model, specific viruses dominate in response to rapid 
host growth (Thingstad 2000). Both the ‘seed-bank’ 
and ‘kill the winner’ models are supported by obser-
vations of the release of free ribosomal RNA (rRNA) 
that demonstrate that within a population of potential 
hosts, lysis is restricted to very few genotypes (Zhong 
et al. 2023). For example, of 138 different sequence 
variants (taxa) of rRNA assigned to the genus Syn-
echococcus, cell lysis was only detected in 9 relatively 
rare genotypes (Zhong et al. 2023). Given that lysis of 
a specific taxon is likely the result of infection by a 
single phage type genotype, this would explain the 
highly uneven rank-abundance curves. Moreover, 
the high Bray-Curtis dissimilarities among the 5 loca-
tions imply high local diversity, which is consistent 
with the ‘seed-bank’ model (Brum et al. 2015), as well 
as ‘kill the winner’ (Thingstad 2000) and taxon-spe-
cific cell lysis (Zhong et al. 2023). Furthermore, the 
’royal family’ framework proposed by Breitbart et al. 
(2018) characterizes a scenario where dominant bac-
terial and phage populations, termed the ’royal 
family’, persist over time, exhibiting ‘kill the winner’ 
dynamics among them. This framework sheds light 
on the long-term dominance observed in our study. 

Highly uneven rank-abundance curves are a fea-
ture of aquatic virus communities and the popula-
tions they infect (Pedrós-Alió 2006, Suttle 2007, Breit-
bart et al. 2018). Rare OTUs and the rank-distribution 
of taxa in viral communities can be driven by many 
factors including dispersal, host range, burst size, 
host distribution, and a range of other host, virus, and 
environmental factors (Chow & Suttle 2015). For 
example, cyanomyoviruses can have broad host 
ranges (Sullivan et al. 2008) and may respond rapidly 
to increases in population abundances of multiple 
host genotypes (Doron et al. 2016). Cyanomyoviruses 
that infect genetically diverse hosts are also expected 
to prevail when host abundances are low or variable 
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(Suttle 2007). Hence rare OTUs could reflect rare 
hosts, wide dispersal, or remnant viruses from pre-
vious infection events. 

The cyanomyovirus g20 isolate-containing phy-
logenetic Clusters I, II, and III have been frequently 
recovered from oceanic, freshwater, and coastal mar-
ine environments (Zhong et al. 2002, Marston & Sal-
lee 2003, Short & Suttle 2005, Wilhelm et al. 2006, Sul-
livan et al. 2008, Jameson et al. 2011, Marston et al. 
2013, Jing et al. 2014, Hanson et al. 2016). In this 
study, over half of the top 50 relatively most abundant 
OTUs grouped with the isolate-containing Cluster II 
(Zhong et al. 2002), while none grouped with culture-
containing Clusters I, III (Zhong et al. 2002), or IV 
(Sullivan et al. 2008), despite the cosmopolitan distri-
bution of members of these groups (Zhong et al. 2002, 
Short & Suttle 2005, Sullivan et al. 2008). Although 
a high diversity of g20 OTUs was recovered in our 
study, the rarefaction curves (Fig. S3) did not saturate 
for any of the samples, indicating that the full range of 
OTUs was not recovered. 

Phylogenetic analysis showed that 9 of the top 20 
OTUs, including those with high relative abundance 
(OTU-1 and OTU-3), grouped within environmental 
sequence clusters. Similarly, g20 diversity along an 
Atlantic Ocean transect and in alpine lakes revealed 
that many g20 sequences fell into clades with no 
 cultured representatives, which are often referred to 
as environmental sequence clusters (Jameson et al. 
2011, Zhong & Jacquet 2013). It should be noted 
that when using g20 as a proxy, Short & Suttle (2005) 
were able to amplify g20 sequences from depths of 
over 3000 m, where picocyanobacterial abundance 
was minimal. Thus, these environmental sequence 
clusters may contain myophages with diverse host 
ranges, including pelagiphages. Although, members 
of the genus Synechococcus dominate the picophyto-
plankton community in Kuwait waters (Al-Hasan et 
al. 2001, Ahmed et al. 2022, Ismail & Almutairi 2022), 
few strains have been isolated and identified (Al-
Hasan et al. 2001), and representative cyanomyovi-
rus isolates have yet to be described; hence, there 
is an opportunity and a need to explore the local pi -
cophytoplankton community and the viruses that 
infect them. 

5.  CONCLUSION 

This study examined the previously unexplored 
diversity of cyanomyoviruses in Kuwait’s coastal 
waters. Along a south–north gradient, our results 
revealed higher cyanomyovirus diversity in the 

southern Kuwait coastal waters. Cyanomyovirus 
community composition was variable among sites, 
with a high relative abundance of sequences in cya-
nomyovirus Marine Cluster II, as well as novel envi-
ronmental pelagimyophage-like sequences with no 
cultured representatives that may be endemic to 
these waters. Similar to other marine environments, a 
few diverse OTUs were dominant, consistent with 
the ‘seed-bank’, ‘kill the winner’, and ’royal family’ 
models. This investigation advances our understand-
ing of cyanomyovirus diversity, laying the ground-
work for future research into the intricate dynamics of 
these viruses in the northwestern Arabian Gulf. 
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