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ABSTRACT: When observed air temperatures are analyzed spatially, irregularly sampled data are usu- 
ally interpolated in some fashion. As a result, methods of spatial analysis clearly play a role in deter- 
mining the size and variability of estimated air temperature changes, both spatially and temporally. 
Through graphical and statistical analysis, 3 spherically based interpolation methods - inverse- 
distance weighting, triangulated surface patches, and thin-plate splines - are evaluated and com- 
pared using air temperature anomaly data. Analysis of errors resulting from spatial interpolation pro- 
vides information about the strengths and weaknesses of historical station networks. Analysis of 
differences between the 3 interpolation methods suggests that similar spatial patterns are produced, 
but with some regional disparities. Mean absolute differences between interpolation methods can be 
over 0.4 "C for some sparse statlon networks and as low as O.l°C for dense station networks. When aver- 
aged spatially, however, the differences tend to offset one another, producing time series of terrestrial 
average air temperature anomalies that are largely independent of spatial interpolation method. Using 
cross validation to analyze spatial interpolation errors suggests that sparse station networks can pro- 
duce nontrivial interpolation errors. Station networks from the late 1800s produce average interpola- 
tion errors of nearly 0.5"C, errors that are similar in magnitude to spatial standard deviations of air 
temperature anomalies. Denser station networks, typical of the 1950s and 1960s, produce average 
interpolation errors as low as 0.2OC. While these regional interpolation errors do not appear to influ- 
ence estimates of terrestrial average air temperature, they do raise additional concerns regarding our 
ability to detect small climatic signals at regional scales. 
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INTRODUCTION 

Changes in near-surface atmospheric temperatures 
are perhaps the most common and tangible indicator 
of climatic change. While there still is important scien- 
tific debate regarding the magnitude and extent of 
changes in air temperature anomalies over the last 
century (e.g. Lindzen 1990, Kellogg 1991), observed air 
temperature trends (Houghton et al. 1990) as well as 
scenarios from general circulation models (e.g. Man- 
abe & Wetherald 1986) suggest considerable potential 
for environmental and societal impacts at a variety of 
spatial scales. Clearly, it is useful to seek not only sub- 
stantial evidence of climatic change in the historical 
record of observed air temperatures, but also to convey 
our relative confidence in estimates of climatic change. 

Close scrutiny of data from historical air temperature 
records has revealed several substantial sources of 
error at observation station locations (e.g. Karl et al. 
1989). While much research has attempted to quantify 
observational errors in air temperatures over the past 
century, several problems remain unresolved. Histori- 
cal samples of climate, unfortunately, are not the result 
of an optimal design for the detection of climatic 
change. Instead, the available space-time sample of 
climate is a result of complex cultural and political 
processes that have shaped human society over the last 
few centuries. The result is a spatial sample that is 
biased towards industrialized countries and densely 
populated regions. Climatologists, therefore, often use 
a 'sample of convenience' (Freedman et al. 1978) when 
obtaining data. 
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While reliable thermometry was developed in the 
mid 18th century, spatial sampling largely was limited 
to Europe and North America until the mid to late 19th 
century. After the late 19th century, the limiting factors 
in obtaining reliable air temperature time series have 
been data quality and adequate spatial coverage. All 
studies of long-term air temperature change from the 
instrumental record are - and will continue to be - 
limited by these data inadequacies. Irregular and 
changing station networks have raised concerns that 
spatial sampling has biased estimates of air tempera- 
ture change (Jones et al. 1986a, Karl et al. 1989, 1994, 
Willmott et al. 1991, Robeson 1993). Precisely how spa- 
tial sampling problems have influenced estimates of 
air temperature change remains uncertain. 

To estimate spatial biases in time series of air tem- 
perature anomalies, methods for spatially analyzing 
irregularly sampled climate data are evaluated below. 
Spatial interpolation, in particular, is potentially very 
important, yet no objective comparisons have been 
performed in the context of large-scale air tempera- 
ture variability. The effects of sparse, uneven station 
networks and spatial interpolation, however, are in- 
terrelated and difficult to separate. To some extent, 
both have influenced the spatial variability of air tem- 
perature as well as estimates of air temperature 
change. 

AIR TEMPERATURE VARIABILITY 

Although air temperatures can vary over a wide vari- 
ety of spatial and temporal scales, spatial and temporal 
variability are reduced through temporal averaging. 
Most studies of long-term air temperature change have 
used monthly averages of daily air temperature data 
(e.g. Jones et al. 1986a, b, Hansen & Lebedeff 1987). 
Monthly mean air temperature data are the most read- 
ily available and are of appropriate timescale, since 
shorter period fluctuations usually are not directly rel- 
evant for climatic change research. When viewed as a 
filter, the monthly averaging procedure - a rectangu- 
lar filter applied to daily values - is not an optimal 
way to remove high-frequency information (Hamming 
1977). But, original data in the form of daily maxima 
and minima are not available for many stations (Karl et 
al. 1993). 

Spatial variability is more problematic since air tem- 
peratures are measured at sparse (i.e. sparse relative to 
the spatial variability of air temperature) and irregu- 
larly spaced points. Sparse and irregular air tempera- 
ture networks can produce samples with poor res- 
olution and, therefore, unrepresentative and aliased 
spatial patterns. Unlike regular sampling intervals, the 
min~mum resolvable scale is not we1.l defined for an 

irregularly spaced sample. Therefore, there is no 
straightforward choice for grid size. Many studies (e.g. 
Yamamoto & Hoshiai 1979, Jones et al. 1986a) have 
opted for coarse grids, presumably in an attempt to 
match data resolution. While spatial aliasing within the 
original air temperature network cannot be avoided, 
interpolating from a dense station network to a coarse 
grid can further alias air temperature signals, distort- 
ing space-time patterns (Daley 1991). Whether a 
coarse or fine grid is used, the original resolution of the 
data should be kept in mind when further analyses of 
the gridded fields are performed. 

Air temperature anomalies 

Latitudinal and topographic influences on air tem- 
perature are well understood and, in many ways, can 
be considered to be independent of recent climatic 
change. To reduce spatial variability associated with 
latitudinal and topographic effects, a station mean may 
be removed from air temperature time series (e.g. 
Jones et al. 1986a, Hansen & Lebedeff 1987), creating 
air temperature anomalies: 

where AT, is an air temperature anomaly at station j, T, 
might be a monthly or annual mean air temperature, 
and is a long-term average of temperature at the sta- 
tion. 

Overall, converting air temperatures to anomalies 
produces a smoother spatial field while maintaining 
the original temporal variability at each station. 
Nearby stations that are located at  different elevations, 
for instance, become more comparable (Fig. l ) ,  making 
spatial interpolation an easier task. While converting 
air temperatures to anomalies reduces the effects of 
latitude and elevation, information related to inter- 
station (i.e. spatial) variability of mean air temperature 
is removed with the long-term station mean. Actual air 
temperature space-time series are needed in their 
unmodified form for input to models and for venfica- 
tion of modeling studies. Methods for interpolating and 
spatially analyzing actual - as opposed to anomaly - 
climatic data will not be considered here; however, 
such methods provide an important alternative to 
anomaly-based analyses (e.g. Daly et al. 1994). 

Air temperature data 

There have been many studies of air temperature 
change from the instrumental record (Vinnikov et 
al. 1980, Jones et al. 1986a, b, Hansen & Lebedeff 
1987). By combining and augmenting several climatic 
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Fig. 1 .  Air temperature time series (in "C) at Matsumoto, Japan (elevation 611 m) and at Tokyo, Japan (elevation 5 m) for 
(a) actual air temperatures and (b) air temperature anomalies, illustrating the effects of removing station means. Matsumoto 

and Tokyo are approximately 150 km apart 

archives, Jones et al. (1986a, b), however, improved 
the spatial coverage of several individual archives, 
particularly in the early years of the record (i.e. before 
1920). Original data from Jones et al. (1986a, b) are 
available as both original station data and gridded 
anomaly fields (Jones et al. 1991). These well-docu- 
mented and frequently updated (e.g. Jones 1988) 
public domain data are used here to examine the ef- 
fects of uneven and changing spatial coverage. Grid- 
ded data are not of interest since only by analyzing 
the original spatial distribution of stations can the ef- 
fects of irregular and sparse sampling be detected. To 
generate air temperature anomalies at each station, 
the procedures of Jones et al. (1986a, b) were fol- 
lowed. Since the greatest number of stations were 
available over the 1951 to 1970 time period, anom- 
alies were created by removing the 1951 to 1970 
mean value at each station (as in Jones et al. 1986a, 
b).  To be included in the analysis, a station was re- 
quired to have 15 or more years of data in the 1951 to 
1970 period. Station data have been screened care- 
fully for many types of non-spatial biases and many 
have been removed (e.g. discontinuities due to 
changes in station elevation). Others, however, are 
more difficult to recognize (e.g. urbanization) and still 
may be pervasive. 

Many of the errors that affect air temperature data 
are well documented, some being highly systematic. 
Changes or discrepancies in (1) air temperature instru- 
mentation, (2) time of observation, (3) location of mea- 
surement stations, (4 )  methods for constructing time- 
averages and (5) the local environment can induce 
large biases (Mitchell 1953, Schaal & Dale 1977, Karl et 

al. 1986, Kukla et al. 1986, Edwards 1987, Karl & Jones 
1989). Although many errors have been identified at  
individual air temperature stations, a great deal of 
uncertainty remains concerning the effects of irregular 
station distributions and how these distributions have 
changed through time. Methods for evaluating the 
spatial representativeness and efficacy of global and 
regional climate networks, however, are not well 
developed. As a result, studies of global and regional 
changes in air temperature anomalies often have not 
explicitly addressed the problems of uneven spatial 
sampling. 

In their study of Northern Hemisphere air tempera- 
ture change, Jones et al. (1986a) indirectly evaluated 
the effects of incomplete spatial coverage by compar- 
ing integrated differences between a fixed grid and a 
time-variable grid. Relative to the low spatial variabil- 
ity of air temperature anomaly data, large differences 
(over 0.5"C) appear early in the record, suggesting 
that station distribution effects may be substantial. 
Using both land and ocean data, Karl et al. (1994) 
examined how sampling biases can affect air tempera- 
ture trends. Utilizing a variety of approaches, they 
found small errors associated with century-long tem- 
perature trends. Decadal trends, however, contained 
more substantial bias. In addition, the size of errors 
was found to be dependent on patterns of air tempera- 
ture (i.e. errors are proportional to spatial variability). 

While several analyses have suggested that some 
level of variability is induced by irregular station net- 
works, the effects of spatial interpolation - both the 
differences between methods and actual interpolation 
errors - have not been estimated. 



Clirn. Res. 4 :  119-126, 1994 

METHODS OF SPATIAL INTERPOLATION 

Before comparing several interpolants using air tem- 
perature anomaly data, a brief summary of spatial 
interpolation algorithms is presented. Several exten- 
sive reviews of spatial interpolation methods provide 
additional information (Shumaker 1976, Gustavs- 
son 1981, Franke 1982, Lam 1983, Burrough 1986, 
Thiebaux & Pedder 1987). 

Spatial interpolation is a classical estimation prob- 
lem that usually employs linear combinations of 
observed values to determine values at unsampled 
locations (e.g. at the nodes of a regular grid). Most 
interpolation procedures, however, treat the spatial 
dimension as planar. A more geometrically consistent 
approach is to interpolate on the surface of a sphere. 
When interpolating over large areas of a planet's sur- 
face, planar interpolation methods (i.e. interpolation 
within a cartographic projection) can produce large 
errors (Willmott et al. 1985). Not only will planar inter- 
polation necessarily result in interpolation errors, but 
each cartographic projection produces a different error 
field from the same data. 

Most interpolation methods (spherical or planar) may 
be classified into 1 of 3 somewhat distinct categories: 
(1) distance-weighting, (2) tessellation, and (3) func- 
tional minimization. Distance-weighting involves ap- 
plying a weight to each observation in inverse propor- 
tion to its distance from a point where an estimate 
is desired. The distance-weighting function may be 
derived from spatial correlation patterns (as in kriging 
and optimal statistical objective analysis) or may be a 
specified inverse function of distance. Using spatial 
correlation patterns does make intuitive sense; how- 
ever, there is evidence that simpler methods perform 
just as well (Bussieres & Hogg 1989, Weber & Englund 
1992). 

A commonly used spatial analysis tool, tessellations 
have wide applicability beyond interpolation (Okabe 
et al. 1992). After performing a spatial decomposition 
(often a triangulation), a surface is fit over each patch 
within the decomposition. Tessellation methods have 
long been used in climatology (e.g. Thiessen 191 1). 
Functional minimization (e.g. least squares) estab- 
lishes an objective function that requires some degree 
of fidelity between the observations and a weighted 
combination of basis functions (e.g. a truncated Founer 
series). 

While numerous methods of spatial interpolation are 
available, few spherical interpolants have been devel- 
oped. A spherical interpolant from each of the above 
categories, however, is available. Shepard's (1968) 
inverse distance weighting algorithm was adapted 
to the sphere by Willmott et al. (1985). Renka (1984) 
developed a spherical triangulation routine that 

applies either a CO (continuous and zero times differ- 
entiable, or linear) or C' (cubic with constraints) sur- 
face to each spherical triangle. Wahba (1981) adapted 
2-dimensional thin-plate splines to the sphere. 

COMPARISON OF AIR TEMPERATURE ANOMALY 
INTERPOLATIONS 

The spherical algorithms mentioned above are com- 
pared and evaluated using air temperature anomaly 
data from Jones et al. (1991). As these 3 methods rep- 
resent somewhat distinct approaches to spatial inter- 
polation, comparing and contrasting the estimated 
temperature fields allows some generalizations to be 
made. 

Grid point differences 

The spherical spatial interpolation approaches - 
Renka's (1984) CO (hereafter referred to as RC0) and 
C' (RC') methods, Willmott et al.'s (1985) distance- 
weighting approach (WRP), and Wahba's (1981) thin- 
plate splines (TPS) - are used to interpolate the air 
temperature anomalies to a terrestrial grid. As imple- 
mented here, the thin-plate spline interpolations pro- 
vide an exact fit through the data. Thin-plate splines 
often are used to smooth spatial data (Wahba 1981); 
however, to provide a consistent comparison between 
the 3 methods, true interpolation (rather than approxi- 
mation) will be used. 

Time series of statistical differences between the 
interpolation methods provide a relative indication of 
how the interpolation procedures perform for each 
year. Perhaps the most useful measure of overall dif- 
ference between methods is the (weighted) mean 
absolute difference (MAD): 

where W - cos $I, (where 4, is the latitude of grid-point : - 
i )  and AT,,, and A&,, are estimates of air temperature 
anomalies using 2 different spatial interpolation meth- 
ods. Weights are used to account for differential areas 
associated with the spherical lattice of n grid points. 

Integrated MADs between WRP and RC0 over the 
period 1881. to 1988 range from less than 0.1 "C for 
dense networks to nearly 0.3"C for sparse networks 
(Fig. 2) with a strong inverse relationship between 
MAD and number of stations (see Fig. 3 for a time 
series of number of stations). Time series of MADs for 
WRP-TPS and RC0-TPS have somewhat higher values 
than those between WRP and RC0 Areally weighted 
MAD for WRP-TPS varies between 0.2 and 0.4 "C until 
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Fig. 2. Time series of weighted mean absolute difference (in 
"C) between terrestrial air temperature anomalies interpo- 
lated by the WRP and TPS, RC0 and TPS, and WRP and RCo 

methods 

the large increase of stations in the 1951 to 1970 period 
reduces MAD to nearly 0.1 "C. The RC0-TPS time 
series are similar in pattern, but slightly smaller than 
the WRP-TPS values. 

Much of the differences in the WRP-TPS and 
RC0-TPS time series can be attributed to WRP and RC0 
being local interpolants (i.e. they use a subset of the 
data to interpolate to a given location) while TPS is a 
global method (i.e. TPS uses all of the data to fit an 
interpolating surface). Since TPS minimizes the 'bend- 
ing energy' of an infinitely thin plate that extends over 
the entire planet, areas with large spatial gradients can 
cause undulations in the interpolated surface. The 
undulations do not appear when TPS smooths the data 
by acting as a low-pass filter (e.g. Wahba 1981). When 
TPS is used as a smoothing procedure, values of MAD 
(differenced from both WRP and RC0) are reduced to 
less than 0.2"C for all years. In general, then, it appears 
that TPS should be used in a smoothing mode for data 
that contain large spatial gradients. 

Clearly, choice of spatial interpolation method is less 
important for denser station networks. Without esti- 
mating differences or interpolation errors, however, it 
is difficult to determine what constitutes a 'dense' sta- 
tion network since a dense network for one variable 
will not necessarily be sufficient for other variables. A 
spatially smooth variable such as 500 mb geopotential 
height, for instance, would not require the sampling 
density needed to resolve air temperature variability. 
Precipitation, on the other hand, is more spatially vari- 
able than either pressure or air temperature and would 
likely be underrepresented by even the densest air 
temperature network (e.g. Willmott et al. 1991, 1994). 

Air temperature anomaly time series 

Perhaps the most common and tangible indicators of 
air temperature change are time series of global or ter- 
restrial average air temperature anomalies (AT). TO 

develop an estimate of TT, gridded (interpolated) air 
temperature anomalies are integrated numerically. 
Although some regional discrepancies between inter- 
polation procedures were shown above, integrated 
time series of ~ T g e n e r a t e d  by each of the interpolation 
methods are virtually identical (and therefore are not 
shown). Mean absolute differences between the ter- 
restrially averaged time series generated by WRP, RC0, 
and TPS are less than 0.03"C. Regional differences 
between the interpolation methods appear to cancel 
one another when gridded values are averaged. With 
respect to the method of spatial interpolation, then, 
time series of terrestrial average air temperature 
appear to be very robust. 

Spatial interpolation errors 

Differences between interpolation methods have 
been presented; however, differences do not assess the 
relative accuracy of the interpolation methods for air 
temperature anomalies. One useful tool to evaluate 
any type of estimator is cross validation (Efron & Gong 
1983). Cross validation, as implemented here, simply 
entails (1) removing 1 observation from the analysis, 
(2) attempting to estimate the removed value, and 
(3) repeating steps (1) and (2)  for every observation. In 
the context of spatially interpolating air temperature 
anomalies, the process involves removing one station's 
anomaly AT/ from the analysis and using anomalies 
from surrounding stations to interpolate to the 
removed location: 

A = f (AT, AT,  , A ,  , AT)  j t k (3) 

where f represents a particular spatial interpolation 
method. By comparing observed and interpolated val- 
ues at  each station, a direct measure of interpolation 
error is obtained, allowing the relative merits of each 
procedure to be assessed. 

Integrated errors 

Cross validation error estimates at  station locations 
were averaged to produce time series of mean absolute 
error (MAE) from 1881 to 1988 for both WRP and RC0 
(Fig. 3). Cross validation errors for TPS are available 
only for several sparse networks due to computational 
demands. RC0 and TPS appear to have a consistently 
higher MAE than WRP. When 95% bootstrapped confi- 
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variability, therefore, spatial interpolation 
of air temperature anomalies can produce 
large errors. Large relative errors also are 
evident in scatterplots of observed and 
cross validation-predicted air temperature 
anomalies for both sparse and dense net- 
works (Flg. 4). 

I t  should be noted that the MAEs dis- 
cussed above are indicative of the absolute 
magnitude of regional interpolation errors. 
To examine how these regional biases 
affect the overall terrestrial mean, a stat- 
istic such as mean bias error (MBE = 

A [AT, - ~ f , ]  , or simply the difference 
d . 

0.15 ' 200 between the mean of the observed anom- 
1880 1900 1920 1940 1960 1980 alies minus the mean of the cross-valida- 

Year tion-predicted anomalies) is useful. MBE 
for both WRP and RC0 was less than 0.05 "C 

Fig. 3.  Time series of terrestrial mean absolute error (in "C) from cross val- for all years, These small MBEs corroborate 
idation analysis using the WRP, RC', and TPS methods with air tempera- the small integrated differences between 
ture anomaly data. Dashed line shows the number of stations for each year 

(right axis) interpolation methods discussed above. 
Time series of terrestrial average air tem- 
perature anomalies, therefore, appear to be 

dence intervals are calculated, however, there often is unbiased with respect to spatial interpolation, despite 
no statistically significant difference between the cross large regional errors. 
validation errors of WRP and RC0. 

The C' method of Renka (1984) produced much 
larger cross validation errors (> 1 "C for all networks) Limitations of cross validation 
than any other method. A modification to the C' 
method that applies an arbitrary amount of tension to Cross validation has been used to compare several 
each triangular surface (Renka pers. comm.) also was different interpolation methods and to evaluate net- 
evaluated. While variable tension did improve the C' work bias. Cross validation, however, is not without 
results, interpolation errors were still much larger problems and care must be taken when interpreting 
than those of the CO method. The highly irregular sta- results. In particular, whenever irregularly spaced data 
tion distributions appear to cause problems with the are being used, uneven spatial weighting can occur. 
gradient estimation algorithms used within the C' Statistical error measures derived from cross validation 
method. (e.g. MAE) are biased towards areas that contain data. 

Both the magnitude of the errors and the nearly per- That is, error estimates are available only at each sta- 
fect inverse relationship between MAE and number of tion. Gridding cross validation errors might reduce 
stations (correlation coefficient of 0.94) are particularly spatial bias, but an additional interpolation with its 
striking in the cross validation time series (Fig. 3) .  associated errors would be required. Also, interpreta- 
These 2 related features have important implications tion of error 'fields' may not be straightforward since 
for the sparse networks of 1881 to 1950 as well as the error is not necessarily a continuous variable. It also is 
1980s and beyond. Only during the 1951 to 1970 period not clear to what extent errors in the observed data 
is the station network sufficiently dense to reduce have affected estimates of interpolation error (Burt 
interpolation error to a moderately low level (0.2"C). 1985, Moore & Rowland 1990). 
Prior to 1940, average interpolation errors are above Interpolation errors from cross validation, nonethe- 
0.4 "C and often are closer to 0.5 'C. less, do provide a useful measure of overall network 

While errors of 0.4 to 0.5 "C are small in an absolute efficacy. Conclusions regarding the 'best' interpolation 
sense, anomaly air temperature data exhibit low spa- procedure, however, should be limited to the particular 
tial variability, particularly when compared to actual data and domain being considered. For this reason, 
air temperature data. Spatial standard deviations for cross validation often is viewed as more of an explor- 
anomaly data (calculated over the entire terrestrial atory tool rather than a confirmatory method (Davis 
surface) are on the order of 0.6"C. Relative to data 1987). 
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SUMMARY AND CONCLUSIONS 

Since most climatic data are irregularly sampled, ob- 
servations are interpolated to a spherical grid for visual- 
ization and averaging. Spatial interpolation, therefore, is 
a potential source of error in the analysis of air tempera- 
ture data. Three spherical methods - triangulated sur- 
face patches (Renka 1984, Comethod), inverse distance- 
weighting (Willmott et al. 1985), and thin-plate splines 
(Wahba 1981) -were used to interpolate air tempera- 
ture anomalies. For sparse station networks, regional 
differences between interpolation methods were 
sometimes large (> 0.5 "C). When integrated, however, 
the methods usually behaved in a similar fashion, par- 
ticularly for denser station networks. 

To examine interpolation errors, cross validation - 
? removing one point at  a time and estimating the 

removed value from surrounding values - was used. 
Cross validation errors for air temperature anomalies 
were similar for the 3 interpolation methods. The mag- 
n i t u d e ~  of the errors, however, were large relative to 
air temperature anomaly variability: average errors for 
sparse networks were nearly 0.5 "C while denser net- 
works produced average errors just over 0.2 "C. Since 
spatial standard deviations for air temperature anom- 
alies are approximately 0.6'C, these errors are consid- 
ered large in a relative sense. 

Spatially integrated time series of air temperature 
anomalies appear to be very robust with respect to 
differences between spatial interpolation methods. 
However, when examined at regional scales, variabil- 
ity induced by interpolation error and sparse station 
networks can, in some cases, be relatively large. Com- 
pounded with other problems (e.g.  urban warming) 
that inject uncertainty into the historical climatic 
record, errors associated with spatial interpolation and 
inadequate spatial sampling raise additional concerns 
regarding our ability to detect regional climatic signals 
from the instrumental air temperature record. 
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