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1.  INTRODUCTION

Mountain environments are extremely sensitive to
changes in environmental conditions, and thus to cli-
matic change (Beniston et al. 1997, Pauli et al. 2001,
Theurillat & Guisan 2001, Dirnböck et al. 2003). For
example, the distribution of plants is, to a major
extent, determined by spatial variation in tempera-
ture, soil moisture conditions and snow cover (Gjære-
voll 1990, Dahl 1998, Wielgolaski 1998, Moen 1999,
Löffler 2005, Löffler & Pape 2008)—3 environmental
factors directly affected by climatic change. Studies
on vegetation patterns, however, often rely on a sin-
gle proxy variable—elevation—as a convenient way
of representing these environmental factors (Whittaker
1978, Grytnes 2003). Obviously, regimes of both tem-
perature and moisture are related to elevation due to

the environmental lapse rate and the increase in pre-
cipitation with altitude, but these vary substantially in
space and time (Rolland 2003). With such variation,
the common practice of adjusting mean station tem-
peratures to a reference altitude using solely lapse
rates is likely to produce non-comparable and there-
fore misleading results (Barry 2008). Moreover, large-
scale patterns related to altitude or climatic regime
(i.e. degree of continentality) are strongly modified by
effects of local topography, and the latter can even be
superimposed on the former (e.g. Löffler & Pape 2004,
Löffler et al. 2006). Consequently, Lookingbill &
Urban (2003) stress the necessity to use more descrip-
tive means to characterize key ecological constraints
directly affected by climatic change—i.e. temperature
rather than elevation—in order to model future eco-
logical processes.
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In order to be sufficiently accurate to capture de-
tailed environmental patterns, models of ecosystem
response need to be run at the meso- or micro-scale,
where such patterns—which tend to level off at re-
gional to global scales—cannot be ignored. Since the
overall spatial performance of these models is essen-
tially dependent on the accuracy of input data, cli-
matic data also have to be provided at this spatial
scale. However, obtaining these data at sufficient lev-
els of accuracy is hampered by two logistical issues.
(1) Since routine meteorological observations are
available at discrete points in space, typically sepa-
rated by a distance of 30 to 50 km or more, a spatial
interpolation is necessary to produce data with a suffi-
cient resolution. However, weather stations are partic-
ularly sparse in mountain regions, and tend to be
located mainly at populated lower elevations (Barry
2008)—a fact that is likely to limit interpolation accu-
racy over mountainous regions. (2) Climate models
are still particularly inaccurate at the micro-scale
(Chen et al. 1999), since the required resolution is far
below the typical grid-size even of the highest resolu-
tion numerical models (e.g. Rivington et al. 2008).
Since numerous climatological details of mountain
environments are simply overlooked by common cli-
mate models, it has consequently been recognised
that comprehensive physically based land-surface
schemes are needed in atmospheric models to ade-
quately simulate near-surface exchanges of heat,
moisture and momentum (e.g. Saunders et al.
1999a,b). However, the required input data for these
schemes, especially vegetation physiological parame-
ters and soil characteristics, are commonly unavail-
able at larger spatial scales in remote mountainous
regions. Thus, there has recently been a large number
of environment-related studies (often using remotely
sensed data) on (geo)statistical approaches for inter-
polating climatic parameters at high spatio-temporal
resolution (e.g. Lookingbill & Urban 2003, Joly et al.
2003, Chung & Yun 2004, Chung et al. 2006, Stahl et
al. 2006, Joly & Brossard 2007).

The present paper evaluates both physically and
statistically based modelling and interpolation of near-
surface temperatures in a high mountain environment
at sub-daily time scales and differing spatial scales
with the following specific objectives:

(1) to determine environmental variables that aid
(guide) the spatial interpolation of temperatures at
different scales;

(2) to compare the performance of physically based
modelling and statistically based interpolation;

(3) to determine whether there are scale-limits in
modelling and interpolation approaches, and address
such scaling issues in order to develop an improved
approach.

2.  DATA AND METHODS

2.1.  Data

2.1.1.  Study areas

The study was conducted in central Norway along
62° N, representing the macro-scale (Fig. 1A). The
mountain chain of the Scandes reaches 2469 m a.s.l.
(above sea level) elevation in this region, resulting in a
clearly defined oceanic–continental gradient between
the western and eastern slopes of the mountain chain.
Within the frame of a long-term ecological project
(Löffler 2002, 2003, Löffler & Finch 2005) 2 meso-scaled
areas were chosen to represent the climatic differences.
Geiranger (62° 03’ N, 7° 15’ E; Fig. 1B) within the inner
fjords region of western Norway is climatically charac-
terized as sub-oceanic with annual precipitation of
1500 to 2000 mm in the valleys (Moen 1999). A more
continental climate is found only 150 km east of the
coast in Vågå (61° 53’ N; 9° 15’ E; Fig. 1C), the most arid
area in Norway Moen (1999), with annual precipitation
of about 300 to 400 mm in the valleys. The alpine eco-
logical zone extends from the tree-line at ~840 to 880 m
a.s.l. (Geiranger) or 1000 to 1050 m a.s.l. (Vågå), to the
highest peaks at 1775 m a.s.l. in Geiranger and 1618 m
a.s.l. in Vågå. It comprises the low-alpine zone charac-
terized by dwarf-shrub and lichen heaths, the middle-
alpine zone dominated by chionophobous lichens and
graminoid species; and in Geiranger, also the high-
alpine zone with glaciated areas. Figs. 1B and 1C illus-
trate the contrast in topography of the Geiranger and
Vågå areas (steeply and gently sloping, respectively).
In both areas, 2 micro-scaled catchments were chosen
to represent the low- and middle-alpine zones; the
Vågå area in the low-alpine (Fig. 1D,E) was chosen for
exemplary micro-scaled modelling.

2.1.2.  Climatological data

The climatological data used for this study were ob-
tained from 45 weather stations at locations shown in
Fig. 1A. The stations are operated by the Norwegian
Meteorological Service (38 stations, Det norske meteo-
rologiske institutt, DNMI, data available at www.
eklima.no), the Norwegian Geological Service in the
Geiranger area (3 stations, Norges geologiske under-
søkelse, NGU) and our own in the Geiranger and Vågå
area (4 stations, Geographisches Institut der Universität
Bonn, GIUB). In addition to 1 weather station, 4 data log-
gers are located in the micro-scaled catchment repre-
senting main topographic positions (Fig. 1D). The data
comprised air temperatures at 2 m height (TA) for 2004 as
daily maxima (TAMX) and minima (TAMN) for the DNMI
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Fig. 1. Study areas in central Norway. (A) Macro-scale—light
gray: areas above alpine tree-line; (B,C) meso-scale—dark
gray: water surface, dots: weather stations; (D) micro-scale—
dots: near-surface temperature data loggers; (E) Photograph
depicting part of area shown in (D) (arrow in [D] shows direction 

of view), giving an impression of the fine-scaled variability
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stations, 1 and 2 h means (GIUB and NGU, respectively).
The data loggers record soil and air temperatures as
hourly means at –15, –1 and +15 cm distance from the
soil surface, hereafter referred to as TS, TSFC, and TA15,
respectively. These temperatures are also recorded at
the GIUB stations, along with the additional measure-
ments of global short-wave radiation (K ↓), precipitation,
relative humidity, wind speed at 2 m above ground (u)
and wind direction. To ensure data quality as well as
comparability of the three different networks, prior
to further analysis, all data were checked with regard
to data range, temporal change, plausibility, and syn-
chronicity, according to methods described by Rissanen
et al. (2000). In addition, absolute deviations between the
NGU and GIUB networks were compared at 2 neigh-
bouring stations; no deviations >1 K were detected.

2.1.3.  Remote sensing data

To complement the ground-based observations, spa-
tial data on land surface temperature (LST) with a res-
olution of 1 km were obtained for each day/night in
2004 from thermal infrared (TIR) MODIS (Moderate
Resolution Imaging Spectroradiometer) data. Addi-
tional data on LST at 60 m resolution were available for
10 August 2004, originating from an overflight of Land-
sat 7 Enhanced Thematic Mapper (ETM) at 10:36 h.
Ancillary data on daily (for some MODIS products: 8 d
period) cloud cover, snow cover, surface albedo, and
normalized difference vegetation index (NDVI) were
also derived from the MODIS and Landsat ETM data.
For the micro-scaled catchment, high-resolution (0.1 m)
3-band (red-green-blue, RGB) images and TIR aerial
photos based on kite aerial photography (Wundram &
Löffler 2008) were available for 14:30 h on 4 October
2004. Spatial patterns of vegetation at meso- and
micro-scale were derived by maximum likelihood clas-
sification based on ground truthing plots.

2.1.4.  Topographic data

For the macro-scale, a digital elevation model (DEM)
with a spatial resolution of 500 m was derived from the
Global 30 Arc-Second Elevation Data Set (GTOPO30),
projected to Universal Transverse Mercator (UTM)
Zone 32, resulting in a spatial resolution of 500 m. At
meso-scale, a DEM with a resolution of 30 m (to match
the Landsat ETM scene) is based on topographic maps
of the Norwegian Mapping Authority at scale 1:50 000.
For the micro-scale, a DEM at 0.1 m resolution was
derived by photogrammetry from kite aerial photos in
conjunction with stadia surveying of ground control
points (Wundram & Löffler 2008).

2.2.  Methods

2.2.1.  Model scales

Based on the abovementioned data (Sections 2.1.2 to
2.1.4) available for further analyses, interpolation and
modelling of temperatures involved 4 different spatial
scales: (1) the macro-scale comprises an area of roughly
88 000 km2 with a grid cell resolution of 500 m; (2) at
meso-scale there are 2 areas of about 100 and 80 km2,
respectively, with a resolution of 30 m; (3) at micro-
scale there is an area of 0.04 km2 with a resolution of
0.1 m2; and (4) the nano-scale refers to point specific
approaches without spatial dimensions.

2.2.2.  Geostatistical interpolation of TAMX and TAMN

Over extensive areas like our macro-scaled region,
deriving spatially distributed data using process-
based approaches may be impractical for reasons of
computational and theoretical complexity or the un-
availability of data. Grid-based interpolation was used
instead, adopting a ‘middle ground’ between data-
based geostatistical interpolation and process-based
meteorological modelling (Jarvis & Stuart 2001). This
approach is achieved by spatially interpolating tem-
perature at the macro-scale using indices developed
from atmospheric, topographic and land cover data
that we hypothesized to influence the climatic condi-
tions.

A set of 16 potential guiding variables (Table 1)
was derived, accounting in particular for topographic
effects that might affect temperature patterns: easting
and northing describe the x,y-coordinates in the UTM
zone 32 grid; potential solar radiation was calculated
for each time step considered in further analyses using
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Table 1. Potential guiding variables for temperature inter-
polation

Northing

Easting

Altitude

Potential solar radiation

Cloud cover (from MODIS data)

Distance to coast

3 spatial levels of height above local minimum 
(3 × 3, 5 × 5, 7 × 7 window)

3 spatial levels of height below local maximum 
(3 × 3, 5 × 5, 7 × 7 window)

Terrain ruggedness (as standard deviation of elevation 
within 3 × 3, 5 × 5, 7 × 7 window)

Flow accumulation
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the r.sun module of GRASS (geographic information
system [GIS] software) that also accounts for topo-
graphic masks (Hofierka & Suri 2002); and height
above local minimum (below local maximum) was cal-
culated in a moving window of 3 × 3, 5 × 5 and 7 × 7
grid cells as the difference between elevation of the
centre cell and lowest (highest) elevation in the sur-
roundings. Terrain ruggedness was calculated as the
standard deviation of elevation for the same window
sizes. To address cold air drainage and accumula-
tion, an approach commonly used in hydrology was
adopted: flow accumulation was calculated using the
r.terraflow module of GRASS. In a first step, the power
of explanation for each single variable with regard to
temperature patterns was tested separately for TAMX

and TAMN using stepwise linear regression with col-
linearity diagnostics for 52 independent days in 2004.
The 5 variables that were most included in the regres-
sions and had the highest partial correlations were
then chosen as environmental guiding variables for the
actual interpolation approach. Second order partial
thin-plate splines were used for interpolation, with
easting and northing as independent variables and the
environmental guiding variables as multiple linear
covariates (Hutchinson 1991, Jarvis & Stuart 2001). A
cross-validation estimate of error within the resulting
temperature maps was achieved by jackknifing at
known data points. The resulting error estimation was
differentiated for alpine and non-alpine data points
used for jackknifing, since differences in sensitivity
between these 2 groups have to be expected: 1 station
left out within a sparse station record is likely to pro-
duce a more pronounced error than within a compara-
bly dense station record.

2.2.3.  Physically based LST modelling

Due to the limited amount of input data available
compared to the input data needed for land surface
schemes, we chose a rather simple energy balance
approach developed for such data-limited applications
(Pape & Löffler 2004). The model estimates surface
temperatures by iterative solution of the energy bal-
ance constituted by net radiation (Q*) on the one hand
and sensible, latent and ground heat fluxes (H, LE and
G0) on the other. Originally developed for point appli-
cations, it was implemented in a GIS for micro- and
meso-scale applications here; it does not, however,
account for lateral effects: the lack of spatial informa-
tion on soil characteristics and plant physiological
parameters forced further simplifications compared to
the original settings of the model to make it spatially
applicable. Instead of an analytical solution, the G0

was parameterized as a ratio of net radiation (e.g. de

Bruin & Holtslag 1982, Kustas & Daughtry 1990) lead-
ing to G0 = aQ*, with a chosen as (i) a constant value of
0.15, and (ii) –0.27 NDVI + 0.39, to account for its
dependence on vegetation cover (Jacobsen & Hansen
1999). The factor a is different for daytime and night-
time, because during daytime the energy provided by
Q* is shared between G0 and the turbulent heat fluxes,
while these are nearly negligible during night-time
and G0 makes up the largest part of Q*. Thus, the
modelling approach was restricted to daytime.

Evapotranspiration was estimated by the modified
Priestley-Taylor concept (Priestley & Taylor 1972, van
Ulden & Holtslag 1985, de Rooy & Holtslag 1998)
instead of the original Penman-Monteith approach
(Monteith 1981) in order to avoid the estimation of
aerodynamic and surface resistances.

The resulting set of equations is as follows, where
the energy balance is given by 

Q* = H + LE + G0 (1)

with net radiation according to de Bruin & Holtslag
(1982) estimated by

Q* = Κ↓ – K↑ + L↓ – L↑ = 
(1 – A)K↓ + 5.31 × 10–13 TA

6 – 0.95σT0
4 (2)

where K and L denote short- and longwave radiation,
respectively (↓: incoming; ↑: outgoing), A denotes the
albedo, σ the Stefan-Boltzmann constant [W m–2 K–1]
and T0 the temperature at the effective surface taken
as LST. Both temperatures are given as absolute tem-
peratures [K]. In our case, K↓ was based on reference
observations spatially corrected for topography (Oke
2001) while A was estimated from remote sensing data.
The air temperature TA was at meso-scale application
taken from the abovementioned interpolation approach
of TAMX (see Section 2.2.2.) and at micro- and nano-
scale applications from hourly measurements at 1 site
within the area, but corrected for the higher resolu-
tion-topography at finer scales using actual tempera-
ture lapse rates derived from measurements.

H is estimated using an aerodynamic approach (Oke
2001):

H = –Cak2{u (TA – T0)�[ln(zA/z0)]2}(φMφH)–1 (3)

where Ca is the heat capacity of air (J m–3 K–1), k is the
von Karman’s constant (0.41 m), u is the windspeed at
2 m, zA is the height of air temperature measurement
(2 m), z0 is the surface roughness length (m), and finally
(φMφH)–1 is a stability correction dependent on the
Richardson number Ri during stable cases (Ri > 0) by

(φMφH)–1 = (1 – 5Ri)2 (4a)

and during unstable cases (Ri <0) by

(φMφH)–1 = (1 – 16Ri)3/4 (4b)
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The Richardson number itself is estimated by

Ri = g / T [(TA – T0)(zA – z0)] / u2 (5)

where g is the acceleration due to gravity (m s–2) and T
without subscript is the mean of TA and T0.

Since this approach requires a spatial wind field, the
distribution of wind speed within the area was approx-
imated using a simple approach proposed by Böhner
(2004): the relative increase or decrease in wind speed
reflects specific distance-related effects of orography
due to wind- and lee exposure. For eight discrete sec-
tors of wind direction (N, NE, E, ...) a coefficient of
wind speed reduction is derived that enables a spatial
quantification of variations in wind speed determined
by orography, if observations at one reference station
are provided. The coefficient (W) comprised of slope
angle functions upwind (subscript u) and downwind
(subscript d), given by

(6a)

(6b)

where dhi is the distance to raster cell i, and dzi is the
difference in height to raster cell i. The corresponding
parameter functions are given by

luv = 1 + ln(1 + Wu) if Wu > 0 (7a)

luv = [1 + ln(1 – Wu)]–1 if Wu < 0

lee = [1 + ln(1 + Wd)]0.5 if Wd > 0 (7b)

lee = [1 + ln(1 – Wd)]–0.5 if Wd < 0

Finally, the wind speed u is calculated using the
reference observation ur by

u = ur (luv × lee)0.25 (8)

Since it is known that spatial wind fields in moun-
tainous terrain are highly difficult to estimate, results
were compared to hand-held measurements.

LE is calculated, according to the modified Priestley-
Taylor concept, by

LE = αs(Q* – G0)/(s + γ) + β (9)

where α is an empiral constant ranging from 0 (for
very dry conditions when no evaporation occurs) to
1.26 (for saturated conditions), s is the slope of satu-
ration vapour versus temperature curve [Pa K–1], γ is
the psychrometric constant [Pa K–1], and β is an
empirical constant of 20 W m–2. The value of α was
chosen depending on the vegetation type according
to literature. Results from studies in the Arctic indi-
cate that the value for α in dry regions characterized
by sedge tussocks, mosses, lichens, and shrubs is at

or near 1.00 (Rouse & Stewart 1972, Stewart & Rouse
1976, Rouse et al. 1977). In wet areas characterized
by wet sedge tundra and small ponds, a number of
studies have indicated that appropriate α values
should be ≥1.26 (Stewart & Rouse 1976, Roulet
& Woo 1986, Bello & Smith 1990, Rovansek et al.
1996).

As already mentioned, G0 is parameterized in 2
forms as

G0 = 0.15Q* (10a)

and

G0 = (–0.27 NDVI + 0.39)Q* (10b)

where NDVI is derived from the Landsat ETM scene.
This set of equations is then solved for LST using an
iterative approach. Depending on the spatial scale
regarded, the set of equations is solved on an hourly
basis for nano- and micro-scales and once a day for
meso-scale. In this study, the performance of the
model was tested at nano-, micro-, and meso-scales
against measurements of LST. Consequently, the
model was run at the specific grid resolutions (except
at nano-scale) that corresponded with grid-based
input data in order to enable a comparison of the
results to grid based observations at the same spatial
resolution.

2.2.4.  Statistically-based LST modelling

Similar to the interpolation of air temperatures, we
sought to adopt a physical basis for this modelling
approach. Independent environmental variables were
chosen with respect to their relevance for surface
temperatures and comprised (1) K↓ based on refer-
ence observations but spatially corrected for topogra-
phy (Oke 2001), (2) albedo, (3) NDVI, and (4) the
G0/Q* ratio as derived from remote sensing data.
Furthermore, (5) the Priestley-Taylor coefficient α
based on vegetation types, and (6) the topographic
wetness index (TWI) were treated as surrogates for
soil moisture conditions. Finally, (7) the spatial wind
field as described above, and (8) interpolated air
temperatures (corrected for the actual height above
sea-level) were considered.
A multiple linear regression model using stepwise
selection routines was established at micro- and
meso-scale, treating LST (derived from remote sens-
ing data for August 10, 2004 and October 4, 2004)
as the dependent variable. The dataset was split
randomly to use 1/3 for model building and 2/3 for
model validation. Moreover, the spatial transferabil-
ity of these empirical models was tested by applying
the model of the Geiranger area in Vågå and vice
versa.
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3.  RESULTS

3.1.  Geostatistical interpolation of TAMX and TAMN

Regarding the selection of the best guiding variables
for interpolation of daily air temperatures, we detected
a differentiation between maximum and minimum
temperatures. (In the following, corresponding signs of
correlation are given in brackets.) Maximum tempera-
tures were best described using elevation (–), cloud
cover (–) and terrain ruggedness in a 5 × 5 window (+)
besides northing and easting. Minimum temperatures
also showed a dependence on elevation (–), cloud
cover (+), northing, and easting, but additionally on
distance to coast (–) and height above local minimum
at a 3 × 3 window (+). These variables were chosen as
guiding variables for the further interpolation process
based on partial thin-plate splines. Resulting tempera-
ture maps are exemplified for two high pressure situa-
tions in Fig. 2, with a typical winterly temperature

inversion on January 17, 2004 and a clear sky summer
condition on July 31, 2004. The oceanic–continental
differentiation is clearly visible. The overall perfor-
mance of the interpolation approach was tested using
cross-validation estimates of error computed by jack-
knifing. These error estimates are visualized by the
boxplots in Fig. 2. Interpolation of TAMN yields in gen-
eral slightly better results than the interpolation of
TAMX, for which, (in non-alpine areas in the majority of
cases) the error falls in the range of –2.2 to 2.8 K. The
error range of –3 to 3.6 K for the interpolation of TAMX

indicates a decrease in accuracy with regard to alpine
areas.

3.2. Physically based LST modelling

The physically based modelling approach of surface
temperatures was applied from nano- to meso-scale.
The results were validated against independent mea-
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Fig. 2. Temperature interpolation based on partial thin-plate splines, exemplified for (a) TAMN on January 17, 2004 and 
(b) TAMX on July 31, 2004. Boxplots show overall performance based on jackknifing for (c) TAMN and (d) TAMX at 53 independent 

days in 2004
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surements at nano-scale—i.e. measured LST by data
loggers, and spatial information about LST by TIR aer-
ial photographs at micro-scale as well as by TIR Land-
sat ETM data at meso-scale. A strong decline in accu-
racy and ability to predict LST while increasing the
spatial extent is obvious from the correlation biplots
given in Fig. 3. The model performs very well at nano-
scale (RMSE = 1.124, R2 = 0.889), but tends to overesti-
mate low temperatures and to underestimate high
temperatures at micro-scale, resulting in an RMSE that
approaches 4 and a lower R2 of 0.551. At meso-scale,
the model mostly overestimates temperatures accom-
panied with a large scatter, resulting in poor values for
RMSE and R2 (7.812 and 0.304, respectively).

3.3.  Statistically based LST modelling

Statistically based modelling has been applied from
micro-scale to meso-scale. The independent variables
chosen by the automatic stepwise selection routine are
consistent throughout the different scales and com-
prise K↓, the G0:Q* ratio, and TWI, with K↓ showing
the highest partial correlation coefficients ranging

from 0.670 to 0.752. Consequently, the full models are
able to explain between 51 and 68% of the spatial
temperature variance with a RMSE ranging from 2.2 to
2.8 K. The performance of the model at micro- and
meso-scale is shown as a correlation biplot in Fig. 4.
However, the accuracy of the models diminished when
transferred to another study area (Geiranger), as
shown by the biplot to the far right in Fig. 4, indicating
their limited validity.

4. DISCUSSION

The proper choice of environmental guiding vari-
ables for temperature interpolation is an important
step assuring the quality of temperature fields pro-
duced; this step is essential for further representative
climatological or ecological modelling (e.g. Jarvis &
Stuart 2001, Monestiez et al. 2001, Lookingbill &
Urban 2003). This is even more important when re-
garding interpolation of daily temperature maxima
and minima instead of e.g. monthly means, since data
at higher temporal resolution are expected to reflect
more complex relationships that level off at greater
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Fig. 3. Correlation biplots of observed vs. predicted land-surface temperature (LST) at different spatial scales estimated by the 
physically based modelling approach. Solid line: y = x function

Fig. 4. Correlation biplots of observed vs. statistically predicted land-surface temperature (LST) at micro- and meso-scale. The
biplot to the far right shows the limited performance of the meso-scale model transferred from eastern to western Norway. 

Solid line: y = x function
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time scales (Lookingbill & Urban 2003, Chung & Yun
2004). However, it is very important to consider these
extremes, as done in an increasing number of studies
(e.g. Chung et al. 2006, Mostovoy et al. 2006), since
they are important ecological measures (e.g. Körner
2003). We found a differentiation between variables
important for temperature maxima and minima, in
agreement with previous results (e.g. Jarvis & Stuart
2001). Topography proved to be less important for
TAMX than for TAMN, reflecting the effect of cold air
drainage on minimum temperatures. Distance to coast-
line was found to be another important variable deter-
mining TAMN, as it mirrors the gradient in continental-
ity not represented by the easting variable due to the
fjord-shaped coastline. For both TAMX and TAMN, cloud
cover as derived from remote sensing data (MODIS)
proved to be important, as it determines the radiation
balance. This suggests that temperature interpolation
can be enhanced by using atmospheric data provided
by remote sensing. Mostovoy et al. (2006) already used
MODIS-derived LST to aid interpolation of air temper-
atures. However, their approach is restricted to clear-
sky conditions and hence of limited applicability in
mountain regions characterized by a high degree of
cloudiness. Using the derived guiding variables in a
partial thin-plate spline approach for the interpolation
of TAMX and TAMN, we achieved a good agreement
between interpolated and observed temperatures with
an error range of approximately ±2 K in the lowlands
in most cases, but increasing for alpine areas. How-
ever, the error range of –3 to 3.6 K is still relatively
small compared to e.g. adabatic lapse rate-based inter-
polation (data not shown), and thus our approach is
also suitable for mountainous regions.

It has been shown  that surface temperatures in high
mountain environments tend to be decoupled from air
temperatures at common screen-level, i.e. variations in
LST are not reflected by air temperature patterns (Löf-
fler & Pape 2004). Thus, the representativeness of
screen-level measurements for ecological applications
in high mountain environments needs to be critically
questioned (see e.g. Leser 1997). As a consequence,
the interpolated air temperatures served in a further
step as input for a physically based modelling of sur-
face temperatures.

The model was applied throughout different spatial
scales, from nano-scale to meso-scale and validated
against measured or remote sensing-derived LST.
Despite several simplifications of the model that were
necessary for spatial application in regions with lim-
ited data availability, the performance at nano-scale
was very good (RMSE = 1.124, R2 = 0.889). However,
starting at micro-scale and continuing meso-scale, the
performance declined drastically until the RMSE was
7.8, probably resolving limitations of the parameteriza-

tions used. For example, the wind field is parameter-
ized rather simply, but we were also able to validate
the approach based on our own data (not shown). The
Priestley-Taylor concept utilized for estimating LE has
been shown to provide acceptable accuracy for pre-
dicting daily evaporation in Arctic ecosystems if the
value of the α coefficient is known (Rouse et al. 1977).
However, α values have been shown to vary over time
and space related to changes in vegetation type and
state, soil moisture, and meteorological conditions
(Rovansek et al. 1996, Mendez et al. 1998, Engstrom et
al. 2002). Our approach of assuming constant values
for α taken from literature and depending solely on
vegetation type may, therefore, have caused erroneous
results. Further inaccuracy might arise from parame-
terization of G0. Liebethal & Foken (2007) found—in
their evaluation of 6 parameterizations—that all of
them had the potential to model results that match
observed ones very well, but only if all conditions and
restrictions of the respective approaches were taken
into account. For the linear approach used in our study,
they found a pronounced variability of the factor a in
space and time related to soil moisture and vegetation
height. We yielded a better performance of the model
when a was expressed as function of NDVI, rather than
treated as a constant (data not shown). However, the
same NDVI function used here to express a was found
by Jacobsen & Hansen (1999) for comparable vegeta-
tion types, but might not—due to its empirical charac-
ter—be easily transferred to other regions. Moreover,
the NDVI might not reflect differences in vegetation
height and soil moisture conditions adequately,although
a high correlation between NDVI and moisture status
was found by Ostendorf & Reynolds (1993). These
drawbacks probably explain the decline in model per-
formance when applied at larger spatial extents, indi-
cating a spatial limit for reasonable applicability. Con-
sequently, our findings underline the importance of
appropriate parameterizations that need to be devel-
oped for high mountain regions, since existing para-
meterizations could not easily be transferred from the
environments they have originally been developed for.

Due to the complexity of physically based modelling
approaches, we also tested the performance of a sim-
pler approach based on statistics, following recent
trends in research (e.g. Chung et al. 2006, Stahl et al.
2006, Joly & Brossard 2007). As a result, up to 68% of
the spatial variance in surface temperature could be
related to irradiance, G0/Q*-ratio as a function of
NDVI, and TWI. It is possible that we would have
achieved even better results if we had used an alterna-
tive measure of soil moisture conditions to the TWI
(which has been proven to reflect soil moisture better
for wet than for dry or intermediate conditions; Sule-
bak et al. 2000). However, the approach we used per-
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formed similarly across the different spatial scales,
suggesting that statistical approaches are an adequate
means of modelling temperature fields in high moun-
tain environments, even if they fall down on their
limited transferability to other regions.

The statistical approach revealed other important
facts. Neither the Priestley-Taylor coefficient α, the
wind-field, nor the interpolated air temperature at a
height of  2 m above ground contributed statistically
significantly to the variability of LST. The first 2 facts
might be attributed to a wrong parameterization, also
responsible for the limited performance of the physi-
cally based modelling approach. More interesting is the
apparent non-significance of air temperature: this may
be related to the already mentioned decoupling of air-
and surface temperatures, but it is even more likely that
it reveals scaling issues, leading to questions of the ex-
tent to which modelling or interpolation approaches
can be applied reasonably to other spatial scales. It is
questionable as to whether air temperatures inter-
polated at macro-scale can be downscaled using only
elevation as corrector (as done in the present study, and
also by Wang et al. 2006), especially when regarding a
meso-scale area of steep topography accompanied by a
complex differentiation in irradiance and wind field. It
is rather obvious that other or additional parameters
gain importance at finer scales, while they tend to level
off at coarse scales, as found by Xu et al. (2004). For in-
stance, we conducted a series of hand-held measure-
ments on air temperatures at an equally-spaced raster
of 20 m at micro-scale (data not shown), that revealed a
differentiation of temperatures dependent on wind
exposure. As such, it might be wrong to use the macro-
scale temperature field at finer scales, as it leads to
erroneous results. Thus, an appropriate handling of
scaling issues is necessary for temperature modelling,
as already proposed by Chave & Levin (2003) for eco-
logical issues. However, such appropriate handling is
hampered by the lack of observations at finer spatial
scales, a fact that leads us back to the starting point of
the whole discussion about temperature interpolation
and modelling: without climatological reference data
from spatial scales important for ecological applica-
tions—i.e. the meso- and micro-scale—an appropriate
estimation of temperature patterns remains difficult.
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