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1.  INTRODUCTION

Chinese agriculture has undergone tremendous
structural changes over the last decades. The average
staple crop productivity has doubled in 25 yr while the
population has increased by 25% (CSY 2003). Winter
wheat is one of China’s most important staple food
crops, with a total farming area of nearly 24 million ha
and a production exceeding 92 billion kg in 2002 (CSY
2003). Although China has been the world’s largest
wheat producer since 1983 (FAOSTAT data 2004),
exports have only exceeded imports since 2001
(according to CSY 2002) or 2003 (according to FAO-
STAT data, 2004; available at http://faostat.fao.org/).
Following World Trade Organization agreements,
China’s decreasing import tariffs are likely to raise

the demand for land-intensive cultivation, such as
wheat, for the domestic market (FAO 2002).

Winter wheat growth and productivity is sensitive to
temperature and precipitation, which determine both
phenological development and growth rates (Bauer et
al. 1984). The East Asian monsoon system has a ten-
dency to cause low temperatures and regional to large-
scale droughts in the northern China, and high tem-
peratures, continuous rain, severe floods and hail
storms in southern China. These meteorological disas-
ters have adverse effects on all forms of agriculture,
including winter wheat. As a result winter wheat pro-
duction fluctuates inter-annually with varying meteo-
rological conditions (e.g. Tao et al. 2004).

In addition to interannual variation, climate in China
is in the process of change. The average annual tem-
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perature for China as a whole has increased by 0.5 to
0.7°C (Wang et al 2004), while total precipitation has
decreased (Zhai et al 1999) over the last 50 yr. More-
over, for the period 1990 to 2100 the global surface air
temperature is projected to increase by 1.4 to 5.8°C as
a result of increasing concentrations of atmospheric
carbon dioxide and other greenhouse gases (IPCC,
2001). Consequently the regional climate in China will
also be affected (Ding et al. 2006, Qian et al. 2004).

To assess possible impacts of climate variability and
change on crop production, crop models have been
extensively applied (Riha et al. 1996, Dai 1997, Lin et
al. 1997, Zhang & Wang 1998, Hulme et al. 1999, Lal et
al. 1999, Mavromatis & Jones 1999, Alexandrov &
Hoogenboom 2000, Xiong et al. 2001). While many
studies for China have focused on rice production (e.g.
Ge 2002), relatively few have dealt with wheat.
Recently, Wu (2003) conducted an experiment for 2 yr
(2000–2001) at Yucheng experiment station (116° 36’ E,
36° 57’ N), Shandong province. The author retrieved a
series of parameters for WOFOST which must be
changed according to different winter wheat cultivars,
soil types and climate conditions. This setup of the
model will also be used in this study.

To understand the impacts of climate change on
agricultural productivity and operations in the future,
it is necessary to investigate how agriculture has
responded to the historic climate change. Climatic
variables such as air temperature, wind speed and
solar radiation all have their roles in determining pro-
ductivity. It is the combined effect of all the climatic
variables that has the greatest impact on yields. To
understand the relative role played by the changes in
the various climatic variables, including increased air
temperature, a crop model was used to simulate poten-
tial yields of winter wheat. The objectives of the pre-
sent study were to tune and validate the WOFOST
model with observations from 12 provinces in China,
and to assess the influence of climate change on winter
wheat between temperate, semi-humid regions and
warm, humid climate regions of China during
1961–2000. In particular, the different influences of
historic climate change on productivity of winter wheat
were identified for the climate regions of China. By
excluding the effects of precipitation, the present study
focused on the climatic effects of temperature, solar
radiation, air humidity and wind.

2.  MATERIALS AND METHODS

2.1.  Study area

Winter wheat is planted in Shandong, Hebei, Shanxi,
Shaanxi and Henan provinces in northern China as

well as in Jiangshu, Anhui, Hubei, Sichuan, Chong-
qing, Guizhou, Yunnan provinces in southern China
(Fig. 1). In northern China, the winter wheat region
has an annual mean temperature of 11.2 to 14.4°C.
Summer is rainy and hot (monthly mean temperatures
range from 22 to 28°C) whereas winter is dry and cold
(monthly mean temperatures range from –10 to 1°C).
The total annual precipitation generally ranges from
400 to 1000 mm (China Meteorological Administration
2000) depending on circulation patterns and topo-
graphic features. While in southern China, most of the
winter wheat region lies in warm and humid monsoon-
controlled climatic zones. Temperature in winter is
higher than that in northern China (0 to 5°C), summer
is hot (25 to 28°C). The precipitation is around 800 to
1500 mm.

For this analysis the winter wheat regions in China
are divided into 50 ecological zones based on climate,
soil, land use and current agriculture practices (China
Meteorological Administration 2000). Hence 50 sta-
tions, 1 representative for each zone were selected and
winter wheat growth and yields were simulated for
these stations (Fig. 1).

2.2.  The WOFOST model

WOFOST (World Food Studies) originated in the
framework of interdisciplinary studies on world food
security and potential world food production. The lat-
est version (7.1.2) was issued in 2002 and is available
as freeware on the internet (www.alterra.wur.nl). Supit
et al. (1994) and Boogaard et al. (1998) describe the
model in detail.

WOFOST was developed to simulate the effect of
cultivar, planting density, weather, soil water and
nitrogen on crop growth, development and yield. The
model has been used for crop growth monitoring
(Lanen et al. 1992), potential yield forecasting on
regional and national scales (Rötter 1993, Wolf 1993),
as well as for climate change impact scenarios (van
Diepen et al. 1987, Wolf & van Diepen 1991, Wolf
1993). Furthermore, the model has been applied in dif-
ferent climatic regions (Wolf et al. 1989, Savin et al.
2001), including northern China (Wu 2003). Wu con-
ducted an experiment over 2 successive years (2000–
2001), in which crop growth was monitored every 5 d,
including tiller (a growing stage of winter wheat) num-
ber, leaf area index, fresh and dry weight of all organs,
filling rate and plant height. The model was calibrated
to obtain values of the parameters using the experi-
mental data in 2001, and then validated with data from
2000. The following crop growth simulation results
were examined: potential production, water-limited
production, potential total above-ground dry matter
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and water limited total above-ground dry matter,
potential and water-limited leaf area index, potential
and water-limited stem weight. Comparison between
measurements and simulations shows that the perfor-
mance of the model is reasonable in terms of the high
correlation coefficient. We concluded that: (1) the
WOFOST model is suitable for the northern China
Plain in terms of the detailed description of crop photo-
synthesis and properly simulated crop potential
growth; (2) WOFOST treats some processes in a simpli-
fied way and requires only basic input, which makes it
possible to use the model for larger regions.

The WOFOST model simulates crop growth on the
basis of the underlying processes, such as photosyn-
thesis and respiration, and how these processes are
influenced by environmental conditions. Dry matter
accumulation for a crop can thus be calculated as a
function of meteorological variables including irradia-
tion, temperature, and wind speed, as well as crop
characteristics.

2.2.1.  Weather

The meteorological variables used in WOFOST are:
maximum temperature, minimum temperature, global
radiation, wind speed, vapor pressure, potential evapo-
transpiration and rainfall. WOFOST uses the Penman
method (Penman 1948) to calculate potential evapotran-

spiration. Although snow cover during
winter can affect the growth of winter
wheat in various ways, there is no
description in the model that takes
these processes into account. The same
is true of the effect of flooding.

2.2.2.  Crop growth

WOFOST describes phenological
development, growth and yield for-
mation of a crop and environmental
conditions. The model simulates dry
matter accumulation of a crop as a
function of irradiation, temperature
and crop characteristics using a 1 d
time step. The basis for calculating dry
matter production is the rate of gross
CO2 assimilation of the canopy. This
rate depends on solar radiation ab-
sorbed by the canopy and from the
absorbed radiation the photosynthetic
characteristics of individual leaves,
from which the daily rate of CO2

assimilation of crop is calculated. Part
of the carbohydrate produced is used to maintain the
existing live biomass; the remainder is converted into
structural matter.

2.2.3.  Soil water balance

A crop growth simulation model also has to keep
track of the soil moisture content to determine when
and to what degree a crop is exposed to water stress.
This can be done with the aid of a water balance,
which compares, during a given period of time, incom-
ing water in the rooted surface soil with outgoing
water, and quantifies the difference between the two
as a change in the amount of soil moisture stored.
Since this work focuses on the potential yield without
water stress, this part of the model is not used.

2.3.  Input data required by the model

The input data used to run WOFOST includes
weather, crop characteristics and soil data. The meteo-
rological data required to estimate wheat growth and
yield include daily values of maximum, minimum and
mean air temperature, precipitation (not used in this
study), early morning vapor pressure, mean wind
speed at 2 m above ground and solar radiation at the
surface. Daily weather data for 75% of the 50 stations
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are available at the agrometeorological stations for the
period 1961 to 2003. For the rest, daily weather data
were obtained from nearby weather stations within 30
to 40 km distance, which were provided by the China
Meteorological Administration for the same period. All
weather data was quality controlled by comparing the
measurements with those from neighboring stations
and their own long term statistics. Missing values were
replaced with the long term daily averages from a
neighboring station.

There are 17 genetic parameters of the model, which
strongly influence the simulated winter wheat growth.
Most parameters are chosen following Wu (2003), and
lower threshold temperature for emergence, maximum
effective temperature for emergence, temperature sum
from sowing to emergence, temperature sum from
emergence to anthesis, temperature sum from anthesis
to maturity, and maximum leaf CO2 assimilation rate
are tuned to within a reasonable range to fit the mod-
eled results to the observed values. The final parame-
ters used in this research were similar to those of Wu
(2003) in northern China due to similar varieties of
winter wheat, but the growing stage parameters
including emergence, flowering, and maturity dates
are slightly different in southern China due to different
varieties of winter wheat. The parameters obtained
were based on a tuning and validation process, which
is described in sections 2.4 and 3.1.

WOFOST also requires physical characteristics of
soil, such as water retention, hydraulic conductivity
and workability for calculating the daily soil water bal-
ance. The available water content was estimated from
the textural class of the predominant soil. The other
soil input data were obtained from the Second Soil Sur-
vey (China Soil Survey Office 1995).

2.4.  Tuning and validation of the model

The model was tuned against observations of flower-
ing and maturity dates, and against yields for all the
50 stations, by changing the genetic parameters. The
observations for year 2000 or 2001 were used in the
tuning process. The validation period for the model
was 1998–1999 and 2001–2003 for 28 stations, and
1998–2000 and 2002–2003 for the remaining 22
stations.

3.  RESULTS AND DISCUSSION

3.1.  Tuning and validation

WOFOST was tuned for 28 stations in 2000 and the
other 22 stations were adjusted to 2001 when the

weather conditions were close to normal and relatively
few climate disasters occurred. The soil parameters
were set for each station according to previous studies
(China Soil Survey Office 1995). The genetic parame-
ters for winter wheat were tuned through simulations
since these data were not available for most stations.
These parameters were changed to get close agree-
ment between the simulated and observed growth
stages and yields. When the simulated flowering and
maturity dates agreed (within 10%), and yields were
within 15% range of the observed values at the same
time, the genetic parameters were set and considered
to be reasonable. If not, the genetic parameters were
further adjusted until the simulated results were within
the 10 and 15% range for the observed growth date,
and yield, respectively (Fig. 2).

The crop model was then validated using the
observed data during 1998–1999 and 2001–2003 for 28
stations as well as 1998–2000 and 2002–2003 for the
remaining 22 stations. The observed data for the vali-
dations included flowering, maturity and yield. To aid
the comparison of the simulated results with those
observed, the following statistics were computed: cor-
relation coefficients (r), bias, relative bias, mean
square error (MSE) and relative MSE. Table 1 gives
the results of these statistics calculated after the vali-
dating process, and with the parameters determined
by tuning.

The difference between the simulated and observed
dates for flowering and maturity were on average 0.8
and 1.2 d, respectively. The simulated yields agreed
well with the observed, with a bias of 6%. Overall, the
results demonstrate that the model is skillful in predict-
ing the winter wheat growth and yields in China.

3.2.  Change of growing season

Climate change during the growing season was
first assessed before the simulated impact of the cli-
mate change on winter wheat growth was evaluated.
The growing season for winter wheat was assumed
to be from October to June in northern China and
from October or November to May in southern
China. The regional climate variables for winter
wheat regions of China were based on the observa-
tions from the 50 stations. The temperatures and sun-
shine hours for the growing season of winter wheat
are plotted in Fig. 3.

The mean temperature during the growing season
shown in Fig. 3b has a large interannual variability
and an increasing trend with 0.16°C decade–1 fol-
lowing that of the mean annual temperature over the
whole of China (NCC 2000). The decadal mean tem-
peratures increased from 10.3°C in the 1960s to 10.9°C
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in the 1990s. The trends of the temperatures in differ-
ent regions during 1961–2000 are shown in Fig. 3a. In
northern China, the temperature during the growing
season of winter wheat increased greatly in Hebei,
Shanxi, north of Shaanxi from 0.3 to 0.6°C decade-1,
and in Shandong, Henan, south of Shaanxi from 0.1 to
0.3°C decade-1, while the increasing temperature
trends in southern China are lower than those in the
north, with 0.3 to 0.5°C decade–1 in Jiangshu, Anhui,
and Yunnan, and 0.0 to 0.3°C decade–1 in Sichuan,
Chongqing, and Guizhou. The temperatures at Nan-
gong and Bazhong in Sichuan decreased by 0.1°C
decade–1 and 0.03°C decade–1. Tang et al. (2005) stud-
ied temperature variations in China during 1951–2002
and found that there have been increasing trends of
mean maximum temperature in northern China, while
weak decreasing or no obvious trends are detected in

southern China. In northern China, winter wheat is
frequently damaged by low temperature during winter
dormancy and flowering in April and May, while in
southern China winter wheat is rarely harmed by low
temperatures. As a result, the increasing temperature
trend can have different influences on winter wheat
yield in different regions.

Sunshine hours have been used in the model to esti-
mate solar radiation. The amount of sunshine hours
has decreased by 42.4 h decade–1 during the growing
season over China (Fig. 3d). In the 1980s and 1990s,
the sunshine hours decreased by 131.7 h decade–1 and
121.4 h decade–1 compared to that in the 1960s. How-
ever, the trends of sunshine hours are distributed un-
evenly in different regions. In northern China (Hebei,
Shandong and the north of Shanxi), sunshine hours
have decreased by 50 to 202 h decade–1. While in

the more southerly regions of Shanxi,
Shaanxi and Henan the decreasing
trends are between –50 and –20 h
decade–1. Overall in southern China,
sunshine hours decreased 17 to 70 h
decade–1.

Recently, Qian et al. (2006) found that
in China the total cloud cover and low
cloud cover have decreased 0.88 and
0.33% decade–1 during 1954–2001, and
at the same time solar radiation has
decreased by 3.1 W m–2 decade–1. They
proposed that increased air pollution
may have produced a fog-like haze that
reflects/absorbs solar radiation. This
result agrees with our findings here,
which suggests that the decreased
sunshine hours are probably caused
by air pollution.

The decreasing sunshine hours are
associated with reduced solar radia-
tion, which will have adverse effects
on winter wheat growth (Hu et al.
2005). There are 3 main ways in which
radiation is important for plant life
(Hamlyn 2000). First, some of the solar
radiation absorbed by winter wheat is
used for the synthesis of energy-rich
chemical bonds and reduced carbon
compounds. Second, radiation is the
major mode of energy exchange
between the wheat plant and the aer-
ial environment. Thirdly, the amount
and spectral distribution of shortwave
radiation regulate crop growth and
development. Sunshine duration is
used as an indicator of solar radiation
in this study.
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3.3.  Simulated influence of climate change on
potential yield

Using the parameters determined by the tuning of
the model and the observed long term weather data,
simulations were made for all of the 50 stations in
China from 1961–2000. It should be kept in mind that
we assumed that there is no change in winter wheat
variety and agricultural management. Doing so means
that growth and yield can only be influenced by cli-
mate factors.

The simulated potential yields of winter wheat in
northern and southern China as well as the trend of
the potential yields in different regions, are given in
Fig. 4. The potential yields increased in most parts of
northern China (Hebei, Shandong, Shanxi and north of
Henan), amounting to 55 to 322 kg decade–1 ha–1 in
Hebei, north of Shandong and east of Shanxi. In addi-
tion, 19 of the 24 stations in northern China had posi-
tive trends, among which 8 stations show significant
trends according to the Mann-Kendall test. However,
the potential yield of winter wheat decreased in most
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parts of southern China. The reduction is more than
100 kg decade–1 ha–1 in parts of Anhui, Hubei, Sichuan,
Chongqing, Guizhou and Yunnan. In southern China,
the majority of the stations (21 of 26) had negative
trends in potential yield, with 6 stations having signifi-
cant negative trends. On average the potential yield in
northern China increased by 35.3 kg decade–1 ha–1,
while yields decreased by 32.6 kg decade–1 ha–1 in
southern China. Thus, warming due to climate change
predicts a positive effect on the potential yield for most
parts of northern China and adverse effects for most
parts of southern China. Furthermore, there is a
greater interannual variability in northern than south-
ern China. The potential yields of winter wheat are
expected to be mainly influenced by temperature,
since water supply is not limited in all regions. Thus,
frequent low temperature in March and April in north-
ern China may explain the relatively high variability.

In northern China, the winter wheat region encloses
temperate, semi-humid and monsoon-controlled cli-
matic zones, and the growth and yields of winter wheat
are often affected by frost damage in winter (Jin 1996).
Frost damage often happens in the northern China
Plain and Huanghuai Plain due to cold air outbreaks
from Mongolia. For example, frost damage was experi-
enced over 5 winters from 1949 to 1953, with winter
wheat yields decreasing by 30% in Beijing. In addi-
tion, about 30% of the winter wheat was destroyed by
frost damage in Hebei in 1980. The damage to winter
wheat caused by freezing depends on the formation of
ice crystals within the tissue when the temperature is
<0°C, although freezing-tolerant species can appar-
ently withstand some ice formation. Membrane dam-

age is a universal result of freezing damage, though it
is still not certain whether it is the primary effect. As
temperatures are <0°C, ice starts to form in the extra-
cellular water (e.g. in the cell walls). Because ice has a
lower vapor pressure (and chemical potential) than
liquid water at the same temperature, extra-cellular
freezing causes water to be removed from within the
cells to the sites of extra-cellular freezing, which leads
to rapid dehydration of the cell (Levitt 1980).

The damage to winter wheat induced by frost dam-
age happens when the temperature is <0°C. There-
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fore, accumulated negative temperatures during win-
ter (December to February) can be calculated as an
index of the degree of potential frost damage during
winter. Fig. 5 shows the features of absolute value of
the winter accumulated negative temperature in
Hebei, Shandong, east of Shanxi and north of Henan.
The absolute value of accumulated negative tempera-
ture decreased by 29.3°C decade–1. Furthermore, it
amounted to 129.5°C in the 1990s, which decreased
44.6% of that the amount experienced in the 1960s. To
identify the role of accumulated negative temperatures
on yield, the correlation coefficients between potential
yields and absolute value of accumulated negative
temperatures were calculated in Hebei, Shandong,
east of Shanxi and north of Henan. All the stations
show negative correlations, but only 8 stations have
significant correlations. Thus, the accumulated nega-
tive temperatures clearly show an inverse relationship
with potential yields. This indicates that the damage
to winter wheat caused by frost damage had been
lessened during 1961–2000 over most parts of northern
China. This appears to be an important reason for
the increased potential yield in northern China. The
WOFOST model accounts for yield loss using a cold
stress index which was modified and improved for this
research based on the experiments of winter wheat in
China (Jin 1996). For example, the death rate of winter
wheat was 10% when temperature was –12°C, while
the death rate was 50% when temperature reached
–16.4°C.

In southern China, most areas growing winter wheat
are in warm and humid monsoon-controlled climatic
zones where the temperatures in winter changed boy
0 to 5°C. The growth of winter wheat is usually influ-
enced by high temperature, floods and water damage.
The possible reasons for the decreased simulated yield
of winter wheat are shorter growing intervals brought
about by the increased mean temperatures. Tem-
perature influences plant growth and development
through its effects on stomatal opening and rate of
physiological processes. High temperatures can speed
up the biochemical reactions and increase transpira-
tion losses. Higher temperatures lead to an increased
accumulation of degree-days, hence growth and de-

velopment rates are more rapid,
resulting in a reduction of phenophase
duration. Table 2 shows the growth
dates and potential yield during 1961–
2000 over southern China. The dura-
tion of the phenophases of flowering
and maturity were clearly reduced in
the 1990s as compared to the 1960s
(a reduction of 6.0 and 4.8 d for
flowering and maturity, respectively)
due to the 1.1°C temperature increase

between the 2 time periods. These results are in agree-
ment with Sainia & Nanda (1987) and Dhiman et al.
(1985), who found that flowering and maturity dates
were reduced by about 5 d and 4 d following a 1°C
temperature increase in northwest India. As a result, a
shorter growing period for winter wheat caused by
increases in mean temperatures is inherently detri-
mental since there is less time for photosynthesis and
accumulation of biomass and hence potential yield.
This creates a potential problem for southern China
which will get worse in the future due the ongoing
warming trend.

To focus on the role played by temperature and
climatic conditions other than precipitation, this study
made the assumption that water is not limited. It
should be kept in mind that this is a very big assump-
tion and may not always be realistic in this part of the
world. The conclusions drawn from the study are
therefore not applicable for areas where irrigation is
not possible.
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