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ABSTRACT: Three multidecadal daily time series of mid-latitude near-surface air temperature are
analysed. Long-range dependence can be detected in all 3 time series with 95 % statistical signifi-
cance. It is shown that fractionally integrated time-series models can accurately and parsimoniously
reproduce the autocovariance structure of the observed data. The concept of weather derivatives is
introduced and problems surrounding their pricing are discussed. It is shown that the fractionally
integrated time-series models provide much more accurate pricing as compared with traditional
autoregressive models employing a similar number of parameters. Finally, it is suggested that a sim-
ple explanation for the presence of long memory in the time series may be given in terms of aggre-

gation of several short-memory processes.
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1. INTRODUCTION

The daily-mean near-surface air temperature (SAT)
measured at a given point fluctuates randomly from
day to day. In the mid-latitudes, this is largely due to
the ceaseless passage of high- and low-pressure sys-
tems, whose associated horizontal and vertical winds
bring and remove heat, moisture and clouds to and
from the measurement point. These traveling pertur-
bations generally exhibit a characteristic life cycle fea-
turing rapid initial growth fueled by baroclinic energy
conversion followed by slower barotropic decay (Sim-
mons & Hoskins 1978). On this basis, one might heuris-
tically model SAT as a simple Ornstein-Uhlenbeck
process:

aX(f) = yx(t) + on(t) (D
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where x is the SAT anomaly, n is Gaussian white noise
with unit variance and y and o are constants. The
white-noise term would represent the rapid excitation
of the perturbations, while the first term on the right-
hand side assumes that the perturbations are linearly
damped with a time constant, y~!. A reasonable value
for this time scale may be obtained by noting that the
average eddy kinetic energy of the atmosphere is
around 106 J m~2, while the mean potential-to-kinetic
energy conversion rate, which must match the dissipa-
tion rate, is about 2 W m2 (Peixoto & Ort 1992); thus
y!=5x10°s = 6 d. For processes in discrete time,
Eq. (1) may be discretised to give a first-order auto-
regressive or AR(1) process:

X; = 0Xjq + & (2)

with a = 1 - yAt, where At is the discretisation interval
and ¢;is a Gaussian-white-noise process with variance
oAt

The power spectral density (S) of the process de-
scribed by Eq. (1) takes the form:
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where w is the angular frequency. We thus expect the
SAT spectrum to be almost white (constant) at low fre-

quencies and red (negatively sloping) with slope -2 on
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Fig. 1. Power spectral density estimates for SAT measured in
(a) Central England, (b) Chicago and (c) Los Angeles. The
spectra are smoothed using a Tukey window giving 19
degrees of freedom in all cases. At frequencies above 107" rad
d!, the spectra are further smoothed by averaging within 20
logarithmically equispaced bins. The data were detrended
and deseasonalised in the mean before computing the spec-
tral estimator. The straight lines at low frequencies show a
least-squares fit (with the slope indicated on each panel) and
an approximate 95% confidence envelope. The line at high
frequencies, with slope -2, is shown for comparison

a log-log plot at high frequencies. The crossover
between these 2 regimes should be at w =y, that is,
around ® = % rad d-!. How successful is this predic-
tion?

A glance at some observed spectra (Fig. 1; see Sec-
tion 2 for a description of the data) shows partial suc-
cess. At high frequencies, the spectra are indeed well
approximated by a straight line of slope —2. Further, all
spectra show a shoulder or crossover region centered
around 6 d. However, the low-frequency region is not
white, as expected, but weakly red. There are no sta-
tistically significant peaks, and at frequencies below
107! rad d™! the spectra are well fitted by a straight line
with a negative slope.

Processes showing the kind of power law low-fre-
quency behaviour suggested in Fig. 1 are collectively
referred to as having ‘long memory'. More precisely, a
stationary stochastic process is said to exhibit long
memory or long-range dependence if there exists a
real number, d O (0, %), known as the ‘intensity’ of the
long memory, such that:

Sw=w? as w>0 (4)

(Beran 1994). If Eq. (4) holds, then the autocorrelation
function p(1) will behave as:

pm)y =121 as 1. o

where T is the lag; that is, it will decay as a power law,
meaning that highly persistent serial correlations will
be present in the data (hence the term ‘long memory’).
By contrast, when d = 0 the autocorrelation decays
exponentially and the process is said to have short
memory; this is the case for the Ornstein-Uhlenbeck
process above. Long memory was first empirically
detected by Hurst (1951), who studied Nile river-level
data. Since then it has been detected in a host of envi-
ronmental data series, with examples from geophysics
(Mandelbrot & Wallace 1969), hydrology (Montanari et
al. 1996), surface winds (Haslett & Raftery 1989), SAT
(Bloomfield 1992, Koscielny-Bunde et al. 1996, Pel-
letier 1997, Syroka & Toumi 2001), mid-tropospheric
geopotential heights (Tsonis et al. 1999) and the North
Atlantic Oscillation (Stephenson et al. 2000).

A characteristic trait of long-memory processes is
that the variance of an N-member sample mean
decreases more slowly than N~! (Beran 1989). This can
have important consequences for applications. For
instance, incorrectly assuming short memory can lead
to exaggeratedly narrow confidence intervals for the
mean. That was the problem tackled by Haslett &
Raftery (1989) in their study of the mean power obtain-
able from a wind turbine.

In the present paper, we address a similar problem
but in the context of a different application, namely
weather derivatives. These, as discussed in greater
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detail in Section 5, are essentially a form of insurance
against fluctuations in weather, of interest to compa-
nies whose business is affected by such fluctuations.?
In order to set the insurance premium (i.e. to value the
weather derivative), it is necessary to know the prob-
ability distribution of a weather index, typically a sea-
sonal-mean temperature measured at a specified sta-
tion. One can of course simply look at historical data
and obtain suitable estimates. For a number of rea-
sons, however, it is desirable to have a stochastic
time-series model which permits the use of Monte
Carlo methods.

The classical approach to time-series modeling
involves fitting a model of the Box-Jenkins type (see
Section 4) using as few parameters as possible. It is
well known, however, that these models are subject to
the ‘overdispersion’' problem, i.e. will underestimate
the variance of seasonal means (Shea & Madden 1990,
Katz & Parlange 1998). Here, we show that the prob-
lem may be overcome (at least for our particular appli-
cation) by employing a generalisation of Box-Jenkins
models, known as fractional ARIMA or ARFIMA
(Granger & Joyeux 1980, Hosking 1981), which incor-
porate long memory in a natural way, using the single
parameter d. These models offer particular flexibility
in that they can capture both high-frequency short-
memory behaviour and the long-memory tail using a
minimum of parameters.

Our aims in the present study are 3-fold. Firstly, we
wish to show that long memory can indeed be
detected in SAT time series. We have already pre-
sented some evidence for this in Fig. 1, and more is
given in Section 3. Secondly, we show that ARFIMA
models can accurately and parsimoniously capture the
autocorrelation structure of observed SAT time series;
this is done in Section 4. Our third aim is to present an
example of the application of time-series modeling to
weather derivative pricing and compare the perfor-
mance of ARMA and ARFIMA models having the
same number of parameters (Section 5). We comment
also on the fact that the autocorrelation structure con-
tains seasonal dependency and outline its effects on
the performance of the time-series models. In Section
6, we offer some suggestions as to the possible physi-
cal origin of long memory. A summary and conclu-
sions are given in Section 7.

!The term 'derivative’ is used in finance to indicate a security
whose value is based on that of another security, called the
‘underlying’: an example of a derivative is an ‘option’, whose
value is based on an underlying stock price. An introduction
to financial derivatives may be found in Hull (1998). In the
case of weather derivatives, the underlying is a temperature
or other weather index (see Section 5)

2. DATA AND PREPROCESSING

This study is based on 2 data sets. The first is the
daily Central England temperature time series (Parker
et al. 1992). It is representative of a roughly triangular
area of the United Kingdom enclosed by Preston, Lon-
don and Bristol. The time series, beginning in 1772
and ending in 1991 (222 yr, 81084 d), is one of the
longest available instrumental records of daily tem-
perature in the world and is thus particularly suitable
for examining the asymptotic properties of interest
here. The second data set, prepared by Risk Manage-
ment Solutions on the basis of data provided by
NOAA (US National Oceanic and Atmospheric Ad-
ministration), consists of daily temperature records for
the last 50 yr (18 262 d) at 200 weather stations in the
US. We focus on 2 stations, Chicago and Los Angeles,
which are representative of stations having respec-
tively the minimum and maximum long-memory
intensity within the dataset.

In the following sections, we will apply a suite of
tests to these time series designed to detect the pres-
ence of long memory. From a physical point of view,
detecting long memory can only be considered inter-
esting if it reveals something about the ‘internal’ work-
ings of the climate system. Thus, before applying any
tests, we must try to rid the time series from the signa-
ture of processes which are ‘external’ to the climate
system. Processes which induce nonstationarity in the
mean are particularly problematic, since these are
most likely to lead to spurious detection of long mem-
ory. There are several such processes:

e Seasonality, which depends on changes in solar forc-
ing and is therefore not internal to the climate sys-
tem, will give a periodic signal in both mean and
variance. It may be trivially removed by Fourier-
transforming the raw SAT time series and estimating
the seasonal cycle using the amplitude and phase of
the Fourier coefficients corresponding to annual and
sub-annual periodicities (the only harmonics that we
found to give well-defined peaks in the spectrum). A
similar procedure was applied to the squared SAT
anomalies to estimate and remove the seasonal cycle
in the variance.

e Urbanization, whereby weather stations originally
in open country are gradually engulfed by nearby
towns or cities and their accompanying heat island
(Cotton & Pielke 1995). This leads to a strong
upward trend in the time series, on the order of sev-
eral degrees centigrade over the last 50 yr. It is diffi-
cult to model the exact form of the trend, which will
vary from station to station. Lacking the information
to do otherwise, we make the simplest choice,
which is to detrend the time series using a linear
least-squares fit.
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Table 1. Estimates of d (‘intensity’ of the long memory) obtained by
various methods: least-squares regression on the periodogram
(P), aggregated variance (AV), differenced variance (DV) and
maximum likelihood estimation of an ARFIMA(1,d,1) model
(ML). Where available, 95% confidence intervals are shown in

long memory in time series (see Taqqu et al. 1995
for a list). Each method produces an estimate of d;
if d > 0, we say the time series has long memory.
The methods are intuitive and easy to apply, but
they are ‘heuristic’ in that they generally do not
permit confidence interval estimation (though the

parentheses

P AV Dv ML
Central England 0.16 (x0.04) 0.12 0.15 0.20 (x0.02)
Chicago 0.12 (+0.08) 0.09 0.19 0.13(+0.04)
Los Angeles 0.29 (+0.08) 0.24 0.31 0.23(+0.02)

periodogram method, see below, is an exception).
We consider 3 of these methods here; motivation
for these particular choices is given below.

e Shifts in station position or instrumentation can lead
to abrupt changes in the mean of the time series; a
clear example of this (and of the urbanization trend)
is discussed in von Storch & Zwiers (1999, p. 9).
Much effort has been devoted to eliminating these
inhomogeneities in the US dataset. Where possible,
station records have been consulted to establish the
date of position or instrumentation changes. Unfortu-
nately such records are often incomplete or unavail-
able, and in those cases a statistical procedure is
adopted which attempts to locate the breaks. We did
not apply this procedure to the Central England
dataset.

In addition, there are smaller effects due to global
warming, volcanism and changes in solar activity and
stratospheric ozone which will also give secular trends;
we assume (again for want of better knowledge) that
their aggregate effect is also linear and is removed
together with the urbanization trend.

At this point we could in principle also remove the
signatures of such well-known phenomena as the El
Nino/Southern Oscillation, the North Atlantic Oscilla-
tion and so on. We do not do this for 2 reasons. One is
that it is technically difficult to do so in a meaningful
way—for instance, one could build a regression model
between an El Nino index and the SAT time series, but
questions arise as to which index is the most suitable
and as to the appropriateness of linear regression. The
main reason, however, is that these are modes of vari-
ability ‘internal’ to the climate system, and are thus
part and parcel of the 'interesting’ signal. Some further
remarks on the relation between these low-frequency
forms of variability and higher frequencies are offered
in Sections 6 and 7.

3. DETECTION OF LONG MEMORY: HEURISTIC
METHODS

Long memory was first detected using the rescaled
range or R/S statistic (Hurst 1951). Since then, a num-
ber of similar methods have been developed to detect

3.1. Periodogram method

In Eq. (4) we defined long memory as an asymptotic
property of the spectral density. Thus, a direct way to
test for long memory is to compute a spectral estimator
and fit a straight line (on a log-log plot) to the low-
frequency end; we then have d = -b/2, where b is the
slope of the line. We select this method because it is
exceptional in that a procedure for confidence interval
estimation is known (Beran 1994, p. 98), provided
the unsmoothed periodogram is used (note that a
smoothed periodogram, which is more suitable for dis-
play purposes, was used in Fig. 1). We applied the
method to our 3 time series using classical least-
squares regression in the frequency interval 107 to
107! rad d!. Results are reported in Table 1. We can
infer with 95 % confidence that all 3 series display long
memory. Changing the regression interval changes the
numerical values somewhat but does not change this
qualitative conclusion.

3.2. Aggregated variance and differenced variance
methods

As mentioned in the Section 1, a key property of
long-memory processes is that the variance of sample
means decreases slowly with sample size. In fact, it can
be shown (Beran 1989) that given N data points, Xj,
i=1, ..., N:

Var —ZX =Nt as N o

This suggests the following method for estimating d.
Divide the series into N/m blocks of size m and com-
pute the mean for each block:

1 km

xg(m) = m

X; k=1,.,N/m

i=(k-T)m+
and the variance of the block mean:

N/m

2
Sz(m) = N/m 1 2 z [Xk X]
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where X indicates an overall mean. Now a log-log plot
of s*(m) against m should yield a straight line with
slope 2d - 1. This is known as the aggregated variance
method.

A shortcoming of this and other heuristic estimators
is that inhomogeneity in the data (see Section 2) can
produce a positive value of d even in the absence of
long memory. A modification of the above method,
known as the differenced variance method, avoids this
problem. The idea is to study the first-order difference
of the above variances:

As?(m) = s2(m + 1) — s%(m)

It can be shown (Teverovsky & Tagqu 1997) that a log-
log plot of this quantity against m will again asymptot-
ically produce a straight line with slope 2d - 1, but this
time the value of d will be free from the effects of inho-
mogeneity in the mean.?

We have applied both of the above procedures to our
3 time series using 50 logarithmically equispaced val-
ues of m. The results are plotted in Fig. 2. Given the
considerable scatter in the points at high m, we use
robust fitting in the interval 30 < m <5000 d to estimate
d. Estimated values are given in Table 1. We note that
the values of d estimated with the differenced variance
method are all greater than those obtained with the
aggregated variance, so that inhomogeneity does not
seem to play a role. We note also that these estimates
are all consistent (within the 95 % confidence interval)
with the periodogram estimates. Again, the values
obtained here are sensitive to the choice of regression
interval, but not so much as to invalidate the above
qualitative conclusions.

4. MODELING SAT TIME SERIES

The classical approach to modeling discrete time
series is through the use of autoregressive integrated
moving average (ARIMA) models, popularised by Box
& Jenkins (1970). In their notation, they take the gen-
eral form:

®B) (1 - B)X; = Y(BJ; Q)

’There is an interesting parallel between the problem ad-
dressed here and those faced in the study of long-range cor-
relations in DNA nucleotides. These were originally studied
using the ‘fluctuation analysis’ method (Peng et al. 1992),
which is almost identical to the aggregated variance method.
It was later objected that the long-range correlations de-
tected could be trivial due to the well-known ‘patchiness’ or
inhomogeneity of DNA. To get around this, ‘detrended fluc-
tuation analysis' was devised (Peng et al. 1994), which is in-
sensitive to the inhomogeneity and is in this sense analogous
(though quite different in detail) to the differenced variance
method

Here, € is a white noise process and B is the backstep
operator:

BX; = Xi
while @(B) and Y(B) are polynomials in B:
©B) = ay+ a;B+ a,B?+ ...
Y(B)

by + byB + b,B? + ...

which represent the autoregressive and moving aver-
age parts respectively. The term:

(1- By

where d is zero or a positive integer, represents a
finite-difference time derivative of order d; the inter-
pretation is that one should first compute the process
with d = 0, and then sum (integrate) it d times to obtain
the full process. ARIMA processes are non-stationary
for d = 1. Since the processes we are dealing with here
are stationary, we need only consider the case d = 0.
Then, if @and Y are of degree p and q respectively, the
process is denoted ARMA(p,q), or AR(p) if g = 0.

The autocorrelation function of an ARMA(p,q) pro-
cess will decay exponentially to zero for lags greater
than max(p,q). For this reason, they are unsuitable for
modeling long-memory time series; in order to obtain
appreciable correlation at, say, Lag 100, it is necessary
to use an ARMA process of order 100, which means fit-
ting 100 parameters. This contravenes the general
principle of parsimony (Box & Jenkins 1970), according
to which one should always seek a model which will
will adequately fit the data with the bare minimum of
parameters.

It turns out that daily temperature time series can be
accurately and parsimoniously fitted using a more gen-
eral class of stochastic process known as fractional
ARIMA or ARFIMA models. They are defined exactly
asin Eq. (5), except that now 0 < d < %; it can be shown
(Granger & Joyeux 1980) that in this range the models
are stationary and have the long-memory property with
intensity d. For d = %, the models are non-stationary.
To make sense of the fractional differencing, the opera-
tor is formally expanded as a power series:

I r(d+1)
-5 kzzor(k+1)l'(d—k+1)

(-)*B* (6)

Thus, an ARFIMA(p,d,q) model is equivalent to an
ARMA(8,q) model while using only p + g + 1 parame-
ters. The presence of autoregressive and moving-aver-
age components allows these models to capture the
short-memory high-frequency behaviour, while the
slow decay of the coefficients in Eq. (6) controls the
long-term behaviour. This allows ARFIMA time series
to accurately model long-memory processes while
using only a small number of parameters.
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more rigorous method for detection

Aggregated Variance
Y R T AT B AT

of long-range dependence than the
heuristic methods discussed in Sec-
tion 3.

Here we use the approximate ML
method proposed by Haslett & Raftery
(1989) and available in the ‘fracdiff’
package of the 'R’ statistical comput-
ing environment. We used these rou-
tines to fit an ARFIMA(1,d,1) model to
our 3 data series. This particular
ARFIMA model was selected by trial

and error. Models with less than 2

e ARMA parameters all give a consider-
: ably worse fit (as assessed by compar-
ing the model and data autocorrelation
functions), while those with more than
r 2 give no significant improvement in
oL the fit; amongst those with 2 ARMA

: parameters, ARFIMA(1,d,1) gave the
best fit in the 3 cases studied here. Re-
sults are shown in Table 1. The results
again indicate that long memory is

present in all 3 series at the 95 % confi-
dence level. We note also that the ML

P B values are compatible with those ob-
tained using the periodogram, within
the respective uncertainties.

To show how significant an im-
provement ARFIMA is over ARMA,
we compare the autocorrelation func-
tions of the historical data to those of
ARFIMA(1,d,1), AR(3) and AR(20)
models fitted to the time series (note
that AR models fitted to a given series
generally have autocorrelations which

100 E + L 10—1 E ol | fmi
] °°ouo £ E
b %, r b
- oo F -
1 F 1072
107" | E 1
j [ 1073§
1072 3 E ] °
E o E 1074 4 =
] o[ 3
- 1(a) C. England r - 1(b) C. England
100 10! 102 103 10% 100 10' 102 103 10*
100 E éuuml ol ‘: 10—1 4 ‘“{‘,‘1 L L
1 £ 3 %
] 107 3
107" | E 1
] [ 1073§
102 L]
3 5 10_4? =
- 1(c) Chicago oo, | - 1(d) Chicago
100 10! 102 103 10% 100 10' 102 103 10*
100 E é;umd vl ‘: 10—1 4 Sa—— L L Il L
ER N E I E
1 Py, i 1 ° E
] 107 3
107" | E 1 E
] o F ] [
] SN [ 1073? o 3
1072 3 E ] [
3 o f 10_4? E
] o [ ] E
- 1(e) Los Angeles r - 1(f) Los Angeles F
100 10! 102 10° 104 100 10° 102 103 104
m m

Fig. 2. Aggregated variance and differenced variance for the 3 datasets

(detrended and deseasonalised in mean and variance) as a function of the sam-

ple size m (see Section 3). The thick solid line shows a robust fit to the data
points. The thin line, with slope -1, is shown for comparison

Fitting an ARFIMA model to data is somewhat more

involved than with ARMA models. Exact maximum
likelihood (ML) estimation is possible but prohibitively
expensive from a computational viewpoint for the
length of the time series and practical applications we
are considering here. Fortunately, a number of effi-
cient approximate ML methods have been developed
(see review by Beran 1994). ML methods naturally per-
mit estimation of confidence intervals for the fitted
parameters, and hence provide an alternative and

decay more slowly than MA or ARMA
models with the same number of para-
meters and are hence better suited to
time series with persistent correla-
tions). Results are shown in Fig. 3. In
all 3 time series, the ARFIMA model
gives a much better fit to the autocor-
relation structure than the other mod-
els, even at high lags. There is of
course some scatter in the observed autocorrelation,
but the ARFIMA model appears to give a more-or-less
unbiased fit (though with some overestimation in the
Central England case). The AR(3) model, on the other
hand, quickly drops to zero and substantially underes-
timates the correlation at lags higher than a few days.
The AR(20) model closely follows the observed auto-
correlation function up to a lag of 20 d, as expected,
but then drops off rapidly, again consistently underes-
timating persistence at higher lags.
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Autocorrelation function

company's revenues. There are a
number of financial and commercial
reasons why this is beneficial.
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Two ingredients are necessary in
order to structure a weather derivative
contract such as the above: a weather
index and a payout function. The
weather index, denoted I, charac-
terises the weather over a certain
period, called the 'strike’ period. It is
most commonly based on temperature

autocorrelation

lag (days)

Fig. 3. Autocorrelation functions for the (a) Central England, (b) Chicago and
(c) Los Angeles SAT anomaly time series with the observed data and fits for the

ARFIMA(1,d, 1), AR(3) and AR(20) models

5. PRICING WEATHER DERIVATIVES: ARMA
VERSUS ARFIMA

5.1. What is a weather derivative?

As noted in the Section 1, weather derivatives are a
form of insurance, or in financial terms an instrument
which a company can use to hedge its exposure to fluc-
tuations in weather. They are a rather recent develop-
ment, dating back only to 1997, and are not yet widely
known in the meteorological literature (an exception
being Zeng 2000).

The basic concept may be understood through a sim-
ple example. A company selling gas for heating may
want to protect itself against losses due to anomalously
mild conditions the following winter. It can then buy an
insurance policy (the weather derivative) from a finan-
cial institution which agrees to pay out a certain
amount if the winter should indeed turn out to be mild.
Note that the company thereby reduces its losses in
adverse circumstances, but incurs the cost of the insur-
ance premium, thus reducing its gains if the winter
turns out to be harsh. The purpose of weather deriva-
tives is to smooth out the temporal fluctuations in the

lag (days)

(though rain- and snowfall and hours
of sunshine have also been used).
Rather than use raw temperature, it is
customary to use heating or cooling
degree days (HDDs or CDDs), defined
as:

HDD; = max(T* - T, 0)  (7)
CDD; = max(T;-T*,0) (8)

where the subscript i indicates a spe-
cific day, T; is the average tempera-
ture measured on that day, and T* is a
fixed reference temperature (65°F in
the US, 18°C in Europe). In the exam-
ple above, the index might be defined
as the total number of HDDs over the
winter season:
i +N-1
I = HDD;

where i is the first day of the season and N is its
length.

The payout function, Q(I), determines how much the
financial institution will pay out for a given index out-
come. Referring to the example given previously, we
expect no payout if the winter is harsh (high I) and an
increasing payout the milder the winter (low I). A typ-
ical payout structure has the form shown in Fig. 4, fea-
turing a zero-payout threshold and a linear increase in
payout below the threshold. The position of the thresh-
old and the slope of the linear part must be agreed on
by the 2 parties entering the contract.

Once the definition of the index and the form of the
payout function have been stipulated, the actual pay-
out from the contract depends only on the final index
value, which itself depends on the weather. What is
less clear is how much the financial institution should
charge the company, i.e. how to price the weather
derivative. The subject of derivative pricing is a com-
plex one and has received much attention over the past
decades. For reasons outside the scope of this paper,
the usual way to price a weather derivative is to set:

S = E[Q]+R 9)
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1000 2000 3000 4000 5000

I (degree days)

Fig. 4. Plot of a typical payout function Q(I). Overlaid is a
hypothetical Gaussian index probability distribution function
(pdf), P(I)

where S is the price of the derivative. The first term is
simply the mean payout:

E[Q] = I:Q(I)P(I)dl

P(I) being the probability distribution function (pdf) of
the index. The second term, R, is a 'risk premium'—a
positive correction which compensates the financial
institution for the risk taken in selling the derivative.
We will not dwell on its specific form here, but note
that it too in general will depend on P(I).

5.2. Why use a time-series model?

We saw above that to price a weather derivative
accurately, it is essential to have a good estimate of
P(I), or at least of E[Q]. There are several possible
approaches:

e '‘Burn’ analysis, which involves evaluating Q(I) for
historical values of I and directly computing E[Q)].

e Direct modeling of the index distribution, which
involves fitting a parametric or non-parametric dis-
tribution to the historical values of I.

¢ Daily modeling (the subject of this paper), which
involves fitting a time-series model to the daily data
and then using the model to generate a very large
sample of synthetic I values.

In current practice, the first 2 methods are by far the
most commonly used. Indeed, the daily modeling
approach is somewhat more complicated to imple-
ment, and there is widespread mistrust of it because of
the overdispersion problem. Why then bother with the

daily model at all? Firstly, we note that there is no a pri-
ori reason why a ‘good’ daily model (i.e. one free from
the overdispersion problem) should be any less accu-
rate than the other methods. In fact, in cases where the
daily temperature often falls below or above the
degree-day threshold, T* (see Eqgs. 7 & 8), the daily
model will make more efficient use of the available
data and is likely to be more accurate.

Further, there is at least 1 situation in which daily
modeling is clearly the method of choice: the pricing of
derivatives within the strike period, a procedure
known in financial jargon as ‘'marking to market'. Dur-
ing the strike period, a new temperature observation
becomes available each day, and one can use this
information to make a better estimate of the final value
of I. One can also make use of deterministic weather
forecasts to project information up to 10 d into the
future (see, for instance, Jewson 2000). Since SAT time
series are highly autocorrelated, it clearly makes sense
to use an appropriate time series model to project
available information even further into the future, out
to the end of the strike period. Accurate marking to
market is important because many derivatives are
actually most heavily traded during the strike period,
and all parties involved in derivatives trading must
keep track on a day-by-day basis of their total expo-
sure and risk.

5.3. Factors influencing the price of the derivative

The gross features of P(I), namely its location and
width, are captured by its first 2 moments, the mean L;
and the variance o 2. It is clear from Fig. 4 that, if either
the mean is overestimated or the variance underesti-
mated, the derivative will be underpriced. A financial
institution trading contracts with such incorrect pricing
will, over time, lose money.

Let us then consider what aspects of daily tempera-
ture variability influence the values of |; and o2. For
the sake of this discussion, we assume that the temper-
ature over the winter period is always below T*. We
can then write:

HDD, = T* - T,=T* - E[T}] - T';

where E[-] indicates an expected value and we define
the temperature anomalies T'; = T; — E[T;]. Then:
ir+N-1
W = E[l] = NT*~ Y E[T}] (10)
i=if

Thus, to obtain an accurate estimate of the mean
index value, P, we need only an accurate estimate of
the seasonal cycle, E[T}].

The situation is more complicated for the variance.
We have:
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where 07 is the variance and p; ; the autocorrelation
function of the temperature anomalies. Assuming the
process is stationary, the autocorrelation will only
depend on the lag k; we then have:

2

of = E[d-w)’]

o
HE~

N
o} = o} N+23 (N-Kipi | (11)
k= O

Thus, to estimate of the variance of I accurately, we
need to estimate not only the variance of the tempera-
ture anomalies, but also their autocorrelation structure
up tolag N. If the autocorrelation is underestimated, so
too will the index variance be. In summary, the mini-
mum requirements for a suitable time-series model are
that it should correctly capture the seasonal cycle, the
anomaly variance, and the anomaly autocorrelation
structure out to lags of a season.

5.4. Comparing the performance of ARMA and
ARFIMA

Here we compare the skill of best-fit ARFIMA(1,d,1)
and AR(3) models in simulating the index pdf; this is
essentially a test of how well they will fare in pricing a
derivative based on this index. The comparison is fair
in the sense that the models use the same number of
parameters. We approach the problem by making the
null hypothesis that the model is perfect (that is, that
the historical data are actually generated by the model
itself) and then try to reject the hypothesis. We will see
that the hypothesis is much more easily rejected for
AR(3) than for ARFIMA(1,d,1).

In practice, we proceed as follows: The historical
data provides us with 50 values of I; we use these to
obtain the historical sample mean, i) We now gener-
ate a very large number of index values using the fitted

model and compute a close approximation to p'} the
model population mean. Let us set A = pf - pfL If A is
large, then we should reject the model. To establish a
rejection threshold, we need an estimate of the sam-
pling fluctuations. This we obtain by dividing up the
large model sample into 50-member sub-samples.
Each sub-sample provides a sample mean, I’/ and we
can use these to compute a value, Agg, such that only
1% of the sub-samples gives |u - {I’¥/| > Ago. Thus, we
can reject the model with 99% confidence if A > Agg.
We can proceed analogously for 62 and indeed for any
parameter we wish.

We restrict the test to the Chicago and Los Angeles
stations, which are relevant for real-world derivative
pricing. For Chicago, we consider a 5 mo HDD contract
spanning November—-March; for Los Angeles, we con-
sider a 5 mo CDD contract spanning May—-September.
We generated 2 x 10° index values to perform the test.
Note that the models are fitted to deseasonalised data;
before computing synthetic index values, we add the
estimated seasonal cycle in mean and variance to the
model output.

Results are reported in Table 2. In the case of p,
modeled and historical values are in good agreement
at both stations for both models. In view of Eq. (10), this
essentially means that the seasonal cycle is well esti-
mated. Note that A values are almost identical for both
models, as they should be. Neither model can be
rejected at either of the stations.

Results for 0 are much more critical. The AR model
can be rejected at both stations. Note also that A is
always negative, which means that the model is under-
estimating the index variance; this is what we expect
from Eq. (11), given the systematic underestimate of
the autocorrelation (Fig. 3). The ARFIMA model fares
much better at Chicago. It also performs better in Los
Angeles (it gives a smaller A), but it can be rejected at
the 99 % confidence level. The reasons for this are dis-
cussed below.

Table 2. Mean index value, |, computed from observations and from 2 models. For Chicago (Los Angeles), a 5 mo HDD (CDD)

contract covering the period November—-March (May-September) is considered. Units everywhere are Fahrenheit degree-days.

Aindicates the difference between the historical and modeled value, as a percentage of the latter. Agg indicates a 99 % confidence
level for A (that is, only 1% of model-produced 50-member samples will give IAl > Agg)

Historical ARFIMA(1,d,1) AR(3)
e Wy A Agg uy A Dgg
Chicago 5032 5036 -0.1 2.6 5036 -0.1 2.1
Los Angeles 438 457 4.1 10.3 457 4.0 6.3
6/ oM A Agy oM A Dgy
Chicago 359 360 1 24 280 27 26
Los Angeles 166 126 =32 20 80 -107 25
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Fig. 5. g-q plots of the observed against the modeled index quantiles (dots) for (a,b) Chicago and (c,d) Los Angeles using the
ARFIMA(1,d,1) model (a,c) and the AR(3) model (b,d). Solid (dotted) curves show 99 % (95 %) confidence envelopes. The central
solid line is a diagonal for comparison. Units are degree days in Fahrenheit

The Monte Carlo test can also be applied non-para-
metrically by computing a sample cumulative distribu-
tion function (CDF) for each of the 50-member sub-
samples and estimating confidence intervals for each
of the CDF quantiles. The results of this procedure are
displayed in g-q form in Fig. 5. In this figure, the dots
indicate (x,y) pairs, where x is the model population-
mean quantile and y the historical data sample quan-
tile. If the 2 CDFs were identical, the dots would lie
along the diagonal. The solid (dotted) lines above and
below the diagonal indicate 99% (95%) confidence
intervals for each quantile. The figure confirms the
results obtained above. The ARFIMA model generally
does better than the AR at both stations, the dots being
more closely aligned with the diagonal. However, both
models fail in Los Angeles, with several dots exiting
the 99% confidence envelope and a pronounced sys-
tematic difference between the modeled and observed
CDFs.

5.5. Seasonality in the autocorrelation structure and
its effects

We saw in the previous section that while the
ARFIMA(1,d,1) model generally performs better than
the AR(3), it still fails in Los Angeles, despite the close
fit to the observed autocorrelation function displayed in
Fig. 3b. It turns out that one major reason for this is that
the model was fitted to the entire data series. This is
only correct if the autocorrelation of the data is station-
ary. As Fig. 6 clearly shows, this is not the case. The
curves in the figure were obtained by computing the
autocorrelation function separately for each summer
(winter) and then averaging over all summers (winters).
There is clearly much greater persistence during sum-
mer than winter. The physical reasons for this are not
clear; we may speculate that during summer the high-
frequency ‘weather’ activity is much lower, so that the
low-frequency variability (plausibly of oceanic origin,
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Fig. 6. Seasonal variation of the autocorrelation structure of

observed SAT in Los Angeles: summer and winter average

autocorrelations. The all-year autocorrelation function is re-
plotted from Fig. 3b

given the coastal location of this station) accounts for a
greater fraction of the total variance.

From our applied point of view, the consequence is
that if we fit the model to the ‘all year' data set, we will
considerably underestimate the autocorrelation during
summer and hence, by Eq. (11), the variance of a sum-
mer-based index. This is exactly what is observed in
the results of the previous section. We note that in
Chicago the autocorrelation structure varies much less

800 T T B T N

from season to season (not shown), so the issue is not so
critical there.

A simple 'fudge’ to correct matters is to fit the
model separately to summer data. This was done by
extracting summer (May—September) data from each
year, and then fitting the model to the single time
series obtained by juxtaposing all the summers. The
results of this operation are displayed in Fig. 7. We
see that the ARFIMA model now performs reasonably
well, with only 1 point in the tail of the distribution
falling outside the 99% confidence envelope. The
AR(3) model, on the other hand, continues to perform
poorly, giving a significant underestimate of the index
variance. In any event, we stress that this is only a
temporary solution; a more satisfactory one would be
to fit the entire data series using seasonally varying
parameters. We are currently investigating tech-
niques for doing this.

6. SOME REMARKS ON THE ORIGIN OF LONG
MEMORY IN SAT

In Section 1, we saw that simple physical considera-
tions based on the behaviour of mid-latitude synoptic-
scale eddies led to the Ornstein-Uhlenbeck process,
which successfully accounts for the high-frequency
behaviour of SAT but underestimates the low-
frequency variance. We then showed (Section 4) that
ARFIMA models can successfully capture both the
high- and low-frequency behaviour. However,
ARFIMA models are mathematical tools which, though
useful for applications, have no immediate physical
interpretation. That is, they do not provide a direct

Los Angeles, model fitted to summer only
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Fig. 7. g-q plots of the observed against the modeled index quantiles (dots) for Los Angeles using the (a) ARFIMA(1,d,1) and
(b) AR(3) models fitted to summer data only
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answer to the basic physical question of why there is
long memory in SAT time series.

The adequacy of the Ornstein-Uhlenbeck process at
high frequency suggests we are on the right track in
modeling the effect of high-frequency transients. It is
then plausible to attribute the ‘extra’ variance at low
frequency to other, slower processes which also affect
SAT. The identification and analysis of mechanisms for
the low-frequency atmospheric variability has been a
central theme of climate research over the past 2
decades, and is still ongoing. A few of the candidates
are regime-like behaviour in the atmosphere (Hansen
& Sutera 1995), local or remote oceanic forcing (Wal-
lace & Gutzler 1981), and atmosphere-land surface
interaction (Manabe & Stouffer 1996).

How can we incorporate the slow mechanisms into
the model? The simplest option (Granger 1980) is to
assume that each mechanism affecting SAT can be
modeled as an AR(1) process with a certain value of a
and that all mechanisms act independently of each
other. The final SAT process is then just the sum of a
certain number N of AR(1) processes:

X = Sy (12)

where y;@ are the individual AR(1) processes. It can be
shown that, if the coefficients of the AR(1) processes
are appropriately chosen, then as N - o the aggregate
process converges to one having the long-memory
property (Eq. 4).

In the real atmosphere there is presumably only a
finite number of relevant processes affecting SAT.
Thus, N < 8, and the aggregate time series will not

102 d— vl il il vl
1(a) aggregated AR(1)
10" 4 3
10° 4 3
o
;
107" 4 ° -
o2
oo
-2
10 S oM
107*  107* 1072 107! 10° 10!

w (rad/day)

strictly speaking have the long-memory property: the
spectrum will not behave as a power law all the way to
the origin but will eventually flatten out to a constant.
However, the cross-over may occur at very low fre-
quency and may not be detectable given the finite-
length data series available. We illustrate this point
with a specific example. We consider 3 independent
AR(1) processes with parameter values 0.82, 0.95 and
0.999 (corresponding to time scales of 6, 20 and 1000 d)
and noise variances 1, 0.3 and 0.01 respectively. We
generate 105 d long series with each model, compute
the aggregate series (12) and take its power spectrum.
The result, shown in Fig. 8a, has the same qualitative
features as the observed spectra reported in Fig. 1: a
high-frequency part with slope close to -2 crossing
over to a shallower slope at low frequencies. The peri-
odogram test (Section 3.1) applied to this series indi-
cates that long memory is present with intensity d =
0.12 + 0.07. Note that the process parameters
employed here have been selected arbitrarily for illus-
trative purposes only. It may be possible to devise an
appropriate parameter-selection algorithm giving an
optimal fit to any given time series, but we do not pur-
sue this issue here.

One might argue that it is unrealistic to assume that
the various processes affecting SAT occur indepen-
dently of each other. In fact, a large part of the vari-
ability is actually generated by the coupling of the var-
ious parts of the climate system. For instance, much of
the variability in mid-latitude oceanic temperatures
can be attributed to stochastic forcing by atmospheric
transients (Frankignoul 1995). The simplest way to
model such interacting processes is with a multivariate
AR(1) model:

covnl vl vl

102 4+l
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M
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100?

1072 10~ 10° 10'

w (rad/day)
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Fig. 8. Power spectral density estimates for synthetic data produced by (a) the aggregation of 3 independent AR(1) processes and
(b) a trivariate AR(1) process. See Fig. 1 and Section 6 for details
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X; = AXj_1 + Bei (13)

where x; = (x%;, x%, ..., x%), e; = (g}, €2, ..., €%), is a vector
of n independent unit-variance white noise processes
and A and B are n x n matrices. Let us again consider
a specific example. We take:

00.82 0.25 0.0850 o 0 oC

=0 0 B = C
A =15003 09 00d B g) 0 0z (14)

[0.001 0.0 0.9980 0 0 OC

Only x!, which we may think of as representing high-
frequency atmospheric transients, is directly forced by
external white noise. Components x? and x° are essen-
tially AR(1) processes with long decay time scales, sto-
chastically forced by the ‘atmosphere’ x'; we may
think of them as representing slow components of the
climate system such as the land surface and the ocean.
These slow components in turn feed back onto the
atmosphere through the top-row elements in A. The
particular values of the entries in A are entirely arbi-
trary and serve only for illustration. We generate a
105 d long run of the process and compute the power
spectrum of the atmospheric component only. The
result (Fig. 8b) again looks quite similar to observa-
tions. The periodogram test gives d = 0.23 + 0.07.
Again, any value of d is obtainable by manipulating A.

7. SUMMARY AND DISCUSSION

We have analysed 3 multidecadal daily SAT time
series representative of conditions in the northern mid-
latitudes. We have applied a number of tests to detect
the presence of long memory; these indicate that long
memory is indeed present in all 3 time series. We have
shown that an ARFIMA(1,d,1) model gives a qualita-
tively unbiased fit to the autocorrelation structure of
the data out to lags of a season or more, while AR mod-
els even of high order give a considerable underesti-
mate of the high-lag autocovariance. For the reasons
outlined in Section 5.3, ARFIMA models are therefore
much better suited to weather-derivative pricing than
AR models employing a similar number of parameters.

Finally, we have shown (Section 6) how spectra with
the same qualitative features as those of observed SAT
(Fig. 1) can be generated by simple aggregation of sev-
eral short-memory processes which may be indepen-
dent or coupled. We note that, in the coupled case, our
argument is very close to the stochastic climate model
of Hasselmann (1976). The reasoning behind the sto-
chastic climate model is as follows: The atmosphere, if
left to its own devices, will produce a spectrum which
is white for time scales longer than about 10 d. Atmos-
pheric variability will act as a source of stochastic forc-
ing on the ocean, due to fluctuations in wind stress and

heat flux. Sea-surface-temperature (SST) perturba-

tions have a typical decay rate on the order of several

months. This scale separation allows the atmospheric
forcing of the ocean to be modeled as a white noise.

Thus the SST can be modeled as an Ornstein-Uhlen-

beck process with intrinsic time scale of several

months. In Section 6, we suggested that the variability
induced in the ocean may in turn feed back onto the
atmosphere and contribute to its low-frequency vari-
ability, thus reddening the low-frequency tail of the
atmospheric spectra. While this is quite plausible in the
Tropics, where atmosphere-ocean coupling is strong, it
is less obvious in the mid-latitudes, where the coupling
is much weaker. Feedback of mid-latitude SST vari-
ability onto the atmosphere has, however, been docu-
mented in a GCM (general circulation model) by Rod-
well et al. (1999). This explanation for the appearance
of long memory in atmospheric time series is similar to
that suggested in Tsonis et al. (1999). Other explana-
tions, relying on internal dynamics of the atmospheric
boundary layer, have been suggested in the literature

(Janosi & Vattay 1992, Pelletier 1997). Further work is

needed to decide among these alternatives.

We summarise our main conclusions as follows:

e Long memory of moderate intensity (d ~ 0.1 to 0.25)
can be detected in the 3 mid-latitude SAT time series
studied here with 95 % statistical confidence;

¢ A simple explanation for the apparent presence of
long memory in these time series is that SAT is simul-
taneously affected by a number of physical pro-
cesses, each of short memory but with widely dis-
parate intrinsic time scales;

e ARFIMA models with only 3 parameters give an
excellent fit to SAT time series;

e ARFIMA models are suitable for pricing weather
derivatives, provided care is taken to account for
seasonality in the autocovariance structure.
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