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ABSTRACT: This study analyzes 2 yr of surface climatological measurements at 6 sites forming a wind-
ward/leeward mountain cross-section on Hawai'i [sland. Sites range in elevation from sea level to
2600 m and include wet, windward and dry, leeward slopes below the trade wind temperature inver-
sion and a high elevation site located in the cool, dry air above the inversion. Climate contrasts between
sites are emphasized using monthly average values. Data for the 670 m elevation leeward site repre-
sent some of the first climatological measurements of a unique leeward transition zone between areas

of summer and winter rainfall maxima.
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INTRODUCTION

Only recently have climatologists begun detailed
climate studies of Hawailan mountaing While the
general circulation and rainfall patterns have long
been known, few meteorological stations had been
emplaced and maintained in mountainous areas for
any length of time, with the exception of Mauna Loa
Observatory (MLOJ) at 3400 m on Hawai'i Island. Since
1980, however, the results of a number of climatologi-
cal networks have been reported covering a wide vari-
ety of sensors. Ekern (1983) reported several years of
data, including evaporation and solar radiation, for
transects into the Ko'olau mountains on ‘Oahu.
Giambelluca & Nullet (1991) maintained a transect
between 950 and 3000 m on leeward Haleakala, Maui,
for several years, primarily to study the climate
through the trade wind inversion. Nullet (1989) sum-
marized several years of measurements between sea
level and 1650 m that had been gathered for agricul-
tural research on the northwest flank of Haleakala.
Chen & Nash (1994) and Chen & Wang (1994) ana-
lyzed 40 d of measurements at 50 sites on the island of
Hawai'i giving a comprehensive picture of the island’s
surface airflow, rainfall, temperature, and humidity
patterns under summer trade wind conditions. Juvik et
al. (1993) and Juvik & Nullet (1994) reported the
results of a climate transect through the wet windward
rainforest and the climate of a high elevation dry forest
on the island of Hawai'l. The current study expands the
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data presented in the latter 2 articles and includes a
new site at 670 m on leeward Hawal'l, a site represent-
ing ‘the area between Mauna Loa and Hualalai
(which) has little wecather information (Schroeder
1993)", lying in a unique transition zone between areas
of summer and winter rainfall maxima.

While the data presented here characterize the cli-
mate of mountains in Hawai'i, the results should have
direct analogies on other high volcanic islands in the
trade wind belts with little measured data, such as
Tenerife (3718 m) in the Canary Islands, Fogo (2829 m)
in the Cape Verde Islands, and La Reunion (3069 m) in
the Mascarene Islands.

STUDY SITE AND MEASUREMENTS

The 6 meteorological stations are located between
sea level and 2600 m on the island of Hawai'i (Fig. 1),
which lies at the southeast end of the Hawaiian Island
chain at approximately 19° to 20° N, 155° to 156° W.
Over the open ocean, northeast trade winds prevail 80
to 95% of the time in summer (May through Septem-
ber) but diminish in frequency during winter to as little
as 50% in January {Blumenstock & Price 1967). The
trade wind inversion (a subsidence temperature inver-
sion in the descending limb of the Hadley cell circula-
tion present 70% of the time at 1800 to 2400 m) sup-
presses cloud development and limits average annual
open ocean rainfall to 500-600 mm. Three large shield
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uanahulu and University of Hawai'i at Hilo (UH-
Hilo) sites and continuity to previously reported
data for the other stations. In this study, we ana-
lyze monthly total and average values summa-
rized from the hourly measurements,

N RESULTS

Climatological measurements during the 2 yr
study are summarized in Table 1. Missing peri-
ods of record for individual instruments (due to
site vandalism or faulty sensors) are also given
in Table 1. Evaporation was estimated using
the Penman-Monteith method (Monteith 1965).
While the data are in general agreement with
previously published results, there are several
noteworthy features of the climate cross-section.
These are discussed below.

Wind

Fig. 1. Station locations, Hawai'i. Rainfall (mm; thick contour lines)
from Giambelluca et al. (1986) and Armstrong (1983). 1: UH-Hilo
(55 m); 2: Lower Saddle (710 m); 3: Middle Saddle (1130 m); 4: Upper
Saddle (1650 m); 5: Pu'u La'u (2600 m); 6: Pu'uanahulu (670 m).
MLO: Mauna Loa Observatory (3400 m). Elevations in m (thin con-

tour lines)

volcanoes on Hawai'i rise well above the usual
level of the inversion and thus host distinctly
separate climates above (cool and dry) and
below (warm and humid} that layer. In addition,
the interaction of the mountains and prevailing
trade wind flow generates wet windward slopes
and a dry leeward rainshadow. The cross-section
of stations included in this report includes
measurements in the major climate zones: a wet,
windward transect from sea level to the inver-
sion level and dry, leeward sites above and
below the inversion (see Fig. 1).

Each automated meteorological station (Camp-
bell Scientific, Logan, UT, USA) recorded global
solar radiation, photosynthetically active radia-
tion, air temperature and relative humidity at
2 m, wind speed and direction at 3 m, soil tem-
perature at 1 cm, leaf wetness, and rainfall. Net
radiation was recorded at all but the Upper and
Middle Saddle sites. Hourly maxima and minima
were recorded as well as hourly totals for rainfall
and hourly averages for all other variables. This
report contains all data collected from 1 Novem-
ber 1992 through 31 October 1994. This provides
the complete data record to date for the Pu'-

Seemingly indifferent to the synoptic trade
wind field, surface flow fluctuates in a diurnal
rhythm as the mountain ‘breathes’ each day.
Both land-sea and land-free atmosphere temper-
ature differences drive the daily thermal circula-
tion that controls surface winds. Under light syn-
optic wind conditions, this daytime convergence
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Fig. 2. Monthly average wind direction for the hours ending at 02:00

and 14:00 h HST (Hawaiian Standard Time) showing the consistency

of the diurnal wind reversal at all locations. Mirror image wind direc-

tion patterns occur of opposing windward (Lower Saddle) and lee-
ward (Pu'uanahulu and Pu'u La'au) slopes
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of the winds toward the mountain summits can bring a
torus of clouds and rain to the upper slopes. Fig. 2
shows the average wind direction for 02:00 and 14:00 h
HST (Hawaiian Standard Time) for leeward and wind-
ward sites below the inversion and the leeward high
elevation site. Daytime winds over our windward sta-
tions were almost due easterly, corresponding closely
with results given by Chen & Nash (1994) based on 40
d of measurements between 11 July and 24 August
1990. The correspondence is good for the nighttime
winds at leeward sites as well, with winds directly
downslope as would be expected under gravity
drainage of cool air.

Our measurements differ, however, for the daytime
winds at the leeward sites. As shown in Fig. 2, the day-
time surface wind azimuth converges for the 2 leeward
sites to approximately 220 to 230°. This trajectory is
consistent with the heavy, upslope fog that predomi-
nates between the 2 locations on the leeward slopes of
Mauna Kea. During Chen & Nash'’s (1994) study, day-
time winds near the Pu'uanahulu site averaged north-
westerly (14:00 h HST), an upslope trajectory, rather
than southwesterly, a parallel slope trajectory, as pre-
vailed for all months except one during our study
period.

Wind speed averaged less than 2 m s for all sites
except Pu'uanahulu (Table 1). At the leeward sites,
maximum wind speeds at Pu'uanahulu (typically
observed in earlv afternoon) nearly douhle those
observed above the inversion at Pu'u La'au, despite
virtually identical net radiation values (and by implica-
tion, identical surface air heating). This is presumably
a consequence of a greater upslope area of heating for
the lower site. The diurnal wind speed pattern is simi-
lar for all sites with daytime upslope wind speeds
exceeding the nighttime drainage wind speed. As has
been documented on Haleakala, Maui (Giambelluca &
Nullet 1991), a dip in wind speed accompanies the
diurnal wind direction reversals in early morning and
late afternoon.

Moisture

Diurnal wind patterns and the free atmosphere tem-
perature and humidity profiles play major roles in the
availability of water on the mountain slopes. The diur-
nal movement of air up and down slope carries with it
a thin skin of source air. The cool, dry nighttime
drainage winds [measured at 55 m depth by Mendonca
(1969)] originate above the inversion while the day-
time upslope winds bring a layer of moist, marine sur-
face air (600 m depth; Mendonca 1969) through the
inversion layer. This has the effect of creating oppos-
ing diurnal relative humidity patterns above and

10— -

) i S Lower Saddie
\\\Ki710nn !

; U
z \\
2 \ Pu'uanahulu
@ > (670 m)
> |
E 50 r
o
o
40+
1
Pu'u La'au
30 (2600 mj)
-
e < - T~ ":J
I i o=, L e TR — . 2t
1 23 4586 78 91001 1’1%1«1516I7181921‘ )12')2324

hour

Fig. 3. Comparative diurnal relative humidity curves for Feb-

ruary 1993. The humidity is lower on leeward slopes (Pu’'-

uanahulu) than windward slopes (Lower Saddle) at similar

elevations. Above the inversion (Pu‘u La’au), the diurnal pat-

tern reverses, with higher relative humidity values during

daylight hours as moist air penetrates the inversion layer and
increases the vapor pressure at the site

below the inversion as shown in Fig. 3 for February
1993.
The diurnal thermal circulations account for most of

the variance (RA to 00 0/ﬂ\ in rainfall f;-\,\iUCHCY over the

island (Schroeder et al. 1977), producing afternoon
maxima at most locations (associated with upslope
winds and attendant cloud formation) and nocturnal
maxima along windward coastlines as nighttime
drainage winds converge with onshore trade wind
flow. This pattern is interrupted during non-trade wind
conditions and during periods when winter synoptic
events, such as frontal passages and disturbances asso-
ciated with upper-level troughs. In a comparison of
rainfall totals at Pu'u La’au and Pu'uanahulu to test the
association of rainfall-producing mechanisms above
and below the inversion, winter rainfall (October
through March, largely a consequence of synoptic
events) was highly correlated (r = 0.80}, while summer
rainfall (April through September, a consequence of
local circulations under strong trade wind inversion
conditions) showed virtually no correlation at all, i.e.
rainfall occurred on different days with no significant
correlation in amount.

Other sources of moisture to the surface include
cloud water and dew. Direct interception of cloud
droplets can provide a significant source of moisture
above the cloud base at 600 to 800 m. The ecological
importance of cloud water interception increases as
average rainfall decreases. At the Pu'u La'au site, for
example, cloud water collection from a louvered fog
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Fig. 4. Climate diagrams for

the mountain cross-section.

On average, rainfall greatly

exceeds evaporation on

windward slopes, while the

reverse is true of leeward
areas

gauge (25.8 mm) exceeded rainfall (17.5 mm} during
an exceptionally dry 5 mo period, February through
June 1992 (Juvik & Nullet 1995). Dew does not appear
to be an ecologically significant source of moisture at
the dry leeward sites in this study, as suggested by
negligible nighttime leaf wetness frequencies. High
nighttime relative humidity values suggest dew forma-
tion at the wet windward sites, although at these high
rainfall locations, vegetation seldom experiences mois-
ture deficits and thus would not necessarily benefit by
added moisture from dew and cloud water.

The atmospheric evaporative demand determines,
in part, moisture availability and stress on vegetation.
On windward slopes, rainfall exceeded estimated
evaporative demand for all months except January
and February 1993, and March 1993 at 1650 m. For
leeward locations, estimated evaporative demand
exceeded rainfall during 21 of the 24 months at the
2600 m elevation site, and 22 of 24 months at the
670 m elevation site. Consistent with implied high
moisture stress, both areas support dryland vegeta-
tion: open forest with bunch grass ground cover. The
relationship between rainfall and estimated evapora-
tion under normal climatic conditions is illustrated in
Fig. 4. This figure compares only the magnitudes of
rainfall and evaporation and generally sets an upper
limit on the average moisture availability to plants as
a complete water balance would show that much of
the rainfall input quickly infiltrates into the porous
substrate and is not available to meet the evaporative
demand.

Radiation

Fig. 5 shows elevation profiles of measured solar
radiation as a percentage of modeled clear day values

(Bird & Riordan 1986). On windward slopes, maximum
attenuation of solar radiation occurs at 700 m, near the
rainfall maximum (and, by inference, the cloud cover
maximum). Results correspond well with similar mea-
surements reported for Maui, although attenuation at
2600 m exceeds that for a comparable exposure and
elevation on Haleakala (Giambelluca & Nullet 1991),
suggesting greater cloudiness on the larger mountain.
The contrast between the attenuation of solar radiation
on upper and lower mountain slopes is much greater
on windward than leeward exposures.

At Pu'uanahulu, net radiation exceeded the average
value at Pu'u La'au despite receiving about 11% less

July
N
January
g
=
0
8
g
x windward
leeward
| [ — A I o |
3 ‘ 0% i 07 08 s 1
global clear day radiation

Fig. 5. Measured solar radiation as a percentage of clear-day

radiation for January and July showing the reduction by

cloud cover. Data for 3400 m are long-term averages for

Mauna Loa Observatory (see Fig. 1) for comparison. Annu-

ally, clear skies occur more frequently during the cooler win-

ter months, while in summer convective heating and stronger
trade winds lead to increased cloud cover
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solar radiation, a consequence of generally clearer skies
and less far infrared absorption in the dry air above the
inversion. For example, nighttime longwave radiation
loss at Pu'u La'au averaged about 20 W m~2 higher than
at Pu'uanahulu. At comparable elevations, net radiation
averaged a higher fraction of solar radiation at the wind-
ward Lower Saddle site than at the leeward Pu'uanahulu
site. The photosynthetically active component generally
decreased as a percentage of solar radiation with eleva-
tion within the range of 35to 45%.

Temperature

The annual range in average monthly air tempera-
ture was similar (less than 6°C) at all sites, although the
soll temperature range stratifies by elevation and
exposure. At the wet windward sites, average air and
soil temperatures are nearly equal, indicating that the
air layer near the ground is in thermal equilibrium with
the surface. On leeward slopes, however, soil tempera-
ture greatly exceeds air temperature as a consequence
of lower soil moisture and less canopy shading of the
surface. For the 2 leeward sites, despite receiving
lower net radiation and higher rainfall during the study
period, the soil-air temperature difference was greater
at the Pu'u La’au (2600 m) than at Pu'uanahulu
(670 m). Presumably, the flow of cool, free atmosphere
air greatly retards air temperatures near the surface at
Pu'u La’au.

CONCLUSION

This study has presented the results of 2 yr of sur-
face meteorological observations transecting Hawai'i
Island including stations on wet windward slopes,
and dry, leeward sites above and below the trade
wind inversion. The data illustrate the striking cli-
mate gradients found in Hawailan mountains. The
data has expanded on previously reported results for
the wet windward sites and the high elevation Pu'u
La'au site. These are the first complete climatic aver-
age data reported for the dry leeward slopes of
Mauna Loa.
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