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1. INTRODUCTION

The downscaling method in Magaña et al. (2012;
hereafter MZN) was originally proposed in non peer-
reviewed publications by Magaña & Caetano (2007),
Zermeño (2008), INE-SEMARNAT (2009) and Mag-
aña (2010) (hereafter collectively MCZ) and was
shown to be fundamentally flawed by Estrada et al.
(2012). Specifically, MCZ used the Climate Pre-
dictability Tool (CPT; http://iri.columbia.edu) with the
20th  Cen tury Climate Experiment (20c3m) simula-
tions as  predictors, and observed climate variables as
pre dictands, for constructing regional climate change
scenarios for Mexico.

MZN1 erroneously used the same method as MCZ,
but with one main difference: an increase from a sin-
gle to multiple predictors for specifying the transfer
function. By extending the analysis in Estrada et al.

(2012), we show here that the modified method in
MZN consists in multiplying each of the GCM simu-
lations by a zero-mean random field, and conse-
quently the resulting individual scenarios as well as
the transformed ensemble of models runs and its sta-
tistics are physically meaningless. The MZN method,
like the MCZ method, is unacceptable for downscal-
ing purposes, as it is based on a poor understanding
of basic concepts of both climate variability and
change, and statistics.

The downscaling method in MCZ was used for
Mexico’s National Climate Change documents, to
support the Mexican government’s climate policy,
e.g. the Fourth National Communication to the UN
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Framework Convention on Climate Change (INE-
SEMARNAT 2009), the Fourth National Report to the
Convention on Biological Diversity (CONABIO &
SEMARNAT 2009) and a government report on the
economics of climate change in Mexico (SEMARNAT
& SHCP 2009). The resulting regional climate change
scenarios are available at the Instituto Nacional
de Ecología (National Ecology Institute of Mexico:
http:// zimbra.ine.gob.mx/escenarios/). The applica-
tion of the erroneous method of MCZ has had a large
impact in Mexico, because the credibility of the
aforementioned national documents has been com-
promised by its use (Rosen 2010, Estrada et al. 2012).

There is a variety of statistical methods in the
downscaling literature that can be properly applied
for generating regional climate change scenarios and
avoid fundamental errors such as those in MZC/
MZN (e.g. Wilby et al. 2004, Vrac et al. 2007, Benes-
tad et al. 2008, Maraun et al. 2010).

2. METHODOLOGY

2.1.  Data and methods

The MCZ/MZN methodology is based on the MOS
downscaling approach (Glahn & Lowry 1972) and
was implemented by means of the CPT, an auto-
mated statistical downscaling toolbox designed for
seasonal prediction based on canonical correlations
and principal component (PC) linear regression. The
MOS downscaling approach consists in estimating a
statistical relationship between an observed local
predictand and one or more large-scale predictors
that are the output of a dynamical model at some pro-
jection time. This relationship is applied to model
output to estimate the projected values at local scales.

The downscaling method in MZN is applied for
generating regional scenarios for Mexico, where the
predictands are the Climate Research Unit (CRU)
TS3.0 0.5º × 0.5º gridded database of observed tem-
perature and precipitation fields (Mitchell et al. 2004,
Mitchell & Jones 2005) and the predictors are the first
5 PCs obtained from a variety of General Circulation
Model (GCM) runs from the 20c3m experiment pro-
duced for the IPCC’s Fourth Assessment Report
(Chris tensen et al. 2007). The PCs were estimated for
a region encompassing Mexico and a southern por-
tion of the USA. The statistical model chosen for esti-
mating the downscaling relationships was PC linear
regression.

Here we test the basic assumptions that would
need to hold in order to make the method consistent

and useful. For this purpose, we selected the precipi-
tation fields from the same observational database
used in MZN as the predictand variables, and the
predictor variables are the first 5 PCs estimated from
each of the 5 GISS-EH 20c3m precipitation fields
(model runs are available at: http://www-pcmdi. llnl.
gov/ ipcc/ about_ ipcc. php). As in the MZN, the statis-
tical model used for downscaling was multiple linear
regression and the calibration period was 1901−1970.
Examples shown here are for July, but very similar
results are found for the other months of the year, as
well as for other models and variables, including
temperature (see Estrada et al. 2012).

2.2.  Principal components

A necessary condition for the proposed method to
be consistent is that different GCM runs under the
same 20c3m forcing scenario share a similar climate
change signal detectable over the noise produced by
the climate model. The MZN method uses PCs for
separating the different modes of variability and for
extracting the signal that could be associated with
climate change. If this common climate change sig-
nal, imparted by the 20c3m radiative forcing, is
indeed present and is strong enough to be detectable
in at least 1 of the 5 sets of PCs, then the members of
the sets representing the common signal should be
well correlated. In this case, no matter which GCM
simulation is used for downscaling, a potentially sig-
nificant relation of roughly similar magnitude and
sign may be obtained.

However, if the internal variability produced by the
GCM dominates the sets of PCs, then their members
will be independent from run to run. In this case, the
method cannot be consistent, leading to patterns and
magnitudes that are dependent on the model run
that is used. Furthermore, since the PCs would mainly
represent the climate model’s noise—which is (1)
dependent on the initial conditions and can be re -
garded as practically random, and (2) not correlated
with the observed 20th century climate variability,
due to the 20c3m experimental design—then the
estimated statistical relationships will be meaning-
less for downscaling purposes. The resulting spatial
patterns and magnitudes will be determined by the
GCM’s random internal noise, not by a systematic
signal representing climate change. Direct conse-
quences are: (1) the estimated coefficients of the
regression models will not be statistically different
from zero, and thus the sign and magnitude shown
by a particular point estimate of the coefficient are
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meaningless; (2) the differences in
magnitudes and spatial patterns
obtained from one model run to the
other will be also random.

We computed all correlations be -
tween PCs for one run with another.
Those between like-numbered PCs
and their p-values are tabulated in
Table 1. The series within each of the
5 sets of like-numbered PCs of the
GISS-EH 20c3m runs can be consid-
ered linearly independent. Only 3
of the 50 correlation coefficients are
statistically significant, as expected
by chance at the 5% level; 2 of them
correspond to the PC4 set. Of course,
a climate change signal can be repre-
sented by different PCs in different
runs. Of the 300 correlations between
all 5 PCs from the 5 different model
runs, only 13 were statistically sig -
nificant at the 5% level (Table 2). The
number of statistically significant cor-
relation coefficients does not increase
even when rotated PCs are consid-
ered (varimax rotation), a variation
that would allow for a clearer extrac-
tion of the climate change  signal.

If these time series are independent
realizations of the same data gener -
ating process (Estrada et al. 2012),
which, if any, should be used for sta-
tistical downscaling? The main build-
ing block of this method is that each
of the temperature and precipitation simulations con-
tains a clear enough climate change signal, im parted
by the exogenous radiative forcing, and that this
 signal is detected above the GCM noise; another
implied assumption is that all GCMs correctly repre-
sent the observed climate change signal even for
small domains such as the one chosen in MZN. If the
PCs obtained from the GCM are linearly independ-
ent across runs, this condition cannot be satisfied;
the results of the downscaling method will depend on
the realization that is used, and the value of the esti-
mated coefficients is meaningless for downscaling
purposes.

To further test for the presence of a common cli-
mate change signal in the PCs, we considered the
following regression model:
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Run 1 p Run 2 p Run 3 p Run 4 p Run 5

PC1
Run 1 1
Run 2 0.173 0.153 1
Run 3 –0.094 0.439 0.037 0.759 1
Run 4 –0.131 0.279 0.050 0.684 –0.033 0.786 1
Run 5 –0.050 0.682 –0.042 0.732 0.066 0.587 –0.194 0.1071

PC 2
Run 1 1
Run 2 –0.148 0.221 1
Run 3 –0.117 0.336 –0.164 0.176 1
Run 4 –0.132 0.275 –0.063 0.606 0.156 0.196 1
Run 5 0.079 0.517 0.129 0.287 –0.168 0.164 –0.054 0.6591

PC 3
Run 1 1
Run 2 –0.133 0.272 1
Run 3 –0.060 0.621 –0.211 0.078 1
Run 4 0.049 0.688 –0.088 0.470 –0.072 0.555 1
Run 5 –0.248 0.039 0.154 0.201 0.000 0.999 0.084 0.4901

PC 4
Run 1 1
Run 2 0.114 0.347 1
Run 3 0.280 0.019 0.111 0.359 1
Run 4 0.123 0.309 0.039 0.747 0.165 0.170 1
Run 5 –0.413 <0.001 –0.137 0.260 –0.229 0.056 0.068 0.5761

PC 5
Run 1 1
Run 2 0.005 0.965 1
Run 3 –0.093 0.445 –0.021 0.863 1
Run 4 –0.121 0.320 0.044 0.717 –0.188 0.120 1
Run 5 –0.115 0.345 0.074 0.545 0.112 0.358 0.177 0.142 1

Table 1. Correlation matrices for the sets of the first 5 principal components
(PCs) of the GISS_EH 20c3m model runs for July. Bold: p ≤ 0.05; italic: p ≤ 0.1

Combinations Correlation coefficient p

PC3_Run3, PC1_Run2 –0.257 0.032
PC4_Run4, PC1_Run5 0.260 0.030
PC4_Run5, PC2_Run1 –0.256 0.032
PC3_Run3, PC2_Run2 0.366 0.002
PC3_Run1, PC2_Run2 –0.276 0.021
PC3_Run5, PC3_Run1 –0.248 0.039
PC4_Run4, PC3_Run1 0.243 0.042
PC5_Run1, PC3_Run3 –0.305 0.010
PC5_Run5, PC3_Run3 0.264 0.027
PC4_Run3, PC4_Run1 0.280 0.019
PC4_Run5, PC4_Run1 –0.412 <0.001  
PC5_Run2, PC4_Run4 0.298 0.012
PC5_Run4, PC4_Run4 0.459 <0.001  

Table 2. Significant correlation coefficients from all possible
combinations of the first 5 principal components (PCs) from
the 5 runs of the GISS_EH 20c3m. Significant correlations: 

4.3% (13/300) at p ≤ 0.05
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where yi,t is the i-th PC (i = 1,...,5) obtained
from the GISS-EH 20c3m Runs 1 to 5; εt is a
sequence of independent and identically dis-
tributed random errors such that εt ~ N (0,σ2);
and α, β1 to β4 are unknown parameters to be
estimated for each of the 5 Eqs. (1). If  like-
numbered PCs share common systematic infor-
mation that could be associated with the cli-
mate change signal, and if this signal is
detectable above the model’s internal noise,
then the 4 realizations of the i-th PC in Eq. (1)
that are used as predictors would be expected
to significantly contribute to ex plain the other real-
ization of the same i-th PC y r l

i,t chosen as the depend-
ent variable.

As expected from the results in Table 1, none of the
slope coefficients is statistically significant, with the
exception of the β4 coefficient (but not β2) that corre-
sponds to the set of PC4s, and of the β4 coefficient
that corresponds to the set of PC3s (at the 10% level)
(Table 3). Since the coefficient estimates are not sta-
tistically different from zero, their signs and magni-
tudes have no meaning and depend on the particular
sample. As before, these results suggest that the PCs
are dominated by the model’s internal variability,
and no meaningful relationship between them and
observed series can be expected for downscaling
 purposes.2

These results agree with the downscaling literature
and with expectations when using climate simula-
tions such as 20c3m. Application of the MOS ap -
proach for developing bias-corrected high-resolution
climate change scenarios is limited by the availability
of long series of hindcasts (not unconstrained climate
simulations) for calibrating the statistical model and
establishing the relationships between model and
observed variables; until now, MOS has been used
only with ‘nudged’ climate simulations (which use
data assimilation) or reanalysis data (Maraun et al.
2010, Eden et al. 2012).

As stated by Maraun et al. (2010, p. 11), ‘the GCM
simulations for the 20th and 21th (sic) century do not
represent the real temporal evolution of large-scale
weather states in the past. (...) For this reason, MOS
has been applied so far to non-reanalysis GCMs only
in the context of seasonal prediction (...), where the
simulated and true atmospheric circulation partly
match’. Unconstrained climate simulations of his -

torical periods (such as 20c3m) are not intended to
reproduce the observed evolution of internal atmo -
spheric variability, and the GCM’s random, internally
generated variability component will be independent
from the observed circulation and climate variable
fields. Furthermore, this random component domi-
nates daily to interannual time scales and is still sub-
stantial at decadal time scales (Eden et al. 2012).
Consequently, comparisons of time series of daily,
monthly, or annual precipitation between observa-
tions and freely evolving climate simulations are not
relevant (Eden et al. 2012), and meaningful and con-
sistent statistical relationships between freely evolv-
ing simulations and observed climate variables can-
not be derived. Under these circumstances, it makes
no sense to use anything other than the climate
change signal as predictor, and only if its signal-to-
noise ratio is sufficiently large. In MZN this is further
complicated because the climate change signal dur-
ing the calibration period (1901−1970) and over the
domain may be particularly weak in comparison to
climate variability, and may not even have the same
signature as the post-1975 signal.

2.3.  Results of the MZN method

2.3.1.  Results of a ‘perfect climate model’

Following Estrada et al. (2012), we tested if the
MZN method produces consistent spatial patterns
and magnitudes by investigating the behavior of the
slope coefficients in the downscaling transfer func-
tion under the extreme assumption of having a
 perfect climate model.

Let us assume that GISS-EH 20c3m Run 1 is the
‘observed’ precipitation field over the region during
the 20th century and choose the first 5 PCs obtained
from one of the other 4 GISS-EH 20c3m runs as the
predictor variables. Thus, ‘observed’ and simulated
variables are realizations of the same data generat-
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2Tripling the potential predictors in (1) by including adja-
cent PCs or screening for predictors only sets the bar higher
for significant predictors. The results in Tables 1 and 2 do
not support pursuing these alternatives

β1 p β2 p β3 p β4 p

y r l
l,t 0.129 0.136 –0.082 0.401 –0.113 0.206 –0.047 0.593

y r l
2,t –0.179 0.136 –0.124 0.359 –0.134 0.320 0.069 0.534

y r l
3,t –0.093 0.384 –0.070 0.519 0.051 0.660 –0.206 0.057

y r l
4,t 0.037 0.725 0.182 0.145 0.135 0.289 –0.352 0.002

y r l
5,t 0.016 0.905 –0.111 0.396 –0.133 0.521 –0.021 0.863

Table 3. Estimations of the slope coefficients in Eq. (1), using each of
the first 5 principal components (PCs) estimated from the GISS-EH
model 20c3m Run 1 as the predictand variable and the corres ponding
PC from the other 4 model simulations as the predictor variables. 

Bold: p ≤ 0.05; italic: p ≤ 0.10
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ing process, sharing the same scale, variable, model
physics and external radiative forcings. This down-
scaling exercise is equivalent to assuming that the
climate model is indeed perfect.

We considered the following regression equation:

(2)

where Pobs
i,j,t is the precipitation field from Run 1 of the

GISS-EH 20c3m for the coordinate i, j; P pc1
r,t , P pc2

r,t , P pc3
r,t ,

P pc4
r,t and P pc5

r,t represent, respectively, the first 5 PCs of
the simulated precipitation fields obtained from the
r = 2,...,5 GISS-EH 20c3m runs; εt is a sequence of
independent and identically distributed random
errors such that εt ~ N (0,σ2); and α, β1 to β5 are
unknown parameters to be estimated.

The results produced by the MZN method (Figs. 1
& 2) for β1 show that the spatial patterns and magni-
tudes vary among runs, so that very different conclu-
sions regarding future climate, impacts, vulnerability
and adaptation studies could be reached in each
case. The differences do not have a physical inter -
pretation related to any climate change signal, but to
the model’s internal variability and to the initial con-
ditions chosen for a particular run.

Furthermore, the question arises as to whether the
signs and magnitudes of these estimates have any
physical meaning, and whether the estimated coeffi-
cients express significant relationships. With the
exception of a few grid cells in Fig. 2b,c, none of the
estimated coefficients is statistically different from

zero. That is, the true value of the parameters is zero
even though the point estimates in the map can ran-
domly show negative or positive signs, as well as dif-
ferent magnitudes.

The results are very similar for the other slope coef-
ficients in Eq. (2). The average number of significant
slope coefficient values in Eq. (2) is close to 5%
(Table 4), which is the number of false rejections of
the null hypothesis expected to occur by chance.
Importantly, none of the coordinate points i,j, has a
slope coefficient that is significant in all 4 maps (i.e.
in different model runs). In addition, the average per-
centage of significant F values from the estimated
regressions is only 3.13%.

The MZN method entails multiplying each grid cell
by a random variable with a zero mean and therefore
the signs, spatial patterns and magnitudes depend on
the sample. Even under the extreme assumption of
having a perfect climate model, the downscaling
method in MZN can only produce random spatial
patterns and magnitudes.
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Fig. 1. Spatial patterns for July precipitation produced by
the MZN downscaling method. Slope coefficient β1 in Eq. (2)
using the GISS-EH model Run 1 under the 20c3m scenario
as the predictand, and using as predictors the first 5 princi-
pal components (PCs) obtained from (a) Run 2, (b) Run 3, 

(c) Run 4, and (d) Run 5

Fig. 2. Statistical significance of the slope coefficients in
Fig. 1. Green areas denote statistical significance at ap -
proximately the 5% level (t > 1.96 in absolute value)

Predictors obtained from β1 β2 β3 β4 β5

Run 2 0 2.1 6.3 4.2 0
Run 3 6.3 10.4 0 8.3 6.3
Run 4 10.4 2.1 2.1 0 16.7
Run 5 0 12.5 10.4 10.4 4.2

Mean 4.2 6.8 4.7 5.7 6.8

Table 4. Percentage of statistically significant coefficients in
Eq. (2) at p = 0.05. The predictand is the precipitation field
from GISS-EH 20c3m Run 1 and the predictors are the first 5
principal components (PCs) obtained from GISS-EH 20c3m 

Runs 2 to 5



2.3.2.  What do the regional scenarios in MZN
represent?

We extended the results from Section 2.3.1 to the
case of the CRU database used in MZN. We consid-
ered the following regression model:

(3)

where PCRU
i,j,t is the observed July precipitation field

from the CRU database for the coordinates i,j; P pc1
r,t ;

P pc2
r,t , P pc3

r,t , P pc4
r,t , P pc5

r,t represent, respectively, the first
5 PCs of the simulated precipitation fields obtained
from the r = 1,…,5 GISS-EH 20c3m runs; as before, εt

is a sequence of independent and identically distrib-
uted random errors such that εt ~ N (0,σ2) and α, β1 to
β5 are unknown parameters to be estimated.

The upper panels of Appendix 1 show the slope
coefficients β1 to β5 from Eq. (3), for the 5 GISS-EH
20c3m runs, and the bottom panels show the statisti-
cal significance. If the MZN method were correct, the
patterns resulting from different runs should be sim-
ilar. However, this is not the case, as the estimates
are realizations of zero mean random variables, and
have no physically meaningful relation between large
scale and local scale climate variables. The average
number of significant cells across model runs for each
of the slope parameters is around 5%, only 2.8% are
significant in 2 or more runs and none is significant in
all 5 model runs.

Finally, the use of an ensemble of downscaled
 scenarios does not make the climate change signal
stronger, nor does it reduce the uncertainty. In the
MZN method, the ensemble members are first multi-
plied by random parameters with zero mean—
breaking all original physical patterns and randomly
modifying the magnitudes and signs of change—and
then a central tendency measure is computed. Evi-
dently, this cannot extract the climate change signal,
because probably none of it is left after this down-
scaling procedure.

2.4.  Illusory justification and validation of MZN

The abstract in MZN begins with the statement,
‘The climate predictability tool (CPT) is often used to
statistically downscale the Intergovernmental Panel
on Climate Change scenarios presented in the
Fourth Assessment Report’. Taken at face value, this
statement—which is not supported by reference to
any published work—would lead the reader to think
that the MZN method is in line with the climate
change downscaling literature or with the IPCC. This

is simply false, and provides no justification for the
MZN method.

MZN’s own assessment of the performance of their
downscaling methodology is limited to subjective
comparisons, e.g. stating that the climatology (1971−
1999) of the observed fields and that of the down-
scaled version ‘look similar’ (MZN, p. 175; their
Figs. 2 & 3). These comparisons are irrele vant for
assessing model performance: When the explanatory
variables are expressed as anomalies and are not
dominated by large trends (as is the case in MZN),
the baseline climatology is represented by the inter-
cept of the transfer function; no virtue can be cred-
ited to the model specification other than having
included a constant. Finally, the evaluation of trends
(MZN, their Figs. 4 & 5) is not rigorous, and is based
on the authors’ subjective perceptions of similarity
between maps, without any quantitative or statistical
support. Moreover, these figures show some puzzling
results, namely that for some regions where both the
observations and the model simulation showed the
same tendency, the downscaled scenario showed the
opposite, suggesting a statistical artifact. Of course,
in the case of fundamentally flawed methods such as
that of MZN, performance evaluation is pointless.

3.  CONCLUSIONS

The main implication of Estrada et al. (2012) and
the present study is that the regional scenarios pro-
duced by the MCZ/MZN downscaling method are
erroneous from their roots, and their application
invalidates any assessment that uses them as input—
from the water availability analyses in MZN to those
in the National Climate Change documents of Mex-
ico referenced above, as well as others that have
been produced since. Our results demonstrate that
MZN and the decision of the Mexican government
to maintain online availability of the Magaña
(2010) scenarios (http://zimbra.ine.gob.mx/escenarios/)
should be of concern not only to Mexico, but to the
wider climate research community as well.

Acknowledgements. The authors are grateful for the valu-
able comments of 3 anonymous reviewers. F. E. thanks E. E.
Koks and M. L. Derkzen for GIS assistance and suggestions.

LITERATURE CITED

Benestad RE, Hanssen-Bauer I, Chen D (2008) Empirical-
statistical downscaling. World Scientific Publishing,
Chennai

P P P P Pi j t
CRU

r t
pc

r t
pc

r t
pc

r, , , , , ,= + + + +α β β β β1
1

2
2

3
3

4 tt
pc

r t
pc

tP4
5

5+ +β ε,

Clim Res 56: 81–90, 201386



Estrada et al.: Comment on Magaña et al. (2012)

Christensen JH, Hewitson B, Busuioc A, Chen A, and others
(2007) Regional climate projections. In:  Solomon S, Qin
D, Manning M, Chen Z and others (eds) Climate change
2007:  the physical science basis. Contribution of Working
Group I to the Fourth Assessment Report of the Inter -
governmental Panel on Climate Change. Cambridge
University Press, Cambridge, p 849−940

CONABIO & SEMARNAT (2009) Fourth National Report to
the Convention on Biological Diversity (Cuarto Informe
Nacional de México al Convenio sobre Diversidad Bio -
lógica (CDB)). Secretaría de Medio Ambiente y Recursos
Naturales, Mexico City

Eden JM, Widmann M, Grawe D, Rast S (2012) Skill, correc-
tion, and downscaling of GCM-simulated precipitation.
J Clim 25: 3970−3984

Estrada F, Martínez-López B, Conde C, Gay-García C (2012)
The new National Climate Change Documents of
 Mexico:  What do the regional climate change scenarios
represent? Clim Change 110: 1029−1046

Glahn HR, Lowry DA (1972) The use of model output sta -
tistics (MOS) in objective weather forecasting. J Appl
Meteorol 11: 1203−1211

INE-SEMARNAT (2009) Fourth National Communication to
the United Nations Framework Convention on Climate
Change (Cuarta Comunicación Nacional ante la Con-
vención Marco de las Naciones Unidas sobre el Cambio
Climático). Instituto Nacional de Ecología and Secretaría
de Medio Ambiente y Recursos Naturales, Mexico City

Magaña V (2010) Guía para generar y aplicar escenarios
probabilísticos regionales de cambio climático en la toma
de decisiones. Instituto Nacional de Ecología, Secretaría
de Medio Ambiente y Recursos Naturales, Mexico City.
Available at http: //zimbra.ine.gob.mx/escenarios/

Magaña V, Caetano E (2007) Pronóstico climático estacional
regionalizado para la República Mexicana como elemento
para la reducción de riesgo, para la identificación de
opciones de adaptación al cambio climático y para la ali-
mentación del sistema:  cambio climático por estado y por
sector. Tech Rep, Instituto Nacional de Ecología, Secre-
taría de Medio Ambiente y Recursos Naturales, Mexico

City. Available at http: //www.ine.gob.mx/descargas/
cclimatico/e2007o.pdf

Magaña V, Zermeño D, Neri C (2012) Climate change sce-
narios and potential impacts on water availability in
northern Mexico. Clim Res 51: 171−184

Maraun D, Wetterhall F, Ireson AM, Chandler RE, and
 others (2010) Precipitation downscaling under climate
change:  recent developments to bridge the gap between
dynamical models and the end user. Rev Geophys 48: 
RG3003. doi: 10.1029/2009RG000314

Mitchell TD, Jones PD (2005) An improved method of con-
structing a database of monthly climate observations and
associated high-resolution grids. Int J Climatol 25: 693−712

Mitchell TD, Carter TR, Jones PD, Hulme M, New M (2004)
A comprehensive set of high-resolution grids of monthly
climate for Europe and the globe:  the observed record
(1901−2000) and 16 scenarios (2001−2100). Tyndall
Working Paper 55, Tyndall Centre, University of East
Anglia, Norwich. Available at:  http: //www.tyndall.ac.uk/

Rosen C (2010) Mexican climate reports under fire. NAT-
NEWS 2. doi: 10.1038/news.2010.640

SEMARNAT & SHCP (2009) The economics of climate
change in Mexico (La economía del cambio climático en
México). Secretaría de Medio Ambiente y Recursos
 Naturales y Secretaría de Hacienda y Crédito Público,
Mexico City

Vrac M, Stein ML, Hayhoe K, Liang XZ (2007) A general
method for validating statistical downscaling methods under
future climate change. Geophys Res Lett 34: L18701

Wilby RL, Charles SP, Zorita E, Timbal B, Whetton P, Mearns
LO (2004) Guidelines for use of climate scenarios devel-
opmented from statistical downscaling methods. Sup-
porting material of the Intergovernmental Panel on Cli-
mate Change. http://unfccc.int/resource/cd_roms/na1/
v_and_a/Resoursce_materials/Climate/StatisticalDown
scaling Guidance.pdf, p 27

Zermeño D (2008) Análisis probabilístico de escenarios
escalados de precipitación y temperatura bajo cambio
climático en México. MS thesis, Universidad Nacional
Autónoma de México, Mexico City

87



Clim Res 56: 81–90, 201388

ba
A

p
p

en
d

ix
 1

.E
st

im
at

ed
 v

al
u

es
 a

n
d

 s
ta

ti
st

ic
al

 s
ig

n
if

ic
an

ce
 o

f 
(a

–
e)

 C
oe

ff
ic

ie
n

t 
β 1

–
β 5

, r
es

p
ec

ti
ve

ly
) 

in
 E

q
. (

3)
, u

si
n

g
 d

if
fe

re
n

t 
re

al
iz

at
io

n
s 

of
 t

h
e

G
IS

S
_E

H
 2

0c
3m

 e
xp

er
i-

m
en

t.
 G

re
en

 a
re

as
 d

en
ot

e 
st

at
is

ti
ca

l 
si

g
n

if
ic

an
ce

 a
t 

ap
p

ro
xi

m
at

el
y 

th
e 

5
%

 l
ev

el
 (

t
>

 1
.9

6 
in

 a
b

so
lu

te
 v

al
u

e)
. 

P
er

ce
n

ta
g

e 
of

 c
as

es
 f

or
 w

h
ic

h
 a

 g
iv

en
 c

el
l 

is
 s

ig
n

if
ic

an
t 

in
 m

or
e 

th
an

 o
n

e 
m

ap
 v

ar
ie

s 
fr

om
 1

.6
 t

o 
5.

1
%

. T
h

e 
p

er
ce

n
ta

g
e 

of
 s

ig
n

if
ic

an
t 

ce
ll

s 
fo

r 
ea

ch
 m

ap
 is

 s
h

ow
n

 a
b

ov
e 

th
e 

co
lo

r 
b

ar



Estrada et al.: Comment on Magaña et al. (2012) 89

c d



Clim Res 56: 81–90, 201390

e

Editorial responsibility: Mikhail Semenov, 
Harpenden, UK

Submitted: August 27, 2012; Accepted: January 30, 2013
Proofs received from author(s): February 12, 2013


	cite1: 
	cite2: 
	cite3: 
	cite4: 
	cite5: 
	cite6: 
	cite7: 


