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1.  INTRODUCTION 

The global average surface temperature has 
undergone a rapid increase over the past century, 
leading to an escalating risk of climate change. To 
evaluate the variability and trends in global warm-
ing, several global-scale studies have been con-
ducted (Jones et al. 2012, Cubasch et al. 2013, Sun et 
al. 2017). Surface air temperatures in China have 
also increased significantly (NARCC Compilation 

Committee 2015). Numerous studies have assessed 
the extent of ground surface air temperature warm-
ing in China, resulting in the development of several 
nationwide temperature data sets (Wang 1990, Song 
1994, Wang et al. 1998, Ren et al. 2005, Tang & Ren 
2005, Ding & Wang 2016, Soon et al. 2018). Ensuring 
as much homogeneity as possible is essential for 
long-term climate analyses, particularly in the con-
text of surface air temperature changes (Aguilar et al. 
2003). However, climate data sets often exhibit in -
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ABSTRACT: The reliability of climate change detection and research is significantly impacted by 
the inhomogeneity of surface climate observation data. However, there is an ongoing debate 
regarding whether comprehensive homogenization has been performed in large-scale homoge-
nized data sets. In this study, we examined the homogeneity of the original maximum and mini-
mum temperature (Tmax and Tmin) data for 662 meteorological stations in North China by using 
multiple methods and combining with metadata. The quantile matching method was employed to 
adjust the daily Tmax and Tmin series. In order to avoid the potential systematic bias resulting from 
homogenization, no reference series were introduced during the adjustment process. The adjust-
ment results indicate that Tmin in North China is significantly affected by non-climatic factors, par-
ticularly station relocations and environmental changes around the stations. The application of 
homogenization in this study led to a notable increase in the overall temperature trends of the sta-
tions, with Tmin exhibiting a larger increase and the diurnal temperature range demonstrating a 
more significant downward trend. Based on the homogenized data, the annual and seasonal mean 
temperature trends in North China from 1951 to 2020 were re-evaluated. These temperature 
trends generally surpass those reported in previous research for the same period from 1961 to 
2000. The higher estimate of temperature trends may be attributed to the recovered urbanization 
effect in the newly homogenized data. Thus, the obtained homogenization data still exhibit a sig-
nificant urbanization bias that requires further assessment and adjustment.  
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homogeneities that introduce uncertainties into re -
search conclusions. Consequently, accurately testing 
and adjusting the breakpoints in observation data 
series, known as ‘homogenization,’ is crucial for de -
tecting and attributing climate change. 

Homogenization research can be dated back to the 
end of the last century (Domonkos et al. 2022). Early 
development of homogenization theories and corre-
sponding methods were pioneered by Alexanders-
son (1986), Easterling & Peterson (1995), and Vincent 
(1998). Peterson et al. (1998) comprehensively dis-
cussed the early progress of homogenization work. 
Aguilar (2003) evaluated the principles and charac-
teristics of different methods comparatively, and 
assessed their strong and weak points. Since then, 
numerous homogenization methods have been devel-
oped and widely applied. Statistical theories have led 
to the development of techniques that can more ac -
curately detect breakpoints for annual and monthly 
data (Li et al. 2004, Kuglitsch et al. 2012, Vincent et 
al. 2012, Wang & Feng 2013, Mamara et al. 2014). 
These approaches are validated with station histori-
cal data, also known as metadata, which include doc-
umentation of changes in observation practices, ther-
mometer replacements, environmental changes, and 
most importantly, station relocations. However, in -
corporating metadata into the homogenization pro-
cess of global temperature data sets has proved to be 
a challenging task. As a result, most global tempera-
ture data sets have not yet adopted the use of meta-
data for homogenization (Menne et al. 2018, Lenssen 
et al. 2019, Rohde & Hausfather 2020). With the ad -
vancements in homogenization theories, methods for 
homogenizing daily data have been supplemented 
and improved. Trewin (2013) developed a set of 
homogenized daily temperature data in Australia 
using the percentile matching (PM) method. Addi-
tionally, Vincent et al. (2012) employed the quantile 
matching (QM) method to adjust the monthly and 
daily temperature data in Canada. In the last de -
cades, several methods for homogenization have also 
been introduced for specific purposes (Menne & 
Williams 2009, Domonkos 2011a, Mestre et al. 2013, 
Guijarro 2018, Squintu et al. 2019), some of which 
were adopted in this work and will be introduced 
later in this paper. 

It is worth noting that the underlying mathematical 
and statistical theories of different methods vary con-
siderably; in particular, their homogenization proce-
dures may be quite dissimilar. Therefore, the homog-
enization outputs of the original data (containing 
non-climatic biases) could be different depending on 
what method is used to perform the homogenization 

(Venema et al. 2012). In some cases, the outputs 
might differ significantly from previous ones during 
the iteration process (O’Neill et al. 2022). In recent 
years, researchers have taken into account the effi-
ciency and capability of different methods to perform 
benchmarking aimed at achieving more accurate 
and reasonable homogenization (Menne & Williams 
2005, Venema et al. 2012, Domonkos 2013, Lindau & 
Venema 2016, Vincent et al. 2018, Domonkos et al. 
2021). Moreover, recent studies benchmarked tech-
niques by creating test series with real-world data 
(Gubler et al. 2017, Vincent et al. 2018, Squintu et al. 
2020), given that the simulated data are not able to 
fully simulate the various, complex, and impercepti-
ble climatic variations that occur in the natural envi-
ronment, and are only able to test signals that are 
easier to recognize. 

Over the past 2 decades, several national and 
 regional homogenized temperature data sets have 
been established in China. One such data set is the 
China Homogenized Historical Temperature data set 
developed by Li et al. (2004) by homogenizing the 
daily and monthly temperature series of 671 national 
meteorological stations from 1951 to 2001. Similarly, 
Li & Yan (2009) employed the Multiple Analysis of 
Series for Homogenization software package to 
homogenize temperature series of 549 national sta-
tions in China from 1960 to 2008, resulting in a set of 
large-scale homogenized data. Using the penalized 
maximal t-test (PMT) and with reference to the meta-
data, Xu et al. (2013) homogenized the daily temper-
ature data of 825 stations in China and further ana-
lyzed trends in extreme temperature indices. The 
most recent nationwide homogenization achieve-
ment is the ‘China National Surface Meteorological 
Station Homogenization Temperature Daily Dataset 
(V1.0),’ as developed by Cao et al. (2016) using the 
QM method, including both daily and monthly 
homogenized temperature data since 1951 for main-
land China. 

Given the influence of inhomogeneity factors, 
prevailing approaches of homogenization mainly 
focus on the relocation effects at a single station or 
within a restricted area (Yan et al. 2001, Morozova 
& Valente 2012, Zhang et al. 2014, Kolendowicz et 
al. 2019, Si et al. 2021). Distant movements of sta-
tions recorded by metadata play an essential role in 
identifying inhomogeneities. However, when exe-
cuting large-scale homogenization projects, incom-
plete homogenization may occur as a result of dis -
regarding possible impacts from environmental 
changes in surrounding regions and minor fluctua-
tions in instrument positions; this is due to the sig-
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nificant number of samples involved and the diffi-
culty in obtaining comprehensive metadata. He et 
al. (2021) suggested that significant inhomogeneity 
remains in existing homogenized data sets, showing 
greater trend changes in rural station series, which 
requires further examination and adjustment. In 
addition, differing homogenization methods utilized 
by various studies can lead to differences in trend 
estimates based on the data sets. Therefore, exten-
sive in-depth examination and adjustment of inho-
mogeneity of observation data is crucial prior to 
regional climate change research. 

The present study tests and adjusts the original 
temperature data in North China using a combina-
tion of several methods, and the long-term change 
in North China is estimated based on the newly 
homogenized data set. Section 2 provides details 
on the data sources used, as well as the specific 
homogenization techniques employed. Section 3 
presents statistical analyses of the homogenized 
data, and then calculates the annual and seasonal 
surface warming in North China from 1951 to 2020. 
Section 4 discusses the uncertainties of this re -
search, and Section 5 summarizes the findings of 
the study. 

2.  DATA AND METHODS 

2.1.  Data sources and research region 

The ‘China National Surface Meteorological Sta-
tion Fundamental Meteorological Elements Daily 
Dataset (V3.0)’ (Ren et al. 2012), developed by the 

National Meteorological Information Center (NMIC) 
of the China Meteorological Administration (CMA), 
was employed for the purpose of conducting ho -
mogenization. This data set encompasses the daily 
observation data of fundamental meteorological 
elements, including surface air temperature, col-
lected from 2479 national stations across mainland 
China. Nota bly, the temperature data were not 
subjected to any non-climatic bias removal process 
or homogenization. The record series start in Janu-
ary 1951 at the earliest, and span a maximum of 
70 yr (1951−2020). Rigorous quality control meas-
ures were implemented to ensure the overall in -
tegrity and quality of the data. In this study, the 
daily maximum (Tmax) and minimum temperature 
(Tmin) data were used for homogenization and 
analysis. 

In this paper, the term ‘North China’ refers to the 
region between 108−120° E and 33−43° N, in which 
stations are densely distributed (Fig. 1). This region 
encompasses multiple provinces, regions, and cities 
in the central northern part of the country. Our study 
focuses on 662 national meteorological stations 
located in this area. For comparison purposes, we uti-
lized the ‘China National Surface Meteorological 
Station Homogenization Temperature Daily Dataset 
(V1.0)’ developed by Cao et al. (2016), which also 
originates from the NMIC data set. To obtain the nec-
essary metadata, we accessed the historical data of 
national surface meteorological stations from the 
Meteorological Data Office of the NMIC. These 
records document even minor changes in coordi-
nates and altitudes resulting from station movements 
and environmental shifts. 

49

Fig. 1. Distribution of stations in North China. (a) Study area in North China (dashed square); (b) stations (n = 662) analyzed  
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2.2.  Homogenization methods 

Inhomogeneity detection for climate data predomi-
nantly relies on statistical algorithms, and the most 
effective approach to test the inhomogeneity of a 
series is to verify and calibrate the detected break-
points in conjunction with metadata whenever avail-
able (Aguilar et al. 2003). Unfortunately, in many 
cases, metadata are either missing, incomplete, or 
inaccurate. Metadata serve the primary purpose of 
confirming the significance and reliability of a statis-
tically detected breakpoint, as well as calibrating its 
occurrence time. However, since metadata do not 
always correspond to the breakpoints individually, 
they cannot be relied upon as the primary measure 
for inhomogeneity detection. Additionally, it might 
not be advisable to rely solely on a single method for 
homogenizing candidate data owning to the incon-
sistency of the outputs over the iterative process of a 
particular method (O’Neill et al. 2022). Hence, the 
reliability and accuracy of statistical methods play a 
much more prominent role in data homogenization 
(Trewin et al. 2020). 

There are 3 problems that statistical methods must 
solve in terms of homogenization: 

(1) In many cases, there may be more than one 
breakpoint in the time series for the test (Lindau & 
Venema 2013). 

(2) The reference series around the target series 
may also contain breakpoints (Lindau & Venema 
2013). 

(3) ‘Urban blending’ indicates the systematic 
tendency of aliasing a portion of the trend biases 
of reference series onto the estimated magnitude 
of the breakpoints when adjusting the target series 
(DeGaetano 2006, Pielke et al. 2007, Soon et al. 
2018). 

The first 2 issues pertain to the detection of inho-
mogeneity. Regarding the first aspect, there are 2 
approaches to address the presence of multiple 
breakpoints within a series. One approach involves 
splitting the series into 2 segments at the most signif-
icant breakpoint and then applying inhomogeneity 
tests to each subseries. This process is repeated until 
no more breakpoints can be identified in any sub-
series. Alternatively, multiple breakpoint detection 
methods can be directly employed, which have been 
demonstrated to effectively detect multiple break-
points simultaneously (Domonkos 2011b, Venema et 
al. 2012). As for the second aspect, the following 
measures can be employed to obtain the reference 
series for inhomogeneity detection: averaging multi-
ple reference series into a composite reference 

series, which helps eliminate minor breakpoints but 
may not effectively remove large, conspicuous 
jumps. In this scenario, homogeneous reference 
series should be used as far as possible. If working 
with inhomogeneous reference series becomes nec-
essary, adjustments should be made prior to their uti-
lization, even though this pre-homogenization pro-
cess may introduce certain uncertainties. 

In addition, the series can be matched in pairs for 
detection to avoid the impacts of reference series 
inhomogeneity. It is important to note that reference 
series may not exhibit homogeneity in a paired man-
ner. The breakpoints in 2 series can be identified by 
analyzing the difference series between them. A sub-
sequent ‘attribution’ step determines which break-
points detected in the difference series belong to 
which individual series. To effectively address the 
issue of reference series inhomogeneity, a recom-
mended approach is to perform joint detection for all 
series within a network simultaneously. This necessi-
tates the use of automatic methods that homogenize 
large data sets in an objective computerized process. 

Given that no method is capable of handling these 
problems concurrently in a perfect way (Venema et 
al. 2012), and considering the need to mitigate the 
uncertainties associated with different methods, a 
composite manner was adopted for inhomogeneity 
detection in our study. This approach involved com-
bining the results obtained from multiple methods: 
the adapted Caussinus-Mestre algorithm for net-
works of temperature series (ACMANT) (Domonkos 
2011a), the pairwise homogenization algorithm (PHA) 
(Menne & Williams 2009), and the RHtest (Wang & 
Feng 2013). Each of these methods possesses dis-
tinct techniques that effectively address specific 
types of inhomogeneity during the detection process. 
By subjecting the data set to tests conducted by all 
3 methods, we aimed to achieve improved accuracy 
and reduced uncertainties in identifying potential 
inhomogeneities. In the following text, we will in -
troduce how each method was employed and eluci-
date the rationale behind their implementation in 
this study. 

As mentioned earlier, a data set formed as a net-
work, like the North China temperature data ana-
lyzed in this study, could be homogenized through 
completely automatic methods. The perturbation of 
inhomogeneity within reference series can also be 
diminished by applying automatic software. From 
this point, the ACMANT software, developed during 
the HOME Cost Action and proven to be as reliable 
as manual methods (Venema et al. 2012), was consid-
ered applicable for the detection of the inhomo-
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geneities (version 4.3 was used in this study). Based 
on optimal step function fitting (Hawkins 1972), 
ACMANT tests and adjusts the target series accord-
ing to the Caussinus Lyazhri criterion (Caussinus & 
Lyazrhi 1997) with multiple weighted reference 
series. ACMANT requires at least 4 reference series 
for each target series, and each series in the network 
can serve as a reference to the others. The output of 
ACMANT comes from the integration of the highest 
correlated detection results. In our study, all of the 
temperature series in North China were constructed 
as an input network, and the parameters such as 
starting and ending years, data length, and other 
options were set to launch the inhomogeneity detec-
tion. 

For the second approach of tackling inhomoge-
neous reference series, the PHA method matches 
series in pairs and calculates the difference between 
the target series and each reference series, then tests 
the difference series to determine whether the 
breakpoints belong to the target series. This method 
allows for a greater tolerance towards the inhomo-
geneity within the reference series. However, it 
remains imperative to ensure a strong correlation 
between the target series and the selected reference 
series. To achieve this, the correlation coefficients 
were computed after constructing first differences for 
both the target and reference series. Only those 
reference series exhibiting a correlation coefficient 
greater than 0.9 with the target series were consid-
ered for the detection process. In order to enhance 
detection efficiency, each target series was tested 
against 3 to 7 reference series. A breakpoint was 
deemed significant only if it was identified in at least 
3 difference series. Throughout this procedure, the 
widely-applied standard normal homogeneity test 
method (Alexandersson 1986) was embedded to 
detect multiple breakpoints in the difference series. 
This method has demonstrated superior performance 
in terms of accurately identifying multiple break-
points (DeGaetano 2006). 

The last method we used, the RHtest, is a powerful 
software widely used to detect multiple breakpoints 
and homogenize various climate variables. Unlike 
the first 2 methods, only 1 series is referenced in the 
RHtest testing process. Lack of reference series is 
also operational, but may greatly reduce the reliabil-
ity of the testing results. A good reference series 
should be homogeneous and highly correlated with 
the candidate series (Reeves et al. 2007). Therefore, 
in our study, high-quality reference series were 
matched for each target series. Briefly, we have eval-
uated the homogeneity of each reference series and 

eliminated potential undetected inhomogeneities by 
averaging them. Our explicit selection process is as 
follows: initially, the reference stations located within 
300 km of the target station were used. The altitude 
difference between the reference station and the tar-
get station should be less than 200 m. We then calcu-
lated the correlation coefficients between each tar-
get series and its corresponding reference series, 
discarding the reference series with a correlation co -
efficient lower than 0.9. The remaining reference 
series underwent inhomogeneity tests using the 
PMFred algorithm (Wang 2008a,b) without references 
or metadata to optimize computing resources and 
save operation time. Inhomogeneous reference series 
were discarded, and only homogeneous ones were 
retained for the final detection. It is important to note 
that an insufficient number of reference series may 
fail to remove minor breakpoints when averaging, 
while an excessive number of reference series may 
result in a too smooth composite reference series, 
 losing its original local variability. According to pre-
vious research (Peterson & Easterling 1994, Peterson 
et al. 1998) and our trials, we found that averaging  
3 to 5 reference series is appropriate. Finally, the 
 target series were tested with the composite refer-
ence series using the PMTred algorithm (Wang et al. 
2007, Wang 2008a). 

After conducting inhomogeneity tests using the 3 
individual methods, 3 sets of breakpoint records 
were obtained, and all were included in the compre-
hensive evaluation. It has been suggested that cer-
tain methods, e.g. the PHA, potentially generate 
numerous false results that lack association with any 
metadata. These undocumented breakpoints reduce 
the reliability of the detection process (O’Neill et al. 
2022). Considering that metadata are often missing 
or incomplete in many cases, we would expect a por-
tion of undocumented breakpoints to be genuine in 
our tests, requiring a temperature shift of at least 
2.0°C. To mitigate the risk of spurious breakpoints 
detected by any individual method, only the break-
points identified by at least 2 methods within a 2 yr 
window would be considered significant and ad -
justed accordingly. If there was a match between the 
time of the breakpoint and the corresponding meta-
data record within a 1 yr window, the time of the 
breakpoint was modified to align with the metadata 
record. Otherwise, the time of the breakpoint was 
taken as the median of the 2 (or 3) results. 

Lastly, breakpoints need to be adjusted according 
to the detection results. However, there may be 
‘urban blending’ problems during the adjustment 
process of the target series. To address this, we opted 
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not to introduce any reference series considering the 
potential systematic bias that resulted from the 
homogenization methods (Soon et al. 2018). That is, 
reference series were only applied during the step of 
breakpoint detection or identification, which was 
carried out with a confidence level of 99%. When 
adjusting the target series, the QM method (Vincent 
et al. 2012) was applied to the daily temperature 
data. Slightly different from other methods that cal-
culate the mean shifts before and after the break-
points, the QM method assesses the adjustment mag-
nitude by comparing the empirical distribution of the 
series segments before and after the breakpoint in a 
quantile-based manner. The following paragraph 
provides a concise description of the QM method 
procedure. 

For each breakpoint (Mc breakpoints in total), the 2 
segments of the series that are separated by a break-
point are selected to estimate the corresponding 
empirical cumulative frequency (ECF). The selected 
parts of the segments (the whole segment was 
selected in the present work) were sorted in ascend-
ing order and divided into Mq equally sized cate-
gories; in the present work, we set Mq = 10. Now let 
Pb(k, l) denote the mean of the data in the segment 
for the l th category before the k th breakpoint, while 
Pa(k, l) denotes the mean after the k th changepoint. 
The difference in the l th category mean between the 
2 segments can then be derived as: 

 
D(k, l) = Pa(k, l) – Pb(k, l)    (l = 1,2,…,Mq) (1) 

In our adjustment, all other segments were ad -
justed to the latest segment of the series (i.e. the seg-
ment that contains the latest observation data, here-
after the ‘base segment’). Let s0 denote the base seg-
ment; then, for each segment s � [1,2,…,(Mc +1)], the 
difference in the l th category mean between the s th 
and s0

th segments can be derived as: 
 
 

 
 (2) 

Meanwhile, a lower boundary of A(s,0) = A(s,1) 
and an upper boundary of A(s,Mq + 1) = A(s,Mq ) 
were set to restrain the mean of the QM adjustments 
for the respective category. Thus, including all Mq  
categories, we have (Mq + 2) data points in total, to 
which a natural cubic spline was then fitted to obtain 
the QM adjustment for the series. 

Let ℱs(i) denote the ECF of the i th data point in seg-
ment s. By referring to the inter-segment difference 
in the fitted spline for segment s, which corresponds 
to the cumulative frequency ℱs(i), the 𝒜s(i) value can 

be obtained, which is the difference between seg-
ments s and s0, represented as the y-axis value. This 
𝒜s(i) value is the amount that will be added to the i th 
datum in segment s of the series, which is referred to 
as the QM adjustment value. The specific steps of 
QM adjustment were described by Wang et al. 
(2010); refer to this research for more detailed infor-
mation of the method. 

In most cases, it is necessary to use a reference 
series for the adjustment of a time series. However, 
the existence of ‘urban blending’ may pose problems 
when employing a reference series for this purpose. 
In the presence of a reference series, the adjustment 
process operates on the difference between the tar-
get and reference series, with the magnitude of the 
adjustment contingent upon the specific changes in 
the difference series. If the reference series exhibits 
prominent urbanization effects, the difference be -
tween it and the target series will also encompass 
noticeable urbanization influences, which will result 
in QM adjustment values inevitably reflecting urban-
ization trends. As a consequence, the use of a 
 reference series for adjustment introduces ‘urban 
blending’ issues. However, if no reference series is 
em ployed for the adjustment, the estimation of QM 
adjustment values relies on changes inherent to the 
target series. Subsequently, the resulting time series 
will not accumulate new urbanization effects; it sim-
ply adjusts the breakpoints. This approach would 
effectively avoid the ‘urban blending’ issue. Thus, in 
the present work, we have adjusted the temperature 
data without reference to other data series, and part 
of the urbanization effect in the temperature data 
series of urban stations will not be artificially 
diverted to those of rural stations. 

2.3.  Analysis method 

In the calculation of the monthly data, if there were 
more than 7 missing days in a month, the average 
value of that month was considered as missing. 
 Subsequently, the annual temperature series was 
derived by averaging the monthly data. If any month 
in a year was missing, the average value for that par-
ticular year was also marked as missing. Taking the 
period 1961−1990 as the climate reference period, 
the anomaly series for each station was obtained by 
subtracting the climate mean from the original tem-
perature series. The regional mean series was then 
calculated from these anomaly series. To ensure the 
accuracy of both means and anomalies, it was 
required that the station series used for calculating 

A(s,l) =
D(k,l) =

k=s

s0�1� [Pa(k,l)� Pb(k,l)], s < s0k=s

s0�1�
0 , s = s0

�
�
�
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means must have non-missing data for at least 15 yr 
within the climate reference period. In total, 653 of 
the 662 stations fulfilled this criterion. 

Stations in North China are not evenly distributed, 
probably making the regional mean series heavily 
affected by the uneven density of stations in certain 
areas. Hence, when calculating the regional mean 
series in North China, the study region was divided 
into 20 grids measuring 3° × 2° (longitude × latitude). 
Subsequently, we computed the arithmetic mean of 
the anomaly series for each grid and obtained the 
regional series of North China by averaging 20 grid 
series using the grid area-weighted average method 
(Jones & Hulme 1996). The proportion of missing val-

ues in the grid series used for calculating the regional 
series was below 10%. The linear trends of the tem-
perature series were assessed by a t-test (significant 
at p < 0.05). 

3.  RESULTS 

3.1.  Homogenization example 

The effect of our homogenization was demon-
strated by examining the temperature series of 2 sta-
tions in Hebei Province: Qinhuangdao and Wu’an. 
Fig. 2 shows a time series before and after homoge-
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Fig. 2. Comparison between the original and adjusted series for (a,c,e) Qinhuangdao station and (b,d,f) Wu’an station. Panels  
(e,f) are the adjustment value curves of the corresponding series
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nization, along with the adjustment values for each 
series. The results indicate that an average adjust-
ment of approximately −0.8°C was applied to the 
Tmax of Qinhuangdao station in January 1999. This 
adjustment resulted in an overall downward shift of 
the Tmax series before January 1999, making the 
homogenized series exhibit a more pronounced 
trend compared to the original series. For the Qin-
huangdao Tmin series, 2 adjustments were made in 
June 1957 and January 1999, with corresponding 
adjustment values of approximately 3.3°C and 
−3.0°C, respectively. Homogenization had a substan-
tial impact on the trend of the Qinhuangdao Tmin 
series, which previously displayed a slight trend but 
exhibited a steeper incline after homogenization. For 
the Wu’an station, both the Tmax and Tmin series expe-
rienced breaks in January 1999, accompanied by 
adjustment values of approximately 0.7 and 2.6°C, 
respectively. Unlike Qinhuangdao station, the trends 
of Wu’an station decreased after the adjustment, with 
the Tmin series undergoing the most significant 
change after the homogenization. 

3.2.  Statistics of homogenization data 

Table 1 shows the detection results of the Tmax and 
Tmin series for North China from 1951 to 2020. For all 
662 stations considered, the Tmax series exhibited rel-
atively better homogeneity compared to the Tmin 
series, with approximately half indicating inhomo-
geneity. In contrast, the Tmin series demonstrated 
higher susceptibility to inhomogeneity, with break-
points identified for approximately 65% of the series. 
Similar findings were observed by Zhou & Ren (2009) 
during their efforts to homogenize temperature data 
in North China. Regarding the number of break-
points, the Tmax series revealed a total of 481 
instances, equating to an average of 1.43 breakpoints 
per series. For Tmin, each series contained an average 
of 1.62 breakpoints, indicating that the Tmax series 
experienced fewer abnormal breaks originating from 

non-climatic factors, and the man-made inhomo-
geneity exerted more pronounced effects on the Tmin 
series. 

Fig. 3a shows the temporal distribution of break-
points. The maximum number of breakpoints was 
observed in 2004, corresponding to the implementa-
tion of an automatic observation system across the 
region. The transformation from manual to automatic 
observations resulted in systematic deviations in the 
surface air temperature. Specifically, the Tmax values 
of automatic weather stations were higher than those 
of the manual observations, while the Tmin for the 
new stations were lower than before (Wang et al. 
2007). A minor peak in breakpoint occurrences was 
observed in 1980. Various triggers contributed to 
these breakpoints, including the issuance of a new 
observation criterion that year. Additionally, many 
other series suffered inhomogeneity due to station 
relocations. Stations such as Xiangning and Qingxu 
in Shanxi province, as well as Yongcheng and 
Lushan in Henan province, underwent relocations in 
1980, which significantly impacted the homogeneity 
of the temperature records. Part of the breakpoints in 
1980 also came from subtle instrument movements 
that were not documented as relocations. Occasion-
ally, changes in longitude, latitude, or altitude 
occurred owing to the reconstruction of the observa-
tion sites and other factors, further affecting data 
homogeneity. The earlier peak period for the break-
points falls between 1964 and 1965. Most stations in 
North China experienced relocations during this 
time, emerging as the primary factor contributing to 
the inhomogeneity of temperature series. Lastly, a 
few breakpoints were detected in 2015, which also 
coincided with station relocations. 

Fig. 3b illustrates the classification of the break-
point triggers in 4 aspects. Relocation emerges as the 
primary factor in posing inhomogeneity to the obser-
vation data, which resulted in over half of the tem-
perature series breaks in North China. The second-
ary cause of the temperature inhomogeneity is 
attributed to alterations in the surrounding environ-
ment of the observation site or spatial displacement 
of the instrument. Metadata rarely document minor 
changes within the observation field; however, this 
study provides a comprehensive record of such 
changes. Consequently, every effort was made to 
determine and match the causes of the breakpoints 
in this regard. Additionally, changes in the observa-
tion criterion account for a fraction of the breaks. 
Instrument replacement is responsible for a few 
breakpoints, and specific metadata were un available 
to corroborate several breakpoints. 
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                                                                       Tmax       Tmin 
 
Number of inhomogeneous series                337         431 
Proportion of inhomogeneous series (%)      51           65 
Number of breakpoints                                 481         699 
Mean breakpoints in each series                 1.43        1.62 

Table 1. Numbers of inhomogeneous series and breakpoints 
detected from 662 stations in North China from 1951 to  

2020. Tmax (Tmin): maximum (minimum) temperature



He et al.: Homogenization of North China temperature

The distribution of adjusted values for all the 
breakpoints of Tmax and Tmin is presented in Fig. 4. 
Regarding Tmax, the majority of break adjustments 
are concentrated within the range of −1.5 to 1.5°C, 
with a significant number of breakpoints adjusted 
around the value of −0.4°C. The adjustments for Tmin 
are primarily distributed between −2.5 and 2.5°C, 
and the highest number of breakpoints occurs at the 
adjustment value of approximately −0.6°C. In gen-
eral, there is a prevalence of negative adjustments 
for both Tmax and Tmin breakpoints. The average 
adjustment value for Tmax breakpoints is −0.21°C, 
while that of Tmin breakpoints is −0.33°C. 

In terms of the effect of break adjustment, the 
adjustment magnitude associated with each break 

indicates how much the series segment before the 
breakpoint shifts in relation to the segment after. A 
negative adjustment results in a downward shift of 
the former segment split by the break, consequently 
causing the adjusted series to exhibit a larger trend 
than before the adjustment, as shown at Qinhuang-
dao station. Therefore, overall, the positive trends in 
the Tmin series in North China increased after 
homogenization compared to their previous values. 
Similar changes happened to the Tmax series, 
although they were slightly smaller compared to the 
Tmin series. 

In the spatial distribution of trend changes (Fig. 5), 
only a few stations in Hebei, Shandong, and Jiang -
su provinces exhibit noticeable differences in the 
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Fig. 3. (a) Total number of breakpoints for 662 stations in North China from 1951 to 2020, and (b) number of breakpoints for  
different causes
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trends before and after the homogenization process 
for Tmax. Specifically, these stations experienced a 
more significant rise in temperature from 0.2−0.4°C 
per decade to 0.4−0.6°C per decade. In contrast, the 
trend changes observed in Tmin after the homoge-
nization are more pronounced. Among them, there 
is a significant increase in the number of stations 
exhibiting a warming trend above 0.8°C per decade. 
Overall, the warming of the homo genized Tmax series 
increased to a small extent, which was not statisti-
cally significant, whereas the warming of Tmin was 
more evident after homogenization. 

3.3.  Comparison with existing homogenized data 

To compare and evaluate the homogenization of 
2 groups of data, the difference series was calcu-
lated by subtracting the original series from the 
homogenized series adjusted by both the method 
used in this study and the one introduced by Cao 
et al. (2016). As demonstrated in Fig. 6, there is 
minimal discrepancy in the Tmax series of the 3 data 
sets after 1965. However, the homogenized series 
in this study exhibit significantly smaller anomalies 
than the original series during the early decade. 
On the other hand, the series presented by Cao 
et al. (2016) show a slightly lower value than the 
original series in 1952 and 1953. By comparing 

their difference series with the original series, we 
can also observe the divergence be tween the ap -
proach employed in this study and that of Cao et 
al. (2016). The difference series calculated from 
our study display low values before 1965, resulting 
in a more pronounced increasing trend. This indi-
cates that the homogenized Tmax values in our 
study exhibit a higher increasing trend compared 
to the original data. Conversely, the trend observed 
by Cao et al. (2016) demonstrates little deviation 
from the original data. 

The Tmin series before 1965 exhibits similar charac-
teristics. The homogenized Tmin series in this study 
shows a significant decrease compared to the origi-
nal series before 1965, which aligns with the findings 
of Cao et al. (2016), but only evident in 1952 and 
1953. After 2007, both groups of the homogenized 
data demonstrate significantly greater anomalies 
than the original data. However, the results of this 
study indicate higher values than those of Cao et al. 
(2016). The rising trend of the Tmin difference series, 
calculated from the current research and original 
data, is more noticeable than that of the Tmax differ-
ence. This indicates that the homogenized Tmin in this 
study exhibits a more pronounced warming trend 
than the original data. Although to a lesser extent, 
the homogenization performed by Cao et al. (2016) 
also increased the Tmin trend compared to the origi-
nal data. 
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Fig. 4. Frequency of breakpoint adjustments for (a) maximum temperature (Tmax) and (b) minimum temperature (Tmin). The  
vertical dashed line represents zero value
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3.4.  Warming trend in North China 

Based on the new homogenized data, the long-
term trends of Tmax and Tmin in the North China 
region from 1951 to 2020 were calculated. In addi-
tion, we obtained the mean temperature (Tmean) by 
averaging Tmax and Tmin, and the diurnal tempera-
ture range (DTR) by subtracting Tmin from Tmax. To 
analyze the seasonal variations, the year was divided 
into 4 seasons: spring (March, April, and May), sum-
mer (June, July, and August), autumn (September, 
October, and November), and winter (December, 
January, and February). 

Fig. 7 depicts the spatial distribution of the trends 
of Tmax, Tmin, Tmean, and DTR across North China 
from 1951 to 2020. It can be seen that the spatial 
variation in Tmax trends is relatively limited, with 
prominent temperature increases observed in south-
ern central Inner Mongolia, most of Shanxi, north-
ern Shaanxi, and southeastern Tianjin. The warm-
ing rates of Tmax in other regions are comparably 
slower, particularly in Henan, where the warming 
effect is least discernible, and some areas experi-
ence nearly negligible warming trends. In stark 
contrast to Tmax, Tmin demonstrates a significant 
increase over a broader region, displaying notewor-
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Fig. 5. Comparison between the (a,c) original and (b,d) adjusted temperature trend for 653 stations in North China from 1951  
to 2020 for maximum temperature (Tmax) (a,b) and minimum temperature (Tmin) (c,d)
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thy spatial disparities. The most pronounced warm-
ing trend is concentrated in central Inner Mongolia. 
The warming areas in the middle and southeast of 
North China take on an island-shaped pattern, with 
the largest Tmin increase corresponding to the urban 
concentrated areas in various regions. Meanwhile, 
the warming trends in Shaanxi and the northeast 
corner of North China exhibit relatively minor 
changes. The spatial characteristics of Tave roughly 
align with those of Tmin, albeit with weaker and 
smaller warming rates and warming ranges. Central 
Inner Mongolia and the eastern part of the Bei-
jing−Tianjin−Hebei region emerge as the major 
warming zones, while the remaining regions of 
North China exhibit scattered warming trends in a 
smaller range. DTR generally exhibits negative 
trends throughout North China, mirroring the spa-
tial variations observed in Tmin. Notably, there is a 
distinct positive value in the mid-western region of 

Shanxi, which corresponds to a significant warming 
center of Tmax. 

Overall, the spatial variations of Tmin and DTR 
trends roughly align with the urban distribution in 
North China. The concentrated urban areas exhibit 
the most notable long-term trends, which could be 
attributed to the urbanization effect in this region 
(Ren et al. 2008). In contrast, the spatial variations of 
Tmax trends do not show apparent differences. The 
trends observed in Tmean lie between those of Tmax and 
Tmin, probably indicating a relatively weak urbaniza-
tion effect in the data series compared to that in Tmin. 

Fig. 8 illustrates the annual and seasonal time 
series, depicting temperature trends in North China. 
In general, Tmin exhibits the most significant trends 
among both annual and seasonal series, while Tmax 
experiences relatively smaller trends. Concerning 
the seasonal temperatures, the warming trends are 
more pronounced in spring and winter compared to 

58

Fig. 6. Comparison between series calculated from (a,c) the different data sets and (b,d) the corresponding difference series 
from 1951 to 2020 for maximum temperature (Tmax) (a,b) and minimum temperature (Tmin) (c,d). Dashed lines: fitted  

linear trend
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autumn and summer. Before 1990, the warming 
trend in spring was relatively small, with no apparent 
changes observed in Tmax. However, after 1990, 
North China experienced rapid warming in spring, 
except for a ‘cold spring’ year in 2010. Winter tem-
peratures exhibit large variations before 1980 and 
after 1998, with relatively gentle trends during both 
periods. Notably, the coldest winter in the last 70 yr 
occurred in 1967, while apparent winter cooling took 
place between 1998 and 2012, possibly linked to the 
regional warming hiatus during the same period 
(Sun et al. 2018). Winter warming in North China 
mainly occurred from 1984 to 1998. In comparison, 
temperature changes in summer and autumn were 

moderate, with relatively small trends in both seasons. 
Before 1993, summer mean temperatures showed lit-
tle variation, and the temperature trends remained 
relatively stable during this period. Autumn warm-
ing in North China primarily happened during 1981−
1998, with no apparent temperature trends before 
or after this period, similar to the winter changes. 
Similarly, autumn temperatures in North China also 
ex perienced a hiatus after 1998, with Tmax even ex -
hibiting a weak downward trend during this hiatus 
period. 

From the perspective of the annual mean tempera-
tures, the temperature trends prior to 1984 were rel-
atively small. However, after 1984, North China 
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Fig. 7. Distribution of trends of (a) maximum temperature (Tmax), (b) minimum temperature (Tmin), (c) mean temperature  
(Tmean), and (d) diurnal temperature range (DTR) in North China from 1951 to 2020
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Fig. 8. Annual and seasonal mean time series for (a) maximum, minimum, and mean temperature (Tmax, Tmin, Tmean,  
respectively) and (b) diurnal temperature range (DTR) from 1951 to 2020
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experienced a rapid temperature increase, reaching 
its peak in 2017. A warming hiatus occurred from 
1998 to 2012 in North China, during which Tmax, Tmin, 
and Tmean all exhibited a decrease. Over the past 2 
decades, temperatures showed no significant changes. 
For DTR, apparent downward trends can be ob -
served in both annual and seasonal mean series 
throughout the study period. In particular, the DTR 
decreased most rapidly in the initial 30 yr of the study 
period. Except for autumn, the decline in DTR has 
slowed down in the last 40 yr. 

Table 2 presents the trends of Tmax, Tmin, Tmean, and 
DTR in North China during the period 1951−2020.  
To compare our findings with the study conducted  
by Zhou & Ren (2009), which covers the years 
1961−2000, the trend differences were calculated by 
subtracting their results from those of our own. These 
differences, indicated in parentheses in the table, 
demonstrate the variations between the 2 studies. In 
terms of the trends in annual mean temperature, our 
results generally exhibit slightly higher values com-
pared to those of Zhou & Ren (2009). However, sub-
stantial disparities can be observed when analyzing 
the seasonal trends. Specifically, our study indicates 
significantly greater summer temperature trends 
compared to those of Zhou & Ren (2009). Notably, the 
trend of summer mean Tmin exhibits a notable differ-
ence of 0.10°C per decade during same period. Con-
versely, the winter trends presented in our paper are 
generally lower than the findings of Zhou & Ren 
(2009). For instance, the trend of mean Tmin in winter 
is 0.07°C per decade less than that reported by Zhou 

& Ren (2009) within the same period. Relatively small 
differences exist between the 2 studies for spring and 
autumn, with our results consistently showing slightly 
higher trends than those of Zhou & Ren (2009). Fur-
thermore, differences between the 2 sets of results 
are also evident when considering the trends of DTR 
across seasons. Our paper demonstrates signifi-
cantly larger DTR trends in spring and winter com-
pared to those of Zhou & Ren (2009). Conversely, DTR 
trends in summer and autumn are slightly smaller 
in our study comparison to those of Zhou & Ren 
(2009). However, no significant differences were found 
in the trends of annual mean DTR between the 2 
studies. 

4.  DISCUSSION 

A new homogenization was conducted for surface 
air temperature data in North China, using the 
ACMANT, PHA, and RHtest V4 software. The QM 
method was then applied to adjust the daily Tmax and 
Tmin data series. This adjustment process involved no 
reference series, thus eliminating the potential intro-
duction of ‘urban blending’ (Soon et al. 2018) into the 
homogenized series. According to Soon et al. (2018), 
when homogenization is applied to an urbanized net-
work, it tends to blend (or smooth or homogenize) the 
non-climatic biases among all stations, resulting in 
similar trends for most stations. Specifically, the 
trends of the highly urbanized stations are partially 
reduced, while those of predominantly rural stations 
are increased after homogenization. As our adjust-
ment was made by applying the QM method and did 
not rely on any reference data series, it can be 
inferred that the homogenized data series in our 
study remains unaffected by the ‘urban blending’ 
effect. 

We evaluated the potential ‘urban blending’ effect 
in the adjusted data by categorizing the series into 
groups. Based on Tysa et al. (2019), the temperature 
series undergoing adjustments were classified into 6 
urbanization levels, ranging from L1 (the most ‘rural’ 
stations) to L6 (the most ‘urban’ stations), as shown in 
Table 3. The averaged adjustments demonstrated a 
general decrease from L1 to L5 for Tmax and from L1 
to L4 for Tmin. This indicates that there were upward 
step changes in average trend differences as urban-
ization increased (negative adjustments before the 
breakpoints resulted in trend increases). Stations 
with urbanization levels ranging from L2 to L5, 
which likely experienced significant urbanization, 
showed larger linear trends after homogenization. 
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                              Tmax           Tmin           Tmean         DTR 
 
Spring                    0.34           0.46           0.40        −0.13  
                             (0.01)        (−0.03)        (0.01)       (0.04) 

Summer                 0.14           0.31           0.23         −0.17  
                             (0.04)          (0.10)         (0.07)      (−0.05) 

Autumn                 0.14           0.35           0.25        −0.20  
                             (0.02)          (0.05)         (0.04)      (−0.02) 

Winter                    0.30           0.49           0.40        −0.19  
                            (−0.02)       (−0.07)       (−0.03)       (0.06) 

Annual                   0.23           0.40           0.32         −0.17  
                             (0.02)          (0.01)         (0.02)        (0.01)

Table 2. Trends in annual and seasonal mean series for max-
imum temperature (Tmax), minimum temperature (Tmin), 
mean temperature (Tmean), and diurnal temperature range 
(DTR) of North China from 1951 to 2020. Values in paren-
theses are trend differences in the same period relative to 
the research of Zhou & Ren (2009) for 1961−2000 (unit:°C 
per decade). All trends in North China from 1951 to 2020  

shown in the table are significant at the 0.01 level
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This should be interpreted as the recovery of the 
urbanization effect when stations relocated from 
more urban areas to more rural ones (Zhang et al. 
2014, Ren et al. 2015). However, for both Tmax and 
Tmin of the L1 stations, which are usually situated in 
remote environments and rarely experience reloca-
tion events, the trends were somewhat reduced after 
homogenization. This reduction may represent the 
true rural temperature changes. Likewise, the homo -
genized linear trends of L6 stations, representing the 
most urbanized areas, were also reduced for both 
Tmax and Tmin. This may have to do with the smaller 
sample size of the stations in these groups. It is also 
possible that urban developments started much ear-
lier at L6 stations compared to others and has stag-
nated in recent decades, resulting in a much lower 
recovered urbanization effect (represented by the 
averaged adjustments) than other station groups. 
Therefore, after adjustment, stations with higher lev-
els of urbanization did not exhibit lower trends than 
before, while stations with lower levels of urbaniza-
tion did not display significantly higher trends. This 
indicates that the adjusted data series do not contain 
the ‘urban blending’ effect. 

To avoid false adjustments to potential climate 
variations, a 2.0°C threshold was set for identifying 
undocumented breakpoints. We also counted the 
number of discarded undocumented breakpoints 
using this criterion. In total, 1716 breakpoints for Tmax 
series and 2339 breakpoints for Tmin series were 
detected. This indicates that approximately 70% of 
the detected breakpoints did not meet the criteria 
and were discarded. In our study, a 1 yr window was 

used to match the breakpoints with the metadata. 
O’Neill et al. (2022) reported that about 80% of the 
breakpoints in the European GHCN data, identified 
by the PHA method, could not be matched with any 
metadata within a 1 yr window. Given that a portion 
of the undocumented breakpoints were conditionally 
adjusted in our study, we would expect that the pro-
portion of the unadjusted breakpoints in our study to 
be slightly lower than the proportion of undocu-
mented breakpoints in the study by O’Neill et al. 
(2022). Moreover, multiple methods were applied 
in our detection process, and some breakpoints iden-
tified by any single method exclusively were not 
deemed significant. Consequently, fewer undocu-
mented breakpoints were taken into account. This 
suggests that employing combined methods in our de -
tection process reduces uncertainty to some extent. 

The statistical analysis in this study reveals that the 
number of breakpoints adjusted in Tmin is greater 
than that in Tmax, and the average number of break-
points per series is also higher in Tmin. Regarding the 
spatial movement of stations, distant station reloca-
tions can have a considerable impact on both Tmax 
and Tmin data, leading to noticeable discontinuities in 
the temperature series. However, minor relocations 
or slight movements, especially those occurring 
within close proximity, tend to only affect the Tmin 
series, while having no apparent influence on Tmax. 
Previous studies (Zhou & Ren 2009, Xu et al. 2013, 
Cao et al. 2016) have emphasized that Tmin data are 
more susceptible to spatial movements of the obser-
vation devices, primarily related to the significant 
urbanization effect (particularly the urban heat is -
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Data            Urbanization        Station                Average                Raw trend            Homogenized                Trend  
                          level                count             net adjustment          per station         trend per station         differences 
                                                                        per station (°C)      (°C per decade)       (°C per decade)       (°C per decade) 
 
Tmax                     L1                     19                       −0.22                       +0.39                       +0.29                        −0.09 
                            L2                     49                       −0.20                       +0.23                       +0.26                       +0.03 
                            L3                    120                      −0.30                       +0.22                       +0.25                       +0.03 
                            L4                    129                      −0.35                       +0.20                       +0.23                       +0.03 
                            L5                     14                       −0.43                       +0.18                       +0.26                       +0.08 
                            L6                      6                        +0.07                       +0.30                       +0.26                        −0.04 

Tmin                      L1                     31                       −0.24                       +0.24                       +0.22                        −0.02 
                            L2                     57                       −0.51                       +0.31                       +0.36                       +0.04 
                            L3                    148                      −0.63                       +0.36                       +0.44                       +0.08 
                            L4                    171                      −0.56                       +0.40                       +0.46                       +0.06 
                            L5                     16                       −0.27                       +0.44                       +0.47                       +0.03 
                            L6                      8                        −0.20                       +0.52                       +0.50                        −0.02

Table 3. Averaged net adjustments and trends of surface air temperature for different groups of stations at various urbaniza-
tion levels. Urbanization increases from L1 (the most ‘rural’ stations) to L6 (the most ‘urban’ stations). For comparison of the 
difference before and after adjustment for inhomogeneous series, only the adjusted series are listed in this table. The  

difference values are approximated after calculation. Tmax (Tmin): maximum (minimum) temperature
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land effect) on Tmin measurement (Ren & Zhou 2014). 
When a station relocates to a remote rural or subur-
ban location −an approach commonly practiced in 
developing countries and regions− Tmin may exhibit a 
significant decrease due to the absence or weaken-
ing of the urban heat island effect, resulting in an 
apparent break in the series. Occasionally, stations 
might be relocated from the suburbs to urban areas 
owing to station management or other factors. In 
such cases, Tmin could considerably increase from a 
lower temperature to a higher temperature, generat-
ing noticeable breaks in the series. 

In terms of the adjustment magnitude of the break-
points, Tmin exhibits a greater adjustment than Tmax. 
This indicates that Tmin is more significantly in -
fluenced by inhomogeneous factors, whereas Tmax  
is relatively less susceptible to such non-climatic 
 factors. When an artificial discontinuity occurs, it 
induces a relatively minor inhomogeneity in the Tmax 
series. Meteorological stations typically record Tmax 
at 14:00 h local time, which represents the daytime 
temperature at the station. Ordinarily, urban and 
rural areas experience similar daytime temperatures. 
Significant effects on Tmax occur only when there is a 
long-distance or substantial vertical relocation, for 
example, between urban center and remote rural 
areas or between valleys and mountain tops. How-
ever, historical records indicate infrequent occur-
rences of such station relocations. As a result, fewer 
breakpoints were detected in Tmax, and their magni-
tudes were comparatively low. 

Our research shows overall larger trends in annual 
and seasonal temperature changes in North China 
compared to other data sets, including the original 
data and the existing homogenized data (Table 2, 
Fig. 6). This difference may be mainly related to the 
homogenization methods employed. The observed 
negative differences in winter between our study 
and that of Zhou & Ren (2009) may be owing to the 
difference in data type and the regional winter 
warming hiatus in eastern China since 1998 (Sun et 
al. 2017), which has been included in the updated 
analysis. Additionally, the dissimilarity in the number 
of stations used by the 2 studies could also serve as a 
contributing factor. Zhou & Ren (2009) estimated  
the temperature change in North China using 95 
national basic meteorological stations and national 
reference climate stations (i.e. the national stations), 
whereas our study encompassed 653 stations in 
North China, including ordinary meteorological sta-
tions alongside the national stations. 

In China, most observation stations are located 
within or near cities and towns of varying sizes, so 

they may have recorded urbanization effects in their 
historical temperature data series. Zhang et al. (2010) 
analyzed the urbanization effect among 614 national 
stations in China from 1961 to 2004, revealing that at 
least 27% of the temperature trend results from 
urbanization. Ren et al. (2008) demonstrated that the 
urbanization effect contributes more than 38% of the 
temperature trend increases at the national stations 
of North China from 1961 to 2000, which surpasses 
the national average. Notably, although the urban-
ization contribution in the national stations remains 
relatively small in winter, the absolute warming 
induced by urbanization, i.e. the urbanization effect, 
is often the most prominent of the year (Ren et al. 
2008, Zhou & Ren 2009). The present analysis did not 
take into consideration the urbanization effects, thus 
leading to an evident overestimation of regional 
warming trends in the study area. In addtion, data 
homogenization could have caused a recovery of 
urbanization effects in the station temperature series 
due to the fact that the majority of the station reloca-
tions in China occurred from urban to rural areas 
(Zhang et al. 2014, Ren et al. 2015). This perhaps 
explains why the current homogenization amplifies 
the temperature trends in North China to a certain 
extent. The recovered urbanization effect at urban 
stations also accounts for the somewhat inconsistent 
spatial patterns of homogenized temperature trends 
depicted in Figs. 5 & 7. The homogenized tempera-
ture data may exhibit scattered climatic gradients 
due to the non-uniform urbanization effect over 
China, including North China, whereas adjusting the 
urbanization bias in surface air temperature data 
would yield a more consistent spatial pattern in the 
climatic background warming trends (Wen et al. 
2019). Therefore, the present obtained homogenized 
temperature data in North China still retain signifi-
cant urbanization bias. Thus a homogenization of 
temperature data, especially in-depth homogeniza-
tion like that conducted in our work, necessitates fur-
ther evaluations and adjustments of urbanization 
bias more than before. 

Another reason for the overestimated trends in 
annual and seasonal mean temperatures in North 
China could be attributed to the statistical method 
employed to calculate the daily mean (monthly and 
annual mean) temperature. Traditionally, the daily, 
monthly, and annual mean temperatures are ob -
tained by calculating the arithmetical average of Tmax 
and Tmin. However, compared to the standard proce-
dure or equal-interval averaging method (4, 8, 24 
records a day), the arithmetic mean of Tmax and Tmin 
tends to overestimate the overall average and the lin-
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ear trends, as pointed out by Liu et al. (2019). It is 
worth noting that although the bias resulting from 
the averaging method is generally smaller in North 
China compared to the Qinghai-Tibet Plateau and 
Northwest China, it still holds statistical signifi-
cance when considering the data series for spring, 
summer, autumn, and the entire year. Therefore, it is 
imperative to take this factor into account in future 
studies. 

5.  CONCLUSIONS 

In this study, we present an updated analysis of 
surface warming in North China spanning the period 
1951−2020. This analysis is based on newly homoge-
nized surface air temperature data derived from a 
high-density observation network. The following are 
the main conclusions drawn from our study. 

(1) Using the ACMANT, PHA, and RHtest soft-
ware, the maximum and minimum temperature 
series in North China were jointly tested for inhomo-
geneity with reference to the metadata of each sta-
tion. During the testing, a reference series was 
strictly constructed for each target series. A set of 
homogenized daily maximum and minimum temper-
ature data of 662 meteorological stations in North 
China were then obtained by using the QM method 
for adjustment. This adjustment process, without 
relying on any reference data series, should avoid 
the ‘urban blending’ bias resulting from the homoge-
nization method. 

(2) The inhomogeneity of the temperature series in 
North China is primarily attributed to station reloca-
tion, which accounts for over half of the detected 
breakpoints in the temperature data. Furthermore, 
environmental changes at the stations also have 
noticeable effects on the homogeneity of the temper-
ature series. The periods of extensive station reloca-
tion primarily occurred during the 1960s and 1980s, 
resulting in numerous breakpoints. Additionally, the 
introduction of automatic observation instruments in 
the early 2000s caused significant discontinuities in 
the data. 

(3) The inhomogeneity of minimum temperature 
was more prevalent compared to the maximum tem-
perature, which was less disturbed by non-climatic 
factors. The homogenization conducted in this study 
resulted in an overall increase in the temperature 
trend in North China. Although the maximum tem-
perature exhibited a relatively small rise range, the 
adjustment significantly increased the rise rate of the 
minimum temperature. Furthermore, little difference 

was noted in the spatial distribution of the linear 
trend between the original and homogenized maxi-
mum temperature data, while apparent rising trends 
were observed in most provinces and cities for the 
homogenized minimum temperature. 

(4) The annual Tmax trend in North China was gen-
erally small, displaying negligible spatial difference. 
It tended to be higher in the northwest and lower in 
the southeast. On the other hand, the trends for Tmin 
and DTR were more pronounced and exhibited dis-
tinct spatial patterns. Each high- or low-value center 
aligned with specific urban areas, suggesting that 
urbanization has had a notable impact on the trends 
of Tmin and DTR in North China. Similarly, annual 
and seasonal mean Tmean also exhibited significant 
changes, although these changes were typically less 
pronounced compared to Tmin. 

(5) The annual mean temperature trend in North 
China has undergone slight changes in recent years. 
The warming in this region primarily began in the 
1980s, followed by a regional slowdown in warming 
from 1998 to 2012. Notably, the most significant 
increases in temperature occurred during spring and 
winter, while the trends for summer and autumn 
were relatively modest. Additionally, both the annual 
and seasonal mean DTR exhibited noticeable down-
ward trends. 

(6) Larger trends in the annual and seasonal mean 
temperatures in North China were observed com-
pared to previous research. However, it is worth 
 noting that the temperature trend during winter was 
significantly weaker than that reported in previous 
analyses. These significant changes in temperature 
may be attributed primarily to the recovery of the 
urbanization effect in the temperature data series of 
national stations after undergoing thorough homoge-
nization. Thus, the homogenized temperature data 
obtained in this study still retain apparent urbaniza-
tion bias, which necessitates further evaluation and 
adjustment in future research endeavors. 
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