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1.  INTRODUCTION

Analyses of the impacts of climate warming on eco-
systems and human societies require high-resolution
weather data. The set of required weather variables
and their spatial and temporal resolution may differ
between the systems analysed. For example, crop
growth models used in estimating impacts of climate
change and climate variability on crop production
(Semenov & Porter 1995, Mearns et al. 1997, Zalud &
Dubrovsky 2002) typically require single-site daily

series of extreme temperatures, precipitation amount
and solar radiation. 

Various approaches can be used to produce weather
series representing the changed climate. Most of them
rely on Global Climate Models (GCMs). However, as
GCMs cannot reliably simulate even the present cli-
mate conditions (e.g. annual cycles of the means, see
Section 3), the employment of climate change scenar-
ios is better than direct use of a GCM representation of
a given future period. Climate change scenarios repre-
sent differences in individual variables between some

© Inter-Research 2005 · www.int-res.com*Email: dub@ufa.cas.cz

Uncertainties in climate change scenarios for 
the Czech Republic

Martin Dubrovsky1,*, Ivana Nemesova2, Jaroslava Kalvova3

1Institute of Atmospheric Physics ASCR, Husova 456, 50008 Hradec Kralove, Czech Republic
2Institute of Atmospheric Physics ASCR, Bocní II, 14131 Praha 4, Czech Republic

3KMOP, Faculty of Mathematics and Physics, Charles University, V Holesovickach 2, 18000 Praha 8, Czech Republic

ABSTRACT: Monthly series from 7 Global Climate Models (GCMs) were used to estimate forthcom-
ing changes in global solar radiation, precipitation amount, daily average temperature, and daily
temperature range in the Czech region. Scenarios were constructed using the pattern scaling tech-
nique: the standardised scenario, which relates the climate variable responses to a 1°C rise in global
mean temperature (TG), was multiplied by the predicted change (ΔTG). The standardised scenarios
were determined from the GCM runs, ΔTG values were calculated by the simple climate model
MAGICC. Two groups of uncertainties were analysed: (1) uncertainties in the standardised scenario,
with (1a) inter-GCM variability, (1b) internal GCM variability, (1c) uncertainty due to the choice of
the site (within the Czech territory), (1d) uncertainty involved in the regression technique; (2) uncer-
tainties in ΔTG, with (2a) choice of the emission scenario, (2b) value of the climate sensitivity factor. In
the case of Group 1, (1a) dominated, (1b) was in some cases similar to (1a), and (1c) was nearly neg-
ligible; regression uncertainty (1d) indicated that the climate variable changes are often statistically
insignificant. In the case of Group 2, uncertainty due to climate sensitivity (2b) dominated for the
nearest future, but uncertainty in emission scenarios (2a) attained greater importance later in the 21st
century. The mean magnitude of the effect of aerosols on changes in temperature and precipitation
was mostly lower than its inter-GCM variability, which was lower than (in the case of the tempera-
ture changes) or similar to (in the case of precipitation) the inter-GCM uncertainty in greenhouse gas
(GHG) simulations. A stochastic model was developed to assess the combined effect of inter-GCM
uncertainty, regression uncertainty, and uncertainty in ΔTG. While the overall uncertainty in the tem-
perature scenarios was dominated by inter-GCM uncertainty and ΔTG uncertainty, the aggregated
uncertainty in the precipitation scenarios was dominated by inter-GCM uncertainty only.

KEY WORDS:  Climate change scenarios · Uncertainty analysis · Global climate models · 
Pattern scaling

Resale or republication not permitted without written consent of the publisher



Clim Res 29: 139–156, 2005

plausible future climate and the current or control
climate usually represented by a climate model
(Houghton et al. 2001), which is usually a GCM or
Regional Climate Model (RCM) (Mearns et al. 1997;
Giorgi et al. 2004). With a climate change scenario, 2
techniques are typically used to construct the weather
series representing the changed climate (Dubrovsky et
al. 2000): (1) an observed weather series is modified
(additively or multiplicatively) by the scenario para-
meters (e.g. Maytín et al. 1995; Mearns et al. 1992);
(2) a weather series is produced by a weather genera-
tor whose parameters have been modified according to
the scenario (e.g. Dubrovsky et al. 2000, Riha et al.
1996, Semenov & Barrow 1997).

GCMs use a set of equations to simulate physical
processes in the atmosphere–ocean system (Randall
2000). The most recent versions of GCMs, termed
atmosphere–ocean general circulation models (also
abbreviated GCMs), couple comprehensive 3-D atmo-
spheric GCMs with ocean GCMs, sea-ice models, and
models of land-surface processes. In climate change
projections, the GCMs are run with varying environ-
mental conditions, which most commonly reflect
changes in concentration of greenhouse gases (GHGs)
and aerosols, but also in land use and other factors.
The rate of the changes in concentration is based on
an emission scenario which follows assumptions made
about demographic, industrial and other development.
The set of IS92 emission scenarios was considered in
the Second Assessment Report of the IPCC (Houghton
et al. 1996), and the set of SRES scenarios is commonly
used since the release of the Third Assessment Report
of the IPCC (Houghton et al. 2001, McCarthy et al.
2001, Metz et al. 2001).

GCM-based climate change scenarios are affected
by many uncertainties (see Chapter 13.5 in Houghton
et al. 2001). Giorgi & Francisco (2000) found that the
dominant source of uncertainty in the simulation of
average regional climate change is due to inter-model
variability with inter-scenario (i.e. anthropogenic for-
cing scenario) and internal model variability playing
secondary roles. To account for the uncertainties, use
of multiple scenarios in climate change impact studies
is widely recommended (e.g. Houghton et al. 2001,
Hulme et al. 2002) and adopted (e.g. Alexandrov &
Hoogenboom 2000). This is typically done by using a
set of scenarios derived from several GCM simulations
(e.g. several GCMs, several runs of a single GCM
using different initial conditions, and/or several emis-
sion scenarios). Where the pattern scaling technique
(Santer et al. 1990) is employed to construct the climate
change scenarios, the uncertainties include uncer-
tainty in determining the climate change pattern
(Mitchell et al. 1999, Mitchell 2003, Huntingford & Cox
2000), and uncertainty in estimating the global mean

temperature (TG), which is often estimated using a
simple climate model. The probable range of the
change in global mean temperature (ΔTG) is subject to
discussion (e.g. Andronova & Schlesinger 2001, Wigley
& Raper 2001, Gregory et al. 2002, Knutti et al. 2002).
For example, Houghton et al. (2001, Chapter 9.3.3)
estimate the change to be within 1.55 to 5.95°C in 2100
(with respect to the 1961–1990 period). 

In this study we assess the uncertainties in climate
change scenarios for the territory of the Czech Repub-
lic. The scenarios were constructed using the pattern
scaling method from the outputs of transient simula-
tions made by 7 GCMs. The data and target areas are
described in Section 2. The validation of the GCMs is
presented in Section 3. The scenarios and sources of
uncertainties are discussed in Section 4.

We treated GCMs as black boxes and do not discuss
the results from the point of view of physical processes.

2.  DATA AND TARGET AREAS

2.1. GCM data

The climate change scenarios in this study are based
on the transient GCM simulations available from the
IPCC-DDC (http://ipcc-ddc.cru.uea.ac.uk) at the begin-
ning of 2001. The resolution of the GCMs, basic char-
acteristics of the emission scenarios used and changes
in selected GCM-simulated variables are given in
Tables 1 & 2. These GCM simulations, which were
constructed within the framework of the Coupled
Model Intercomparison Project (http://www-pcmdi.
llnl.gov/projects/cmip/index.php; Covey et al. 2003),
were run using the IS92a or similar emission scenarios.
These data have since been superseded by simulations
using newer emission scenarios. All GCMs included in
the analysis are coupled models with ocean circula-
tion. The horizontal resolution of the atmospheric part
of the model ranges from 2.8 to 7.5° in the zonal direc-
tion and from 2.5 to 5.6° in the meridional direction.
The atmospheric models have 9 to 20 levels. Fig. 1
shows the GCM land masks for Europe; note the differ-
ence between the ECHAM and NCAR land masks:
both models have the same spatial resolution, but the
number of land grids is about 50% greater in NCAR.
Grid points that are applicable to the Czech Republic
are shown in Fig. 2.

Of the data available from the IPCC-DDC database,
the time series of monthly means obtained in ‘Green-
house gas integrations’ and ‘Greenhouse gas plus
sulphate aerosol integrations’ were used. These data
will be referred to in this paper as GHG and GHG+A
integrations, respectively. The integrations start mostly
between 1860 and 1901. Historical GHG and sulphate
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aerosol forcing were applied for the period until 1989,
and then the concentrations of compound CO2 and sul-
phate aerosol in the atmosphere were transiently
increased according to the IS92a (or similar) emission
scenarios. The 1961–1990 period was used as a base-
line for the scenarios, and for validation of the GCMs
against observational data. The 90 yr series 2010–2099
(or shorter, when the GCM output ended before 2099),
was used to determine the standardised scenarios.

In the case of GHG simulations made by the HadCM
model, 4 ensemble members as well as the average of
the 4 members were included in the analysis.

The following 4 variables were used from the GCM
output: precipitation (PREC), solar radiation (SRAD),
daily mean temperature (TAVG), and daily tempera-
ture range (DTR); DTR is defined as the difference
between maximum and minimum daily temperatures.
Since SRAD was not available from HadCM, cloudi-
ness was used as a surrogate for determining changes
in solar radiation.

2.2. Target areas

To develop scenarios for various locations used in
Czech impact studies, 4 sites were selected (see Fig. 2):

(A) South Moravia (49° N, 17° E), which is the warmest
part of the Czech Republic and is often used in agricul-
tural impact studies (Dubrovsky et al. 2000, Zalud &
Dubrovsky 2002); (B) South Bohemia (49° N, 14.5° E),
which is used in hydrological impact studies (Buchtele
et al. 1999, Hejzlar et al. 2003); (C) Beskydy Mountains
(49.5° N, 18.5° E), where the impacts on forests are
being studied (Janous et al. 2003), and (D) Prague
(50° N, 15° E), which represents central Bohemia, where
agrometeorological assessments are made.

The changes in the climatic variables in the individ-
ual target areas were obtained by linear interpolation
of GCM-simulated values for the 4 corners of the GCM
grid box in which the target area lies.

2.3. Observations

GCMs were validated with 2 types of observational
data: (1) 30 yr (1961–1990) series of daily weather char-
acteristics observed at 5 stations within the ‘agri-
cultural’ target area (Fig. 2), and (2) monthly means
interpolated from the 0.5 × 0.5° climatology available
from the CRU website (http://ipcc-ddc.cru.uea.ac.uk/
obs/get_30yr_means.html). The CRU gridded data
were constructed from a station dataset of 1961–1990
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Emission 2010–2039 2040–2069 2070–2099 2 × CO2

scenario ΔTG ΔTCZ ΔPCZ ΔTG ΔTCZ ΔPCZ ΔTG ΔTCZ ΔPCZ ΔTG

(°C) (°C) (%) (°C) (°C) (%) (°C) (°C) (°C) (%)

CCSR IS92a 1.12 2.11 4.4 2.08 4.15 4.6 3.00 5.85 3.7 2.6
CGCM 1% 1.47 1.20 +8.0 3.01 2.39 8.7 4.93 3.83 11.0 3.2
CSIRO IS92a 1.21 1.31 +4.5 2.05 2.12 8.0 3.07 3.35 10.5 2.6
ECHAM IS92a 1.22 1.84 –6.5 2.13 3.10 –1.3– 3.02 4.70 –3.1 2.5
GFDL 1% 1.71 2.44 +0.0 – – – – – – 2.9
HadCM 1% 1.19 1.59 1.3 2.05 2.46 0.2 3.07 3.46 –2.1 2.0
NCAR IS92a 0.81 0.87 3.6 1.44 1.61 3.2 2.09 2.22 8.6 1.8

Table 2. Changes in global mean temperature (ΔTG), average temperature in the Czech Republic (ΔTCZ), and precipitation in the
Czech Republic (ΔPCZ) for 3 periods of the 21st century, based on the greenhouse gas (GHG) GCM simulations. The last column
gives change in global mean temperature for doubled effective CO2 (based on 1990) attained in 2066 for the IS92a scenario, 

and 2054 for 1% increase of compound CO2

Acronym Model name Atmospheric Emission scenario
resolution

CCSR CCSR/NIES 5.6 × 5.6° 1890–1989: historic CO2; 1990–2099: IS92a
CGCM CGCM1 3.8 × 3.8° 1900–1989: historic CO2; 1990–2100: 1% compound increase 
CSIRO CSIRO-Mk2 3.2 × 5.6° 1881–1989: historic CO2; 1990–2100: IS92a 
ECHAM ECHAM4/OPYC3 2.8 × 2.8° 1860–1989: historic CO2; 1990–2099: IS92a
GFDL GFDL-R15–a 4.5 × 7.5° 1958–2057: 1% compound increase
HadCM HadCM2 02.5 × 3.75° 1860–1989: historic CO2; 1990–2099: 1% compound increase
NCAR NCAR DOE-PCM 2.8 × 2.8° Until 1999: historic CO2; 2000–2099: ‘business as usual’ scenario (~IS92a)

Table 1. GCM simulations used in the analysis. Atmospheric resolution: meridional × zonal. Links to individual model pages 
available from www.mad.zmaw.de/IPCC_DDC/html/IS92A/index.html
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climatological normals. In the Czech Republic, 73 sta-
tions were available for supplying PREC data, 60 for
TEMP, and 5 for DTR and SRAD (M. New pers.
comm.). In developing the CRU climatology, station
data were interpolated as a function of latitude, longi-
tude, and elevation using thin-plate splines; see New
et al. (1999) for description of the method and valida-
tion of the CRU climatology. Although the detailed val-
idation of the CRU data for the Czech territory was not
made by the present authors, Fig. 3 indicates that these
data conform well with the Czech station data used
here, and the differences between the 2 data sources
are mostly much smaller than the differences between
either of the 2 climatologies and the GCMs. Therefore,
the CRU data are considered appropriate for the vali-
dation tests presented in the next section.

3.  VALIDATION OF THE GLOBAL CLIMATE
MODELS

The reliability of the scenario derived from a given
GCM is related to the ability of the model to simulate
the present climate conditions. The performance of
individual GCMs may differ for individual climate
variables as well as for different regions of the world.

Typically, GCMs are validated for their ability to
reproduce spatial patterns (McKendry et al. 1995,
Huth 1997) of selected variables and their annual

cycles (Nemesova & Kalvova 1997,
Nemesova et al. 1999). GCMs may also be
validated in terms of other characteristics,
e.g. heat waves (Huth et al. 2000) and
autocorrelations of daily extreme temper-
atures (Kalvova & Nemesova 1998). In
this study, only annual cycles of the
monthly means of the 4 variables consid-
ered here are validated. Only GHG inte-
grations were considered for the valida-
tion tests, as the baseline 1961–1990
annual cycles derived from the GHG and
GHG+A integrations were found to be
very similar (results not shown).

The GCM-based and observed annual
cycles for the baseline period are com-
pared in Fig. 3. The gridded data (GCMs
and CRU) were linearly interpolated to
South Moravia (17° E, 49° N) for this pur-
pose. The fit of the annual cycles is
assessed using several quantitative mea-
sures in Table 3. These measures include
BIAS (systematic deviation), COR (corre-
lation coefficient between observed and
GCM-simulated monthly means), and
mean square error with respect to
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Fig. 1. Land masks (grid boxes) of 7 GCMs over Europe (35 to 
75° N × 15° W to 30° E). Black: Czech Republic

Fig. 2. Centres of GCM grid boxes in or near the Czech Republic. Target
areas (grey circles): (A) South Moravia; (B) South Bohemia; (C) Beskydy 

mountains; (D) Prague; black dots: stations used to validate the GCMs
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(1) observed monthly means (E1), and (2) observed
monthly means corrected for the systematic deviation
(E 2). Note that a zero BIAS does not imply perfect fit,
and E 2 is highly correlated with the correlation co-
efficient. The lower the value of E1, the better the fit
between observed and model-simulated means and in
this case, a zero value does imply a perfect fit. Measure
E 2 is similar to E1, but insensitive to the systematic
deviation. Values of COR near 1 indicate that the
shapes of the annual cycles are in good agreement
irrespective of any systematic deviation or scale factor.
Ideally, the E1 measure should be the optimal criterion
for selecting the best-performing model. However, to
allow for systematic deviations which may result from
different definitions of the climatic variables in the var-
ious GCMs (e.g. different model level used to repre-
sent the surface temperature, or different definition of
shortwave radiation), E 2 must be considered as well.
To show the variability of the fit measures related to

the uncertainty of a single GCM, the range of the val-
ues related to the 4 members of the HadCM ensemble
simulations is also given in Table 3. Although ensem-
ble simulations were available only for HadCM, these
results serve as a basis when assessing the significance
of differences between individual GCMs. 

3.1. Precipitation (PREC)

Fig. 3 as well as the measures of fit in Table 3 suggest
that the NCAR model performs best in simulating
PREC. It yields a satisfactory fit for both mean annual
precipitation (measured by the BIAS) and the shape of
the annual cycle (measured by E1), which exhibits a
primary maximum in June and secondary maximum in
November. It overestimates the observed precipitation
by about 24%, and the correlation coefficient is 0.884.
Higher correlations are achieved by CSIRO and the
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Fig. 3. Validation of GCMs for (a) daily precipitation amount, (b) global solar radiation, (c) daily mean temperature, (d) daily tem-
perature range. HadCM is represented by the ensemble mean of 4 runs. OBS = average of 5 Moravian stations (only 1 station 

used for SRAD); CRU = interpolated from the CRU 0.5 × 0.5° database

a b

dc
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HadCM ensemble mean, but both models overesti-
mate the monthly precipitation means by a larger
amount, as indicated by the value of BIAS. GFDL has
the poorest performance, with COR near zero.
ECHAM and CGCM also do not provide satisfactory
results, even though ECHAM has a low mean devia-
tion from the observed cycle.

3.2. Solar radiation (SRAD)

The shape of the annual cycle of SRAD (maximum in
June and July) is mostly simulated well. Fig. 3 shows
that ECHAM underestimates, CGCM has a rather flat
maximum, and GFDL too sharp a maximum in July.
HadCM was not assessed, as solar radiation was not
available from this model. The most successful models
are CSIRO (according to E 2) and NCAR (according to
E1), and CCSR performs almost as well.

3.3. Daily average temperature (TAVG)

GFDL and CCSR overestimate the amplitude of the
annual cycle of TAVG; NCAR underestimates the
summer maximum by nearly 3°C; CGCM overesti-
mates the winter minimum by about 4.5°C. CSIRO and
HadCM are the best models with the lowest mean
square error (E1) and the highest (>0.99) correlation
with the observed annual cycle.

3.4. Diurnal temperature range (DTR)

DTR is generally underestimated by the GCMs. Most
models, however, reproduce relatively well the shape
of the annual cycle, having its maximum in summer
(July-August). ECHAM and CGCM have the greatest
systematic error. Omitting the systematic error, the
best fit (measured by E 2) is achieved by ECHAM,
NCAR and CCSR. Except for CGCM, the correlation
coefficients always have values greater than 0.9.

3.5. Assessment

Although it is not possible to state objectively which
is the ‘best overall’ model from these results, we iden-
tify 3 groups of GCMs according to their ability to
reproduce the present annual cycle of the 4 climate
variables studied for the Czech Republic. The first
group consists of those models which are among the
best in simulating at least 2 variables: CSIRO (PREC,
SRAD, TAVG), HadCM (PREC, TAVG, DTR), and
NCAR (PREC, SRAD); in cases that require a reliable
simulation of PREC and DTR, CSIRO and HadCM
might be preferred. The second group consists of
ECHAM and CCSR, which are about average at repro-
ducing most variables, and the third group contains
GFDL and CCCM, which exhibit the poorest perfor-
mance. However, it must be kept in mind that the vali-
dation was for a single location; the performance of the
GCMs will be different in other parts of the world, or
when overall performance of the models is examined. 
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BIAS COR E1 E 2

PREC
CCSR 0.874 0.615 0.973 0.209
CGCM 1.676 0.524 3.033 0.224
CSIRO 0.977 0.952 1.009 0.053
ECHAM 0.527 0.492 0.481 0.203
GFDL 0.819 –0.0300 1.095 0.424
HadCM 

Mean 0.775 0.895 0.668 0.067
Min. 0.732 0.868 0.598 0.062
Max 0.813 0.901 0.749 0.088

NCAR 0.375 0.884 0.242 0.101

SRAD
CCSR 7.643 0.997 120.83100 62.4100
CGCM 26.1110 0.997 773.03700 91.2620
CSIRO 8.369 0.997 104.40900 34.3730
ECHAM –26.93900 0.995 817.76100 92.0690
GFDL –3.4340 0.983 170.90000 159.10900
HadCMa – – – –
NCAR 6.483 0.995 90.3870 48.3580

TAVG
CCSR 0.031 0.995 2.689 2.688
CGCM 1.194 0.988 4.557 3.132
CSIRO 0.782 0.993 1.504 0.892
ECHAM –0.1230 0.984 2.010 1.995
GFDL –1.7790 0.98 7.173 4.007
HadCM 

Mean –0.7590 0.994 1.444 0.868
Min. –0.8790 0.992 1.235 0.763
Max. –0.6400 0.997 1.817 1.231

NCAR –1.6910 0.985 6.287 3.427

DTR
CCSR –3.1160 0.965 10.4330 0.725
CGCM –3.6150 0.848 14.7810 1.710
CSIRO –1.4500 0.932 4.196 2.095
ECHAM –3.6600 0.945 14.0010 0.608
GFDL – – – –
HadCM 

Mean –0.7990 0.932 1.592 0.954
Min. –0.8930 0.921 1.476 0.892
Max. –0.6380 0.939 1.764 1.069

NCAR –1.4400 0.946 2.718 0.644

aCloudiness used to estimate change in solar radiation

Table 3. Validation of GCMs in terms of the seasonal cycle of
4 climatic characteristics. Statistics for the HadCM model are
mean, minimum and maximum of 4 ensemble members. For
E1 and E 2, the 3 most successful models are marked by bold
and underline (best model), bold only (second best), and
underline only (third best), and the poorest model is marked
by strikeout. Measures (BIAS, COR, E1, E 2) are defined in 

Section 3. –: not available
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4.  CLIMATE CHANGE SCENARIOS

4.1. Introduction

Site-specific scenarios were developed from each of
the 7 GCMs and for each of the 4 target area locations.
The scenarios consist of changes in monthly means of
TAVG, DTR, PREC and SRAD. In the case of the
HadCM model, the change in SRAD was based on the
change in cloudiness: kSRAD = (kCLOUD)–1, where kSRAD

and kCLOUD are multiplicative changes in monthly
means of global solar radiation and cloud coverage,
respectively.

4.2. Methodology

The GCMs were run for a limited number of emis-
sion scenarios. Alternative techniques are therefore
used to develop scenarios for conditions for which a
GCM integration is not available. Similarly to other
authors (Huntingford & Cox 2000), statistical post-
processing is applied here to develop a ‘standardised’
scenario from a given GCM transient run. In develop-
ing this scenario, we hypothesised that the climate
change pattern (both annual cycle and spatial pattern)
is the product of the standardised scenario (which
defines the response of the variables to a 1°C rise in
TG and ΔTG. This is the pattern scaling technique
(Santer et al. 1990) used in the IPCC First Assess-
ment Report (Mitchell et al. 1990) and subsequently
adopted in climate change scenario generators
such as SCENGEN (Hulme et al. 1995, 2000); see
Houghton et al. (2001; Chapter 13.5.2.1) for further
references. Mitchell et al. (1999) and Mitchell (2003)
examined the applicability of the technique for esti-
mating spatial patterns of change in annual and sum-
mer temperature and precipitation. They used output
from the HadCM2 model and found that the tech-
nique worked better for temperature than for precipi-
tation, and for annual means than for summer means.
Huntingford & Cox (2000) examined applicability of
the technique for 9 surface and near-surface weather
variables. They used the HadCM3 model and found
that it performed best for temperature and solar radia-
tion, and poorest for precipitation. They also tested
the transferability of the patterns between different
emission scenarios; their results indicate that patterns
should not be scaled by factors related to the radiative
forcing if this forcing exceeds that used in deriv-
ing the standardised scenario. Mitchell et al. (1999)
pointed out that patterns derived from simulations of
GHG only should not be combined with scaling fac-
tors based on emission scenarios with strong aerosol
forcing.

In the simplest approach, the standardised scenario
may be determined by dividing the scenario related to
a selected period by ΔTG predicted by a given model
for that period. To make use of a longer portion of the
GCM integration, we determine the standardised sce-
nario as the weighted average of the series of scenarios
derived from several consecutive 10 yr slices. In partic-
ular, the standardised scenario is obtained from the
transient run by a linear regression (passing through
zero), in which the independent variable is ΔTG, and
the dependent variable is the change of a given vari-
able in a given month, Δym. The regression is applied
to the 9 points for the 10 yr slices from 2010 to 2099.
This regression procedure averages the scenario over
the entire period (which conforms to the idea that the
standardised scenario is an average response of local
climate to a 1°C rise in TG). Standardised scenarios of
the 4 variables based on the 7 GCMs and averaged
over the 4 target areas are shown in Fig. 4. Having ob-
tained the standardised scenario, the climate change
scenario for any period and any emission scenario for
which ΔTG can be estimated, is determined as

Δym =  ΔSym × ΔTG (1)

where ΔSym is the standardised change in the variable
y for month m, and Δym is the change in y resulting
from ΔTG. 

In this study, the ΔTG values were estimated by the
simple 1-dimensional climate model MAGICC (Harvey
et al. 1997, Hulme et al. 2000), which is available
from the CRU web page (http://www.cru.uea.ac.uk/
~mikeh/software/). The specific model used in
MAGICC is described in Wigley & Raper (1987, 1992,
1993) and Raper et al. (1996). In MAGICC a given emis-
sion scenario is converted to GHG and aerosol concen-
trations and radiative forcing, and the resulting ΔTG

and sea level are estimated using the climate sensitivity
factor defined in Section 4.3.3. MAGICC has been
used in many impact studies (Goldammer & Price 1998,
Kont et al. 2003) and in the Second and Third IPCC
Assessment Reports (Gates et al. 1996, Houghton et
al. 2001). Instead of using a simple climate model,
the GCM-based standardised scenario could also be
scaled by ΔTG simulated by the same GCM (see Table 2
for the values of ΔTG for selected periods). Applicability
of the pattern scaling technique is conditioned by
the assumption that changes in climatic variables are
proportional to ΔTG (see Section 4.3.2).

4.3. Uncertainties in the climate change scenario

Where pattern scaling is employed to specify the
scenario, the uncertainties are divided into 2 groups:
(1) Uncertainties that have an effect on the shape of the
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standardised scenario (Sections 4.3.1. and 4.3.2.): inter-
GCM uncertainty (differences between individual
GCMs), internal uncertainty of a given GCM, and
uncertainty related to the regression technique used
to determine the standardised scenario; to indicate
how the climate change scenario differs for various
locations in the Czech Republic, the variability at the 4
target areas is also included in this first group (‘choice-
of-site’ uncertainty). (2) Uncertainties in estimating
ΔTG (Section 4.3.3), which is used to multiply the
standardised scenario; this includes uncertainties in 2
input parameters of the MAGICC model: choice of an
emission scenario and climate sensitivity factor. In
addition, uncertainty related to the effect of aerosols,
which affects both the shape of the standardised sce-
nario and the value of ΔTG, is estimated in Section
4.3.4.

4.3.1. Uncertainties affecting seasonal patterns

Changes in the 4 climatic variables projected by the
7 GCMs are shown in Fig. 4. Although the scenarios

derived from individual GCMs differ, there exist some
common features: (1) In the case of the change in
TAVG, a good agreement exists between most models;
except in CGCM (lowest change) and CCSR (highest
change), the predicted annual mean temperature
increase resulting from a 1°C rise in TG ranges from
1 to 1.5°C. (2) DTR slightly increases in summer and
slightly decreases (except for CGCM) in winter.
(3) PREC increases in winter, but decreases in summer.
(4) SRAD increases in summer, and great uncertainty
exists between GCMs in winter.

Fig. 5 compares uncertainties related to (1) the
choice of GCM (inter-GCM uncertainty), (2) intra-
GCM variability (represented by the variability of the
4 runs of the HadCM ensemble simulations), (3) vari-
ability over the 4 target areas and (4) regression tech-
nique (discussed in Section 4.3.2.). As the numbers of
set members from which the variability is calculated
are very low, the results should be used with caution.
Nonetheless, Fig. 5 shows: (1) Uncertainty due to
choice of site has mostly a negligible effect on the
magnitude of change and on the shape of the annual
cycle of change; therefore, the single climate change

146

Fig. 4. Standardised GCM-based climate change scenarios for the Czech Republic: (a) precipitation, (b) solar radiation, (c) daily
mean temperature, (d) daily temperature range. ‘Y’ on x-axis: changes in annual mean. AVG: scenario averaged over all 7 

models. See Table 1 for model acronyms

a b

dc
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scenario is representative of the entire Czech Repub-
lic. (2) Choice of GCM has a significant effect on both
the magnitude of change and shape of the annual cycle
of changes; for example, the ECHAM-based scenario
represents a warmer and drier climate, while the
NCAR-based scenario represents a lower increase in
temperature and a wetter climate. (3) Intra-GCM un-
certainty is mostly lower than inter-GCM variability
(which agrees with the results of Giorgi & Francisco
2000); however, intra-GCM uncertainty is sometimes
similar to or larger than inter-GCM uncertainty, indi-
cating that differences between GCMs can be domi-
nated by their internal variability.

4.3.2. Uncertainty in the pattern scaling technique

The pattern scaling technique assumes a linear rela-
tionship between ΔTG and changes in the site-specific
climatic variables (Eq. 1). The coefficient of propor-
tionality (i.e. the slope parameter, or the standardised
change in a given variable) is determined by a linear re-
gression applied to the GCM output series (Section 4.2).

Therefore, the reliability of the pattern scaling tech-
nique may in part be quantified by the error involved
in determining the slope parameter and/or by the level
of significance at which we reject the hypothesis that
the slope parameter for a given variable in a given
month is zero. The lower the error in the slope parame-
ter, the greater is the probability of rejecting the null
hypothesis and the higher is the reliability of the pat-
tern scaling technique. Uncertainty due to the regres-
sion (averaged over all GCMs) is shown in Fig. 5
(‘regress’ bars capped by black circles) and the statisti-
cal significance of monthly changes is in Table 4,
which shows the number of months for which the null
hypothesis is rejected at the 0.05 level. 

The results show: (1) The relative errors involved in
determining the regression coefficients are lowest for
TAVG; the null hypothesis is rejected for all months
and all GCMs. On the other hand, relative errors
involved in determining the standardised changes in
the other 3 variables are much higher and the null
hypothesis is accepted in 48% (for PREC) to 58% (for
DTR) of months (averaged over all 7 GCMs). The
greatest errors—showing the lowest correlation with

147

a b

dc

Fig. 5. Uncertainties for changes in (a) precipitation, (b) solar radiation, (c) daily mean temperature, (d) daily temperature range,
due to (1) the regression involved in determining the standardised scenario (‘regress’), (2) choice of site, (3) choice of model
(‘GCM’), (4) internal variability of the HadCM model (‘HadCM’). Vertical bars denote, in ‘regress’: standard error of the linear
regression coefficient; in the other 3 cases: mean ± SD range, in site uncertainty calculated from the AVG scenarios for the tar-
get areas, in GCM uncertainty from the 7 GCM-based scenarios, and in internal variability of HadCM from the 4 

HadCM scenarios 
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ΔTG—are associated with changes in PREC. This
agrees with the results of Mitchell et al. (1999), who
found that many regional precipitation changes were
not statistically significant. (2) Uncertainty in annual
means is lower than uncertainty in monthly means. (3)
Furthermore, there exist differences between individ-
ual GCMs: The smallest errors (implying higher fre-
quency in rejecting the null hypothesis) occur in the
ensemble mean of HadCM; errors involved in the
single members of the ensemble (rows H1 to H4) show
errors comparable with other GCMs. The patterns
derived from the ensemble mean of HadCM have
higher significance because internal variability is partly
smoothed out in the ensemble mean. Our finding also
agrees with results in Mitchell et al. (1999), who found
that the sampling error in the mean of 4 HadCM2 sim-
ulations is about half as high as in a single simulation.
The single run of the CCSR model exhibits nearly the
same level of proportionality as the HadCM ensemble
mean. It should, however, be stressed that the errors
involved in determining the standardised scenario do
not say anything about the reliability of the GCMs, as
they only quantify the applicability of the pattern scal-
ing technique. The technique appears to be applicable
to temperature changes; applicability to the other 3
variables is problematic.

In comparison with the uncertainties discussed in
Section 4.3.1., we conclude that the magnitude of the
uncertainty due to the regression technique is greater
than the choice-of-site uncertainty, but lower than the
inter-GCM uncertainty.

4.3.3. Uncertainties in the scaling factor

The ΔTG values determined by the MAGICC model
for selected emission scenarios and climate sensiti-
vities are shown in Fig. 6 and the values for selected
years and CO2 concentrations in Table 5.

Emission scenario (without consideration of aero-
sols). There exists a variety of emission scenarios based
on different assumptions about future socio-economic
developments. In the IS92 scenarios, the CO2 concen-
tration rises from 354 ppm in 1990, to between 471
(IS92c) and 949 ppm (IS92e) in 2100. In the newer
SRES scenarios (A1, A2, B1 and B2) developed for the
IPCC Third Assessment Report, the range of CO2 con-
centrations in 2100 is narrower: from 548 (Scenario B1)
to 826 ppm (Scenario A2). The range of the emission
scenarios entails a range of ΔTG values (Fig. 6), which
widens towards the end of the 21st century: Assuming
intermediate climate sensitivity and no aerosol effect,
the ratio of ΔTG values related to the IS92e and IS92c
scenarios increases from 1.32 in 2025 to 2.44 in 2100.
The range of the changes related to the 4 SRES sce-
narios is lower, as the ratio of the highest (SRES-A2) to
the lowest (SRES-B1) scenarios increases from 1.14 in
2025 to 1.72 in 2100.

Climate sensitivity. The equilibrium climate sensiti-
vity parameter (hereafter referred to as ‘climate
sensitivity’, ΔT2×) usually refers to the equilibrium
change in TG following a doubling of the atmos-
pheric (equivalent) CO2 concentration. Due to the
inertia of the climate system, the temperature re-
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PREC SRAD TAVG DTR AVG4

GCM
CCSR 8 8 12 9 9.25
CGCM 5 6 12 7 7.50
CSIRO 6 7 12 4 7.25
ECHAM 3 6 12 5 6.50
GFDL 3 3 12 – 6.00
HadCM 9 8 12 100 9.75
NCAR 7 6 12 7 8.00
AVG7 5.86 6.29 12.00 7.00 7.75

HadCM
H1 4 7 12 4 6.75
H2 5 8 12 8 8.25
H3 7 5 12 6 7.50
H4 5 7 12 9 8.25

Table 4. Test of the significance of monthly changes in 4
climatic characteristics. Number of months per year in which
the change in monthly mean is significantly different from
zero (p = 0.05). AVG4 is the number of months averaged over
all 4 variables, AVG7 is the number of months averaged over
all GCMs. See Table 1 for the model acronyms; H1, H2, H3,
H4 denote the 4 ensemble runs of the HadCM model. 

–: not available

Fig. 6. Change in global mean temperature calculated by the
simple climate model MAGICC for 7 emission scenarios. The
curves relate to 3 IS92 scenarios and 4 SRES scenarios using
the intermediate climate sensitivity (2.5°C). Vertical bars in
the right part of the graph demarcate ΔTG in 2100 related to
low/intermediate/high climate sensitivity (ΔT2 × = 1.5, 2.5 and

4.5°C). Effect of aerosols is not considered
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sponse of transient GCM simulations to doubled CO2

generally decreases with increasing rate of CO2 rise
and is therefore always lower than the climate sensi-
tivity. The value of the climate sensitivity factor is the
subject of much discussion. According to the IPCC
(Houghton et al. 2001), the value is likely to be in
the range 1.5 to 4.5°C (no confidence interval is
stated) with 2.5°C being the best estimate. Andro-
nova & Schlesinger (2001) used a simple climate/
ocean model, the observed near-surface temperature
record, and a bootstrap technique to estimate the
probability density function for ΔT2×; they found that
due to natural variability and uncertainty in radiative
forcing, the 90% confidence interval for ΔT2× is 1.0 to
9.3°C. This implies a 54% likelihood that ΔT2× lies
outside the IPCC range. Based on several sources
(including Andronova & Schlesinger 2001), Wigley &
Raper (2001) assigned 90% confidence to the IPCC’s
1.5 to 4.5°C range.

In this study we used the 3 values of climate sen-
sitivity proposed by the IPCC: Low = 1.5°C; Intermedi-
ate = 2.5°C; High = 4.5°C. The range of values of ΔTG

related to climate sensitivities within the 1.5 to 4.5°C
interval is illustrated in Fig. 6 by the vertical bars at
right. The values of ΔTG in Table 5 imply that the ratio
of the TG changes related to High vs. Low climate
sensitivities is within 1.9 to 2.25 for various emission
scenarios and time projections.

Summary. Both the choice of the emission scenario
and the climate sensitivity factor are significant
sources of uncertainty in estimating ΔTG. In the case of
the IS92 scenarios, the ratio of ΔTG values related to the
high and low emission scenarios is lower than the ratio
of values related to the high and low climate sensitivi-
ties in the first half of this century, but higher at the end
of the century. The range related to the 4 SRES scenar-
ios is lower (in comparison to the IS92 scenarios) and
the uncertainty due to the climate sensitivity domi-
nates also at the end of the century. It should, however,
be noted that some SRES scenarios fall outside the
range of the 4 SRES scenarios considered here. For
example, the SRES-A1FI scenario, which is the ‘fossil
intensive’ version of the SRES-A1 scenario, implies a
12 to 15% increase in radiative forcing in the second
half of the 21st century, resulting in a temperature rise
that is 12 to 15% higher than under the SRES-A2
scenario.

4.3.4. Effect of aerosols

Atmospheric aerosols affect the transmittance of
radiation through the atmosphere, and thus tem-
perature and other climatic characteristics. The direct
radiative effect of the aerosols relates to scattering and
absorption of solar and infrared radiation in the atmo-

149

Emission scenario Climate sensitivity 2025 2050 2100 1.5 × CO2 2 × CO2

IS92c 412 447 471 >2100 >2100
Low 0.46 0.70 0.90 – –

Intermediate 0.66 1.02 1.35 – –
High 0.92 1.45 2.02 – –

IS92a 433 510 706 2047 2092
Low 0.55 0.95 1.72 0.90 1.59

Intermediate 0.78 1.37 2.52 1.30 2.33
High 1.09 1.93 3.63 1.83 3.36

IS92e 450 562 949 2037 2068
Low 0.62 1.12 2.27 0.85 1.52

Intermediate 0.87 1.61 3.30 1.21 2.19
High 1.20 2.25 4.71 1.68 3.09

SRES-B1 420 467 548 2065 >2100
Low 0.49 0.76 1.17 0.92 –

Intermediate 0.70 1.11 1.74 1.35 –
High 0.98 1.57 2.57 1.94 –

SRES-A2 438 535 826 2041 2077
Low 0.56 1.03 2.06 0.86 1.56

Intermediate 0.80 1.48 3.00 1.23 2.27
High 1.10 2.08 4.29 1.71 3.22

Table 5. Changes in global mean temperature, ΔTG, calculated by the MAGICC model. Baseline period: 1961–1990; baseline CO2

level: 333 ppm. Climate sensitivities: low ΔT2 × = 1.5°C; intermediate ΔT2 × = 2.5°C; high ΔT2× = 4.5°C. Only the effect of green-
house gases is considered. The MAGICC climate model does not run beyond 2100, and values of ΔTG are not available (–) when
the required CO2 concentration is attained after 2100. Bold: CO2 level (ppm) attained in the given year; bold italic: year in 

which the given CO2 level is attained
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sphere, and the indirect effect is broadly defined as
the overall process by which aerosols perturb the
earth–atmosphere radiation balance by modulation of
cloud albedo and cloud amount (Houghton et al. 2001,
Chapter 5). Unlike the majority of the GHGs, the effect
of which does not depend on the geographical distrib-
ution of their sources, aerosol effects will be much
more region-specific, and this makes their assessment
more complex. In this study, we used the pattern scal-
ing technique and assessed aerosol effects in 2 stages:
effect on the pattern (standardised scenario), and
effect on ΔTG. 

Effect on seasonal patterns. This was assessed by
comparing scenarios derived from GHG with GHG+A
simulations. Simulations made with 6 GCMs were
included in the analysis; NCAR was excluded, as the
GHG plus GHG+A pair of simulations was not avail-
able. Fig. 7 shows the differences between the GHG
and GHG+A scenarios for TAVG and PREC, while the
vertical bars represent the variability of this differ-

ence. Averaged over all GCMs, the effect of aerosols
on temperature change is slightly negative (positive in
summer, negative during the rest of the year) and the
effect on the precipitation change is rather indistinct
in the first half of the year and positive in the second
half of the year. Note, however, that this relates to
the standardised changes. Considering the effect of
aerosols on the predicted ΔTG for the IS92a emission
scenario (Fig. 8), the overall effect of aerosols on the
temperature change is negative for all months of
the year.

The statistical significance of the aerosol effect was
tested for each GCM, each variable and each month of
the year (Table 6), on the basis of the standardised
changes in individual monthly climatic characteristics
and their standard errors. Differences between GHG
and GHG+A are mostly significant, and the signifi-
cance level is similar for all variables, months and
GCMs. In spite of this, Fig. 7 shows that the aerosol
effect is associated with great uncertainty, as the mean
magnitude of the aerosol effect is mostly lower than its
inter-GCM variability, which is lower than (in the case
of the temperature changes) or comparable with (pre-
cipitation) the inter-GCM uncertainty in GHG simula-
tions (grey vertical bars).

Effect on ΔTG. The values of ΔTG were calculated by
the MAGICC model. This model considers 3 aspects of
aerosol forcing: direct and indirect forcing from fossil
fuel emissions and forcing from biospheric emissions
(details in Wigley & Raper 1992, Raper et al. 1996). The
difference in ΔTG with and without aerosols is shown in
Fig. 8. In accordance with the expected increase of sul-
phate emissions in the IS92 scenarios, the effect of
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Fig. 7. Differences between standardised scenarios based on
GHG+A and GHG simulations: (a) daily precipitation amount,
(b) daily mean temperature. Lines represent differences
related to 6 GCMs and vertical black bars with black circles
show mean ± SD. Grey vertical bars centred around the x-
axis indicate uncertainty related to the choice of GCM. 

See Table 1 for the model acronyms

Fig. 8. Effect of changes in atmospheric aerosol concentration
on change in global mean temperature (ΔTG) according to
the MAGICC model, for intermediate climate sensitivity
(2.5°C). d(ΔTG): difference in ΔTG with respect to 1990, simu-

lated with and without the effects of aerosols

b

a
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aerosols is negative (cooling), except for the IS92c sce-
nario, in which the aerosols contribute to warming at
the end of the 21st century; this is because the aerosol
emissions are assumed to decrease in the IS92c sce-
nario, so that the atmospheric aerosol concentration
falls below the present state. Due to the recently recon-
sidered prognosis of future development in aerosol
emissions (Nakicenovic & Swart 2000), the net effect of
aerosols in the SRES scenarios on ΔTG is positive
(SRES-B1 and SRES-B2), or initially negative and later
positive (SRES-A1 and SRES-A2). 

4.3.5. Combining the uncertainties

What is the combined effect of all these uncertain-
ties? We employed the uncertainties based on the
GHG simulations in a stochastic model using the fol-
lowing assumptions: (1) The climate change scenario
was determined using the pattern scaling technique,
i.e. it was defined as a product of the standardised sce-
nario and ΔTG. (2) The intra-GCM uncertainty was not
considered, as it was already included in the inter-
GCM uncertainty, which was derived from a set of
scenarios based on single runs of individual GCMs.
(3) Uncertainty due to the choice of site (as discussed
above) was not considered, because it was related to
the variability of the scenarios over a territory of a
given size, while here we are concerned with the
uncertainty related to a specific site. (4) The above
assumptions imply that the uncertainty in the stan-
dardised scenario is given by the inter-GCM un-
certainty and the regression-based uncertainty; for
simplicity, we assumed that these 2 uncertainties
(deviations from the mean) are normally distributed.
(5) Uncertainties in ΔTG were not considered sepa-
rately; we used the probability distribution function
developed by Wigley et al. (2001), who found on the
basis of a perturbation analysis of a simple climate
model that TG will rise by 1.7 to 4.9°C (90% probability
interval) from 1990 to 2100. We approximated the
probability distribution function in Wigley et al. (2001)
by the lognormal distribution: (ΔTG + 4.3) ~ logN(2, 0.13)
for 2100. 

On the assumption that the 3 types of uncertainty act
independently, the resulting stochastic model is

X =  (X0 + eGCM + ereg) × (Y – 4.3) (2)

where X is a projected change in the variable, X0 is
the mean value of the standardised change in the
variable, eGCM and ereg are random numbers with
N(0,s2

GCM) and N(0,s2
reg) distributions, s2

GCM and s2
reg

are variances representing inter-GCM and regression
uncertainties, and Y is a random number with a
logN(2,0.13) distribution. A single realisation of X is
then driven by 3 random values: eGCM, ereg and Y. In
cases where the uncertainty due to ΔTG is omitted, the
term (Y – 4.3) in Eq. (2) is replaced by its median
value, 3.09. When the inter-GCM and/or regression
uncertainties are omitted, the values of eGCM and/or
ereg are set to zero.

This stochastic model was used to assess uncertainty
in temperature and precipitation changes projected for
2100. For each month and each of the 2 variables,
Eq. (2) was used to generate 50 000 realisations of X
to produce a smooth probability distribution function
(PDF). Fig. 9 shows the combined effect of the 3 uncer-
tainties (inter-GCM uncertainty, uncertainty related to
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PREC SRAD TAVG DTR SUM

CCSR
Year 7 8 6 5 26
DJF 1 3 2 1 7
MAM 3 3 1 1 8
JJA 1 1 1 1 4
SON 2 1 2 2 7
α (%) –3– –0+ 80– 93–

CGCM
Year 7 11– 9 8 35
DJF 1 3 3 3 10
MAM 2 2 3 2 9
JJA 2 3 2 0 7
SON 2 3 1 3 9
α (%) 29+ –0+ –0– – 0+

CSIRO
Year 9 7 10– 8 34
DJF 2 2 2 2 8
MAM 2 2 2 1 7
JJA 2 1 3 2 8
SON 3 2 3 3 11
α (%) 0 0– –7+ – 0–

HadCM
Year 8 8 8 7 31
DJF 3 2 1 3 9
MAM 1 2 2 1 6
JJA 2 3 3 2 10
SON 2 1 2 1 6
α (%) 90+ –0– 24– –0+

Total
Year 31– 34– 33– 28– 126–
DJF 7 10– 8 9 34
MAM 8 9 8 5 30
JJA 7 8 9 5 29
SON 9 7 8 9 33

Table 6. Comparison of Simulations GHG (greenhouse gas) vs
GHG+A (greenhouse gas + aerosol) in the 4 GCMs for which
the simulations run until the end of the 21st century: number
of months in which the difference between GHG and GHG+A
scenarios is statistically significant (p = 0.05) in each season
(DJF, MAM, JJA, SON) and the whole year. α is the minimum
value of the level of significance at which we reject the
hypothesis that changes in the annual mean are significantly
different between GHG and GHG+A (the lower the value of
α, the more significant is the difference) +/– after α indicates
that the GHG+A change is greater/lower than the GHG 

change. See Table 1 for the model acronyms
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the regression technique and uncertainty in ΔTG) in
terms of the quantiles of the PDFs for individual
months. The effects of the 3 uncertainties, both singly
and in combination, on the PDF are illustrated in
Fig. 10 for the change in January precipitation. In
Fig. 9 we see:

(1) Uncertainty due to the regression contributes
only insignificantly to the overall uncertainty in both
temperature and precipitation projections. This relates
to the fact that the regression uncertainty is lower com-
pared to the inter-GCM uncertainty (Fig. 5), and the
aggregate uncertainty (expressed in terms of standard

deviation) results as the root square of the sum of
squares of the 2 uncertainties—e.g. when the latter
uncertainty is 50% lower than the former uncertainty
alone, then the aggregate uncertainty is only 12%
higher.

(2) For temperature, the effect of ΔTG uncertainty
alone on monthly temperature changes is 14% higher
(increase in the interquartile range, averaged over
12 mo) than that of inter-GCM uncertainty alone, and
9% higher than the aggregate inter-GCM plus regres-
sion uncertainty. Consequently the added ΔTG un-
certainty significantly increases the aggregate uncer-
tainty: the combined effect of all 3 uncertainties is 55%
higher (considering the interquartile range) than inter-
GCM uncertainty alone, and 60% higher if the 90%
uncertainty interval is considered.

(3) For precipitation, the effect of ΔTG uncertainty
alone is much lower than that of inter-GCM uncer-
tainty, because the final scenario is obtained as a prod-
uct of ΔTG and the standardised scenario, which is rel-
atively close to zero (compared to the standardised
temperature scenario). Consequently the combined
effect of all 3 uncertainties is only 14% higher than
that of inter-GCM uncertainty alone (22% in the case
of the 90% uncertainty interval).

Uncertainty in the climate change scenario thus
increases with increasing number of uncertainties.
However, in some cases, the combined effect of all
uncertainties is not significantly higher than the effect
of the most significant uncertainty alone, e.g. in the
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Fig. 9. Combination of uncertainties in changes in precipita-
tion (top) and temperature (bottom) projected for the Czech
Republic in 2100 using the pattern scaling technique. Vertical
bars represent percentiles (5%, 25%, 50%, 75%, 95%) of the
distribution function of projected changes (see Section 4.3.5.
for description of the stochastic model). GCM: changes
affected only by inter-GCM uncertainty; GCM+reg: com-
bined effect of uncertainties due to choice of GCM and linear
regression used to determine the standardised scenarios;
GCM+reg+ΔTG: effect of the previous 2 uncertainties com-
bined with uncertainty in the change of the global mean

temperature; ΔTG: uncertainty only due to ΔTG

Fig. 10. Probability distribution function (PDF) of January
precipitation change modelled by Eq. (2). GCM, reg,
ΔTG PDFs driven only by inter-GCM uncertainty, linear
regression uncertainty, or uncertainty due to ΔTG, respec-
tively. GCM+reg, GCM+reg+ΔTG PDFs driven by combina-

tions of the uncertainties specified



Dubrovsky et al.: Uncertainties in climate scenarios

precipitation scenario dominated by inter-GCM uncer-
tainty.

4.4. Choice of a representative set of climate 
change scenarios

Based on the results of the validation tests (Section 3)
and the uncertainty analysis (Section 4.3), we recom-
mend a combination of 3 GCM-based standardised
scenarios and 3 projections of TG for impact studies in
the Czech Republic. The GCMs selected represent
various combinations of the changes in temperature
and precipitation, and the 3 values of ΔTG represent
low, intermediate and high estimates of the magnitude
of change. This recommendation represents a trade-
off between using only a single scenario (not recom-
mended as it does not address any of the uncertainties)
and all scenarios (desirable but too laborious for many
impact studies).

4.4.1. Choice of GCM

It is preferable to use climate change scenarios based
on those GCMs which simulate the present climate
reasonably well (based on the assumption that this will
hold true for the future climate). The results obtained
in the validation analysis (Table 3) suggest that CSIRO
(or NCAR), ECHAM and HadCM are a representative
triplet; the ECHAM-based scenarios are already com-
monly used in the Czech Republic. In this set of scenar-
ios, HadCM would represent climate change charac-
terised by lower temperature increase (especially in
spring) and insignificant change in annual preci-
pitation (decrease in summer and increase in winter
and spring). ECHAM would represent climate change
with a higher temperature increase and slight precipi-
tation decrease (due decreases in April and summer
precipitation). CSIRO or NCAR would represent cli-
mate change with lower temperature increase and
moderate precipitation increase. Although the averag-
ing of scenarios obtained from various GCMs is not
generally recommended, we think that a scenario
averaged over several GCMs might be acceptable
when a single scenario is required by impact re-
searchers. The physical inconsistency of an averaged
scenario appears to be less when the changes defined
by individual scenarios are relatively small. Trnka et
al. (2004) found that the impact on crop yields pre-
dicted by an averaged climate change scenario fitted
the impact averaged over results from single GCM
scenarios. An averaged scenario is also used in
SCENGEN (Hulme et al. 1995, 2000), a scenario
generator  widely used in impact studies.

4.4.2. Choice of parameters for estimating change in
global mean temperature

Three values of ΔTG can be used to scale the stan-
dardised scenarios: low, intermediate and high esti-
mates. A similar approach was adopted by Hulme et al.
(2002). The most straightforward way is to base the
estimates on the following combinations of the emis-
sion scenario and climate sensitivity factor: low esti-
mate of ΔTG based on low emission scenario (IS92c or
SRES-B1) and low climate sensitivity (1.5°C); inter-
mediate estimate of ΔTG based on intermediate emis-
sion scenario (IS92a or SRES-A1) and intermediate
climate sensitivity (2.5°C); high estimate of ΔTG based
on high emission scenario (IS92e or SRES-A2) and high
climate sensitivity (4.5°C). In any case, however, one
should be very careful in using high values of the scal-
ing factor as they could result in unrealistic annual
cycles of some climatic variables. For example, by mul-
tiplying the CCSR-based standardised scenario with
ΔTG = 5°C, precipitation would decrease by 60% in
August and increase by 65% in March—such a distor-
tion of the annual cycle does not appear realistic. To
avoid this situation, one should not employ a scaling
factor that is close to or greater than the maximum
value of GCM-simulated ΔTG involved in determining
the standardised scenarios from a given GCM. This
constraint is consistent with the non-transferability of
the patterns to emission scenarios with higher radia-
tive forcing (see Section 4.2). The values of ΔTG related
to the 2070 to 2099 period (Table 2) may be used to
approximate these upper limits for this study.

5.  SUMMARY AND CONCLUSIONS

The pattern scaling technique was applied to cli-
mate change scenarios for the territory of the Czech
Republic from the output of several GCMs for 4 vari-
ables: daily mean temperature, daily temperature
range, precipitation amount and solar radiation sum.
The GCMs were validated in terms of annual cycles
derived from the 30 yr (1961–1990) slice of GCM
integrations compared to averaged observations at 5
South Moravian stations, and 0.5 × 0.5° gridded obser-
vational data available from CRU. The annual cycles
were compared (Table 3) using several quantitative
measures. 

The standardised climate change scenarios (Fig. 4)
were developed from 90 yr (2010–2099) data simulated
by 7 GCMs. Values of ΔTG which are used to scale the
standardised scenario, were calculated by the simple
climate model MAGICC for 3 selected periods and 2
fixed CO2 concentrations, 3 climate sensitivities and
5 emission scenarios (Table 5).
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Sources of uncertainty were divided into 2 groups. 
(1) Uncertainties in determining the standardised

scenario: regression technique, choice of GCM, inter-
nal GCM variability, and choice of site. Only these
uncertainties affect the seasonal cycle of climate
change; the greatest uncertainty is related to the
choice of GCM, but internal GCM uncertainty is simi-
lar to inter-GCM uncertainty in some cases (e.g. in
autumn months for the daily temperature range; see
Fig. 5). The magnitude of the uncertainty due to the
regression technique is higher than the choice-of-site
uncertainty, but lower than the inter-GCM uncertainty.
The pattern scaling technique assumes proportionality
of the changes in climatic characteristics to ΔTG. This
assumption is met only for changes in temperature in
the Czech territory. In light of the great uncertainty in
the monthly changes of some variables, it might be
preferable to present the scenario in terms of the
seasonal changes or to smooth the monthly changes,
and thereby reduce month-to-month variability.

(2) Uncertainties in determining ΔTG: choice of emis-
sion scenario and the value for climate sensitivity. The
differences between the emission scenarios are lower
than the uncertainty related to the climate sensitivity
in the first half of the 21st century, but higher in the
case of the IS92 scenarios at the end of the century. The
range of ΔTG values related to the 4 SRES scenarios is
lower and the uncertainty due to the climate sensitivity
dominates at the end of the century.

Aerosols generally have a cooling effect on the sur-
face air temperature. Averaged over all GCMs, the
effect of aerosols on standardised temperature change
in the Czech Republic is slightly negative (positive in
summer, negative in the rest of the year) and the effect
on precipitation change is indistinct in the first half of
the year and positive in the second half of the year. Dif-
ferences between the GHG and GHG+A scenarios are
mostly statistically significant. The mean magnitude of
the aerosol effect is mostly lower than its inter-GCM
variability, which is lower than (in the case of the tem-
perature changes) or similar to (in the case of precipi-
tation) the inter-GCM uncertainty in the GHG simula-
tions. Sensitivity to the uncertainty in sulphate forcing
was significantly lower in the SRES scenarios than in
the IS92a scenario (Houghton et al. 2001).

A stochastic model was developed to assess the com-
bined effect of inter-GCM uncertainty, regression
uncertainty and uncertainty in ΔTG on temperature
and precipitation scenarios. The combined effect of the
first 2 uncertainties was not significantly higher than
the effect of inter-GCM uncertainty alone. While
uncertainty in the temperature scenario is dominated
by inter-GCM and ΔTG uncertainty, uncertainty in the
precipitation scenario is dominated only by inter-GCM
uncertainty. For temperature, the combined effect of

all 3 uncertainties (average value of the interquartile
range for 12 mo) is 55% higher than inter-GCM uncer-
tainty alone. For precipitation, the combined uncer-
tainty is only 14% higher. 

A set of scenarios is recommended for use in impact
studies in the Czech Republic. The set consists of com-
bining 3 GCMs (CSIRO or NCAR, ECHAM, HadCM)
and 3 values (low, intermediate, high) of the scaling
factor. More recent GCM simulations and emission
scenarios, and outputs from regional climate models
are being made available for developing climate
change scenarios. However, we think that some of the
results presented here are applicable: (1) assessment
of the regression uncertainty in determining the stan-
dardised scenario from a long GCM simulation and
(2) the stochastic model for the combination of the un-
certainties. We plan to use new GCM simulations to
extend this analysis to the planet as a whole. 
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