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ABSTRACT: Recovery of the elkhorn coral Acropora palmata is critical to reversing coral reef eco-
system collapse in the western Atlantic, but the species is severely threatened. To gauge potential
for the species' restoration in Florida, USA, we conducted an assisted migration experiment where
50 coral fragments of 5 nursery-raised genetic strains (genets) from the upper Florida Keys were
moved to 5 sites across 350 km of the offshore reef. Additionally, 4 fragments from the 1 remaining
colony of A. palmata in Dry Tortugas National Park (DRTO) were added to the 2 DRTO experi-
mental sites to test for local adaptation. To measure coral performance, we tracked coral survival,
calcification, growth, and condition from May 2018 to October 2019. All 24 corals relocated to the
DRTO sites survived and calcified ~85 % faster than the fewer surviving corals transplanted to the
2 upper Keys sites. While coral survival across the entire experiment did not depend on genet,
there was a weak but statistically significant genetic effect on calcification rate among the corals
relocated to DRTO. The DRTO native genet was among the fastest growing genets, but it was not
the fastest, suggesting a lack of local adaptation at this scale. Our results indicate that DRTO, a
remote reef system inhabited by the species during the Holocene and located at the nexus of
major ocean currents, may be a prime location for reestablishing A. palmata. Assisted migration
of A. palmata to DRTO could restore a sexually reproducing population in <10 yr, thereby promot-
ing the species' regional recovery.
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1. INTRODUCTION

The global loss of species is perhaps the greatest
challenge in addressing ecosystem collapse because
itis irreversible. To prevent species loss, intervening
early, before populations have lost the capacity for
self-renewal (e.g. humpback whale), has generally
resulted in more effective and efficient conservation
outcomes than waiting until drastic interventions,
such as captive breeding (e.g. northern white rhinoc-
eros), become necessary (Snyder et al. 1996). How-
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ever, the removal of single, well-understood threats
such as hunting is much easier than addressing
chronic or pervasive stresses (Hayward 2011). Human
imprints on global climate and biogeochemical
cycling have driven significant biodiversity loss on
land and in the marine realm (Vitousek et al. 1997,
Jones et al. 2004), and concerns about extinction now
include roughly a third of all coral species (Carpenter
et al. 2008). In 2006, Acropora palmata and A. cervi-
cornis were the first corals listed as threatened under
the US Endangered Species Act (NMFS-NOAA
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2006), and they were soon after identified as Criti-
cally Endangered by the IUCN (Aronson et al. 2008).

The elkhorn coral A. palmata is the only coral spe-
cies that builds the reef crest habitat zone in the
western Atlantic, and it is distinctive regarding its
large size: colonies can reach >5 m in diameter
and >4 m in height. Patterns of ecological and geo-
logical zonation as described in the mid-20"™ century
(Goreau 1959, Geister 1977, Marszalek et al. 1977),
characterized by uninterrupted dominance of the 2
Acropora species for thousands of years, no longer
exist today in most places (Aronson & Precht 2001,
Aronson et al. 2002, Precht et al. 2004, Wapnick et al.
2004, Toth et al. 2019). Of the 2 species, A. palmata is
arguably the more important ecosystem engineer
(Macintyre & Glynn 1976), with some exceptional
locations where A. cervicornis built thick Holocene
reefs (Macintyre et al. 1977, Aronson et al. 2002).
While both species suffered dramatic population
declines from a disease pandemic in the late 1970s
(Gladfelter 1982, Aronson & Precht 2001), the de-
crease in A. palmata is arguably more consequential
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for reef morphology. Acres of dead corals were left at
the reef crest, which in places, persist today in
growth position (e.g. Buck Island Reef National Mon-
ument, US Virgin Islands), possibly because of a
thick rind of crustose coralline algae and secondary
cementation (Adey 1975). However, most A. palmata
skeletons have been reduced to rubble over the
years from a combination of bioerosion (Glynn &
Manzello 2015) and hurricanes (Woodley et al. 1981),
leaving flatter, less topographically complex reefs
that have become non-accreting throughout the
region (Alvarez-Filip et al. 2009, Perry et al. 2015,
Kuffner & Toth 2016). The results of reef degradation
and flattening include loss of ecosystem services
such as coastal protection from storms, food security
from important fisheries, and economic returns from
tourism (Costanza et al. 1997, 2014, Spalding et al.
2017, Storlazzi et al. 2019).

The Dry Tortugas coral reef ecosystem, located at a
latitude of 24.4° N, is the westernmost terminus of the
Florida reef tract (Fig. 1). This subtropical reef system
is separated from other nearby reefs to the east by a
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Fig. 1. Sites (white triangles) where Acropora palmata genets were originally harvested by the Coral Restoration Foundation
(or The Nature Conservancy in Dry Tortugas) and sites (red circles) where nursery-raised fragments of those genets were
transplanted to experimental blocks on the offshore reef. Experimental sites are Pulaski West (24.70°N, 82.80°W), Pulaski
Shoal Light (24.69°N, 82.77°W), Sombrero Reef (24.63°N, 81.11°W), Crocker Reef (24.91°N, 80.53°W), and Fowey Rocks
(25.59°N, 80.10°W). Genet collection sites are Carysfort Reef (CF), Conch Reef (CN), Dry Tortugas (DT), Horseshoe Reef (HS),
Molasses Reef (ML), and Snapper Ledge (SN). Base map is uncopyrighted from World_Imagery; source: Esri, DigitalGloble,
GeoEye, Earthstar Geographics, CNES/Airbus DS, USGDA, USGS, AES, Getmapping, Aerogrid, IGN, IGP, Swisstopo, and the
GIS user community
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25 m deep, 35 km wide channel, and as of this writ-
ing, it remains free of the stony coral tissue loss dis-
ease (SCTLD) that has devastated the coral commu-
nities of Florida since 2014 (Precht et al. 2016, Muller
et al. 2020). The Dry Tortugas are also remote from
human settlements, situated 100 km west of the near-
est city of Key West, USA, and 175 km north of
Havana, Cuba. Recognized early as an area of signif-
icance to human and wildlife connectivity, the US
military built a fortification in the mid-1800s to
defend trading routes that converge at the strategic
location, the area was designated as a natural re-
source refuge in 1908, and the first coral reef re-
search laboratory in the Western Hemisphere was
established there in the early 1900s by the Carnegie
Institute (Shinn & Jaap 2005). The shallow areas of
the Dry Tortugas banks, where A. palmata could
potentially live today, are contained within Dry Tor-
tugas National Park (DRTO). Where reef coring
investigations into the fossil record have occurred, A.
palmata was not an extensive presence in the Holo-
cene reefs (Shinn et al. 1977, Toth et al. 2019). How-
ever, our recent collection and dating have revealed
that A. palmata populations were present in DRTO
from ~4500 to 2700 yr BP. In historic times, Agassiz
(1885) recorded living populations in areas near Gar-
den Key, but these contracted substantially during
the first half of the 20" century (Jaap & Sargent
1994), and by the 1980s, the population was confined
to the existing location where only 1 patch reef per-
sists (Davis 1982, Ruzicka et al. 2010). Genetic analy-
sis originally suggested that the remaining DRTO
population was composed of 2 genets (Baums et al.
2005), but later testing of 50 colonies in 2015 showed
that only 1 remained (K. Neely, NOVA Southeastern
University, pers. comm., 3 May 2020), indicating
that today, the species is functionally extinct in the
Dry Tortugas. Additionally, populations throughout
the Florida Keys have declined precipitously, and
there is little evidence of sexual recruitment of new
colonies (Williams et al. 2008), necessitating the con-
sideration of restoration interventions in the region
(Miller et al. 2016).

Sitting at the nexus of several major ocean cur-
rents, the Dry Tortugas are well connected to reefs
both upstream in the Caribbean and downstream in
the Florida Keys. The Yucatan Current flows north-
ward from the western Caribbean, forms the Loop
Current that infiltrates north into the Gulf of Mexico,
resumes eastward movement as the Florida Current,
and then becomes the Gulf Stream that gains speed
and flows north toward Bermuda (Lee et al. 1995).
The complex hydrology of the Dry Tortugas area

results in dynamic reversals of flow speeds and direc-
tions with mesoscale eddies that cause periodic local-
ized upwelling (Lee et al. 1995, Kourafalou et al.
2018). The ocean temperatures experienced by the
shallow reefs in DRTO annually average 26.7°C,
which is about 0.6°C cooler than other outer reef
crest habitats to the east-northeast in the middle and
upper Florida Keys reefs at similar depths (Kuffner
2020). Coral larvae are known to be transported by
the Loop Current because of settlement to oil rigs
throughout the northern Gulf of Mexico (Sammarco
et al. 2004), suggesting that DRTO is well connected
to other upstream western Atlantic reefs. Similarly,
genetic data and ocean current modeling support the
conclusion that DRTO's shallow reefs are well con-
nected to the downstream reefs in the main Florida
Keys; thus, there is significant potential for these
reefs to be a source of coral larvae to the degraded
reefs to the north (Serrano et al. 2014).

Here we report on a managed relocation experi-
ment conducted across 350 km of the Florida reef
tract to provide information relevant to the restora-
tion of vestigial populations of A. palmata in the
Florida Keys. Five genetically distinct individuals
(genets) of A. palmata were sampled and sourced
from the Coral Restoration Foundation (CRF, Key
Largo, FL) Carysfort Reef coral nursery in the upper
Florida Keys and translocated to offshore reef sites
including 2 in DRTO, 2 in the Florida Keys National
Marine Sanctuary (FKNMS), and 1 in Biscayne
National Park (BISC). Additionally, fragments from
the 1 extant colony of A. palmata found in DRTO
were relocated to the 2 study sites within DRTO. The
goal of our study was 2-pronged: (1) to test the feasi-
bility of reestablishing a reproductive population of
A. palmata in the Dry Tortugas by adding nursery-
raised fragments from reefs in the upper Florida Keys
sourced from 5 genetically distinct lineages, and (2)
to compare coral growth metrics (calcification rate,
height, and planar surface area) and colony condi-
tion among translocation sites and genets to explore
evidence for genetic differences, environmental driv-
ers, or interaction between genetics and environ-
ment in determining coral performance.

2. MATERIALS AND METHODS
2.1. Experimental setup
The experiment was performed at 5 US Geological

Survey (USGS) calcification assessment network sites,
4 of which were previously established (Kuffner et
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al. 2013, 2019) and a fifth that was added as a sec-
ond site within DRTO. The second DRTO site was
placed approximately 2 km west from the first and
further onto the DRTO platform, in December 2016,
to add spatial replication in an area that had shown
exceptional coral growth in previous experiments
with other coral species (Kuffner et al. 2013). The 5
sites are (from west to east) Pulaski Shoal West
(PLW) and Pulaski Shoal Light (PLS) in DRTO, Som-
brero Key Reef Sanctuary Preservation Area (SMK)
and Crocker Reef (CRK) in the FKNMS, and Fowey
Rocks (FWY) in BISC (Fig. 1). Small (approximately
5 x 5 x 3 cm) Acropora palmata fragments of 5
genets (CF4, CN2, HS1, ML2, and SN1), with
enough replicates (ramets) for placing 2 of each
genet at each site, were collected by CRF staff at
their Carysfort Reef coral nursery on April 24, 2018
(for main Florida Keys sites), and May 6, 2018 (for
DRTO sites). The 5 genets, originally sourced from
different reefs in the upper Florida Keys (Carysfort
Reef [CF], Conch Reef [CN], Horseshoe Reef [HS],
Molasses Reef [ML], and Snapper Ledge [SN]),
were chosen by CRF based on the availability of
adequate numbers of ramets in the nursery and
apparent health of the donor colonies. After delivery
by CREF staff, fragments were transported by vehicle
in a cooler with seawater-moistened plastic bubble
wrap and, upon arrival at an overnight land-based
location, placed outside in coolers or buckets with
seawater (freshly collected offshore) and aerated
overnight. At the 2 DRTO sites, a sixth local genet
was included in the experiment. Fragments of
opportunity (gathered after storm breakage) from
the extant DRTO colony that had been reared in
The Nature Conservancy's coral nursery near Gar-
den Key were sampled on May 8, 2018, transported
by boat in seawater, and similarly kept in aerated
seawater overnight. The DRTO genet was not recip-
rocally transplanted to the main Florida Keys sites
because of logistics and permitting. Coral fragments
were mounted onto plastic discs with stainless steel
bolts through their centers using epoxy (All-Fix,
Cir-Cut) and removably attached to cinderblocks
previously installed on the reef (Fig. 2; see Morrison
et al. [2013] for detailed methods and diagrams of
the experimental setup).

2.2. Data collection
Underwater temperature data were recorded

every 15 min with 2 HOBO® Water Temp Pro v2
temperature loggers (Onset®; +0.2°C precision)

deployed at each offshore reef site for the duration of
the study (Kuffner 2020). Just before deployment and
every 6 mo thereafter from spring 2018 to fall 2019,
corals were removed from their blocks, transported
by vessel to land, buoyantly weighed (Jokiel et al.
1978), photographed from the side and top, and
measured with calipers (length x width x height).
Calcification rates (change in dry mass per unit time)
were normalized to the planar footprint area of the
coral, analogous to the crown spread area of a tree's
canopy (Uzoh & Ritchie 1996), at the start of each
weighing interval using the caliper measurements
(length x width) and the formula for the area of an
ellipse.

2.3. Managing risk

The risks of managed relocation of live corals
(Bartz & Brett 2015, Baums et al. 2019) among the
sites extending across 350 km of the Florida reef
tract were considered by the authors, National
Park Service, and FKNMS personnel through the
scientific research permitting process and were
mitigated to the maximum extent possible. We
used small, single-branch fragments of coral to
reduce invertebrate hitchhikers, transported the
fragments on seawater-moistened plastic bubble
wrap so that seawater was not transported between
sites, and conducted several seawater rinses over
non-reef habitat before corals were deployed to
the experimental field sites. To minimize risks to
DRTO natural resources, we placed our study sites
at the northeasternmost corner of the park, ap-
proximately 13 km from the 1 remaining live A.
palmata colony. Acropora spp. in the Caribbean
are not carriers or vectors for SCTLD (Disease
Advisory Committee, https://floridadep.gov/rcp/
coral/documents/are-acroporid-corals-potential-
vector-stony-coral-tissue-loss-disease), and no
SCTLD has been observed in DRTO to date.
Regarding the risk of genetic outbreeding depres-
sion, A. palmata is a well-mixed metapopulation
across the western Caribbean and Florida (Baums
et al. 2006), we used donor colonies from popula-
tions connected by gene flow and from environ-
mentally similar habitats, we transplanted small
fragments that were not of reproductive size, and
there is only 1 extant genet in DRTO that is repro-
ductively extinct without conspecifics with which
to mate. Thus, we concluded that the risk of out-
breeding depression resulting from our experiment
is likely small (Baums et al. 2019).
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Fig. 2. Representative Acropora palmata colonies (both Coral Restoration Foundation genet CN2) on US Geological Survey
calcification assessment network stations at (a) Pulaski Shoal Light, Dry Tortugas National Park, on November 19, 2019, coral
no. 528, and (b) Crocker Reef, Florida Keys National Marine Sanctuary, on November 2, 2019, coral no. 500. (c,d) Full time se-
ries collages of the same 2 corals. The corals are epoxied to plastic discs with a stainless steel bolt protruding from the bottom
so that each can be fastened with a wingnut to the permanently fixed blocks and thus removed for periodic buoyant weighing,
photographing, and measuring. For scale, the cement blocks in (a) and (b) are 20 x 20 x 20 cm, and (c) and (d) have a ruler
included in each image. See https:/doi.org/10.5066/POKZEGXY for all time-series collages (Kuffner et al. 2020)

2.4. Statistics

Statistical analyses were conducted with the soft-
ware package Statistix® 10.0 (Analytical Software).
Chi-square tests were used to assess the effects of
site and genet on coral survival rates, and a multiple
comparisons test for proportions was used to test for
differences among sites (a0 = 0.05). Two corals were
removed from the chi-square tests because one was
dead on arrival (at FWY) and one was lost when a
block became dislodged during a storm or from
anchor damage (at CRK). The Dry Tortugas genet,

DT1, was also not included because it was not trans-
planted to the main Florida Keys sites. To test the
effects of time and site on each of the growth rate
response variables, calcification rate, increase in
colony height, and increase in planar footprint area,
a general linear model repeated measures ANOVA
was conducted, with time (3 levels) and site (5 levels)
as fixed effects, the time x site interaction term
included in the model, and the coral identification
number as the repeated measures (random) factor.
Tukey's HSD all pairwise comparisons tests were
used to detect differences among sites and reported
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as groupings not statistically different from each
other (where different, all p-values < 0.05). The effect
of season (summer vs. winter) could not be tested
because the final weighing interval (and subsequent
outplanting), scheduled for April 2020, was not com-
pleted due to the COVID-19 global pandemic. In
the statistical comparisons for the coral growth met-
rics, corals that died (defined by losing more than
50% of their live tissue) were removed from the
analyses; thus, because of the mortality of genet
replicates, the genetic effect was only tested among
the corals deployed at the 2 DRTO sites (where sur-
vival was 100%). Two-way ANOVAs were per-
formed on the 3 growth response variables annual-
ized over the 18 mo experiment, with the fixed
effects of site (2 levels), genet (6 levels), and site x
genet interaction term included in the models.
Tukey's HSD all pairwise comparisons tests were
used to detect differences among genets, and results
were reported as groupings not statistically different
from each other (where different, all p-values < 0.035).
To examine the relationship between

3.2. Calcification

The fragments transplanted to the 2 DRTO sites
calcified 80 to 85 % faster, averaging 7.9 mg cm™2 d~!
(29 kg m~2 yr!), than the fragments deployed at the 2
upper Keys sites, where calcification averaged
4.3mg cm~2 d! (16 kg m™2 yr'!); however, while sur-
vival was low at SMK, the corals that did survive cal-
cified at levels not statistically different from those in
DRTO (Figs. 2 & 3, repeated measures ANOVA, site
Fy 3, =10.4, p < 0.0001, time F, 43 = 1.5, p = 0.23, site
x time Fg 63 = 2.4, p = 0.026, Tukey's HSD, p < 0.05 for
all pairwise comparisons, PLW and PLS > CRK and
FWY). Because of fragment mortality, the genetic
effect could only be tested among the corals de-
ployed at the DRTO sites where survival was 100 %,
which revealed a significant effect of coral genet on
calcification rate and no site effect (Fig. 3b, 2-way
ANOVA on annualized data, site F; 1, = 1.7, p = 0.22,
genet F; 15, = 5.04, p = 0.0102, site x genotype Fs 5 =
0.36, p = 0.87). Genet HS1 calcified statistically faster

increase in colony height and calcifi-
cation rate, we performed simple linear
regression. The distribution of temper-
ature stress among sites and years was
examined with a Friedman 2-way non-
parametric ANOVA. The assumptions
of homoscedasticity and normally dis-
tributed residuals were assessed and
met without transformation for all
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There was a statistically significant
effect of site on Acropora palmata frag-
ment survival during the study (chi-
square test statistic = 22.6, p = 0.0002),
with statistically lower survival rates
at FWY (3 of 9 corals) and SMK (4 of 10
corals) than at PLS and PLW, where all
corals survived (Tukey's HSD, p <
0.05). There was no genetic effect on
survival across the sites (chi-square
test statistic = 0.63, p = 0.96).

Fig. 3. Calcification rates of Acropora palmata colonies, normalized to planar
footprint area, summarized across (a) genets for 3 sequential time intervals
(time 1 = summer 2018, time 2 = winter 2019, time 3 = summer 2019) reported
in mg cm™ d~! with error bars + SE and Tukey's HSD groupings under the x-
axis connecting sites not statistically different at p < 0.05, and (b) the 3 time
intervals, reported in annualized calcification rates (kg m=2 yr™'), for 6 differ-
ent genets (see Fig. 1 for genet abbreviations) transplanted to experimental
stations (Fig. 2) at 5 sites across Florida's outer reef tract. PLW: Pulaski Shoal
West; PLS: Pulaski Shoal Light; SMK: Sombrero Reef; CRK: Crocker Reef;
FWY: Fowey Rocks. Note that the Dry Tortugas native genet (DT1) was only
transplanted to the 2 sites within Dry Tortugas National Park and was not
tested at the other sites, and no data points were included in the analyses (and
are not shown) for replicates that died (i.e. lost >50 % of live tissue)
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than CF4 and SN1 but equal to CN2, ML2, and DT1
(Fig. 3b, Tukey's HSD, p < 0.05 for all pairwise com-
parisons).

3.3. Colony height

The rate of colony height extension was statisti-
cally higher at the 2 DRTO sites, averaging 4.8 cm
yr~!, compared to rates at the 3 main Keys sites,
where they averaged 1.5 cm yr~! (repeated measures
ANOVA, site F; 3, = 17.7, p < 0.0001, time F, g3 = 18.2,
p < 0.0001, site x time Fg g = 3.5, p = 0.002, Tukey's
HSD, p < 0.05 for all pairwise comparisons, PLS =
PLW > SMK = CRK = FWY). Height increase was also
greater during the second and third time periods
than during the first (Tukey's HSD, p < 0.05 for all
pairwise comparisons, time 1 < time 2 = time 3). The
significant interaction between time and site reflects
the observation that the corals in DRTO encrusted
the plates during the first time period, then grew up
and branched during the subsequent year, whereas
the corals at the other sites were slower to com-
pletely encrust the plates and did not produce sub-
stantial branches (Fig. 2, also see time series photo-
graphs in Kuffner et al. 2020). Among the corals
placed at the DRTO sites, there was also a statisti-
cally significant effect of genet on colony height
extension (2-way ANOVA on annualized data, site
F; 12 = 0.64, p = 0.44, genet F5,, = 6.59, p = 0.0036,
site x genotype F;q, = 1.06, p = 0.43). Genet ML2
grew taller than SN1 (Tukey's HSD, p < 0.05). The
relationship between annualized calcification rate
(kg m? yr!) and change in colony height (cm yr)
for the 24 corals at DRTO was positive and sta-
tistically significant (simple linear regression equa-
tion: Aheight = —-0.0372 + 0.1655(calcification rate),
t=4.9, p <0.0001, and 2 = 0.52), suggesting that
measuring change in colony height (easy to measure)
could be a good phenotypic growth metric for esti-
mating coral calcification rates (difficult to measure)
for this species.

3.4. Colony planar footprint

Corals increased the planar area they occupied
faster at the 2 DRTO sites, averaging 96 cm? yr !,
than at the Florida Keys sites, where they averaged
15 cm? yr7! (repeated measures ANOVA on rank-
transformed data, site Fy 34 = 42.9, p < 0.0001, time
F 65 =27.1, p <0.0001, site x time Fg 65 =0.9, p = 0.52,
Tukey's HSD, p < 0.05 for all pairwise comparisons,

PLS = PLW > SMK = CRK = FWY). Planar footprint
increase was also greater during the third time
period than during the first and second (Tukey's
HSD, p < 0.05, time 3 > time 1 = time 2). Within the
DRTO corals, there was no significant effect of site,
genet, or the interaction on change in planar foot-
print area of the colonies (2-way ANOVA on annual-
ized data, site F; 1, = 0.38, p = 0.55, genet F; 1, = 1.9,
p = 0.16, site x genotype Fjs,1, = 0.46, p = 0.80).

3.5. Observations of stress and predation

The amount of heat stress experienced by the
corals, as defined by number of days that mean daily
underwater temperature exceeded the A. palmata-
specific bleaching threshold temperature of 31.0°C
(Williams et al. 2017), did not vary statistically
between years or sites (Fig. 4; years: Friedman statis-
tic = 1.8, chi-square approximation p = 0.18, sites:
Friedman statistic = 5.6, chi-square approximation
p = 0.23). Notably, at Sombrero Reef during the first
year, there was a spike in temperature, with 2 con-
secutive days over 32°C (32.4 and 32.5°C on July 17
and 18, 2018, respectively). Three corals were noted
as pale during our October 2018 visit at Sombrero.
The predatory snail Coralliophila abbreviata was
observed feeding on 2 experimental colonies at FWY
on May 9, 2019. Time series photographs of all corals,
as well as all raw data and metadata, are published
in Kuffner et al. (2020).

4. DISCUSSION

Our experiment demonstrated that 5 Acropora
palmata genets sourced from the upper Florida Keys
survived and flourished when transplanted to the
Dry Tortugas reef system, 300 km away. Not only did
all 5 genets show 100% survival at DRTO after
18 mo, 3 of the genets grew at statistically equiva-
lent calcification rates compared to the 1 remaining
extant DRTO genet, suggesting that adaptation to
local-scale environmental differences (Kenkel et al.
2015) may not be a concern for this species on the
scale of hundreds of kilometers across the Florida
reef tract. With the successful introduction of 5 new
genets, our translocation experiment has potentially
supplied the remaining native DRTO genet with
prospective mates, possibly rescuing it from an
extreme case of the Allee effect (Knowlton 2001). If
the relocated corals succeed in growing into a
robust population and/or more are brought in, the
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Fig. 4. Underwater temperature at the 5 experimental translocation sites (Kuffner 2020). Inset bar graph shows number of days
with daily mean temperature >31.0°C (dashed gray line) in 2018 and 2019. Dates are mo/d/yr. Site abbreviations as in Fig. 3

DRTO genet, which by its persistence has proven
resilient to local stresses such as cold temperature
anomalies (Davis 1982) and other factors unique to
its placement in the subtropical Gulf of Mexico
(Jaap 2015), may contribute to future spawning
events and thereby pass along any adaptive alleles
that it harbors.

The same genets that flourished when moved to
the Dry Tortugas did not survive or grow as well
when relocated to the 2 reefs in the upper Keys clos-
est to where the colonies were originally collected to
be raised in nurseries, and it is unclear why this was
so. A. palmata populations in the Florida Keys have
continued to contract since the original white-band
disease event in the 1980s (Williams et al. 2008, 2014,
Miller et al. 2016), and more generally, live coral
cover on offshore reefs has declined (Ruzicka et al.
2013). Several A. palmata reefs are in a state where
only a few remnant colonies remain (Williams et al.
2008, 2014), sometimes representing a single genet

(Baums et al. 2005, 2006), indicating Allee effects
and both asexual and sexual recruitment failure as
likely mechanisms inhibiting population recovery
(Williams et al. 2008). Our results seem to indicate
that despite having originated in the upper Keys,
these genets are no longer able to flourish in their
natal habitat, suggesting that sexual recombination,
assisted gene flow, and subsequent natural selection
may be required for the species to persist in this
region. The geographic significance of DRTO as an
upstream site to the degraded populations in the
upper Florida Keys highlights the potential value of
DRTO as a source of larvae for the rest of the Keys,
and genetic data from other coral species indicate
widespread connectivity at this scale (Shearer et al.
2009, Serrano et al. 2014).

The management of coral reef ecosystems has for
several decades been dominated by the establish-
ment of marine protected areas, which set some
restrictions on human behavior (primarily fishing) in
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spaces set aside as parks or conservation refuges.
This management approach has successfully in-
creased fish biomass, abundance, and/or diversity
(Jennings & Polunin 1996, Chapman & Kramer 1999,
Halpern & Warner 2002, Ault et al. 2006), but evi-
dence showing concomitant cascading effects on
benthic (coral) communities has remained elusive
(Toth et al. 2014, Bruno et al. 2019), as has achieve-
ment of wider socioeconomic sustainability in the
absence of good governance (Sale et al. 2014).
Recovery from mass coral mortality events, driven
mainly by coral diseases and bleaching (Aronson &
Precht 2006, Eakin et al. 2010), has not demonstrably
been mitigated through marine spatial planning
alone. Thus, new, more aggressive restoration and
intervention methods are being considered and pur-
sued (Hoegh-Guldberg et al. 2008, van Oppen et al.
2017). It is now recognized that nursery-raised corals
may be an essential element to scaling up efforts to
make measurable progress in achieving ecosystem-
scale reef restoration using a wide portfolio of inter-
vention strategies (National Academies of Sciences,
Engineering, and Medicine 2019).

The importance of genetic effects on coral growth
metrics was first suggested by restoration practition-
ers identifying certain genets as winners (growing
faster and more robustly compared to others) in nurs-
ery and outplant settings. While our sample size at
each site was only n = 2, our results contribute to the
growing body of evidence documenting variability in
growth metrics among coral genets for A. cervicornis
(Drury et al. 2017, Kuffner et al. 2017, Lohr & Patter-
son 2017) and A. palmata (Pausch et al. 2018). Results
showing that other important phenotypes vary
among genets, including thermal tolerance (Kenkel
et al. 2013, Lohr & Patterson 2017, Williams et al.
2017, Pausch et al. 2018) and disease resistance
(Muller et al. 2018, Miller et al. 2019), are encourag-
ing and indicate that a substantial amount of intra-
species genetic variation exists upon which natural
selection can act (Dixon et al. 2015, Baums et al.
2019). It might be tempting to identify and focus res-
toration efforts on such supercorals. However, while
selective breeding experiments with genets showing
promise in desirable phenotypes are important to
increase our understanding of trait-based heredity
and evolutionary processes, we argue that the cre-
ation of supercorals for restoration purposes could
easily backfire because of phenotypic tradeoffs
(Ladd et al. 2017) and because ocean conditions will
continue to change rapidly and may nullify trait-
based advantages (Muller et al. 2018). Thus, if selec-
tive breeding is done at the expense of collective

genetic diversity within species at restoration sites, it
could have undesirable effects. It is less important to
asexually propagate and preferentially outplant
genets shown to be winners in today's nurseries and
oceans than it is to know they exist and use them as
broodstock for larval propagation aimed at maximiz-
ing recombination of genetic material (Baums et al.
2019).

Our results suggest that something about the envi-
ronment in the northeastern portion of DRTO en-
hanced the survival and growth of A. palmata. Other
species of coral have shown higher growth rates in
the Dry Tortugas compared to the main Florida Keys,
including Siderastrea siderea (Kuffner et al. 2013)
and in our recent work on Porites astreoides, and
there are several possible explanations for the pat-
tern. An obvious variable relevant because of region-
ally increasing ocean temperatures (Kuffner et al.
2015, Manzello 2015) is simply that the in situ tem-
peratures are on average about 0.6°C cooler in DRTO
than at the main Florida Keys reefs; however, moder-
ate thermal stress during our experiment was experi-
enced across all 5 sites during both years without sta-
tistical difference among them, including at the 2
DRTO sites (Fig. 4). The strength of water flow could
also be contributing to among-site differences, evi-
denced by the fact that diving at PLS is challenging
because of strong currents and the site is ideally
accessed at slack tide. However, this was not our
experience at PLW, and calcification rates between
these 2 DRTO sites were not statistically different
(Fig. 3). Another hypothesis to test is that corals may
benefit from nutritional subsidies from periodic
upwelled waters containing more abundant or
higher quality plankton being delivered to the shal-
low Dry Tortugas. Shulzitski et al. (2016), for exam-
ple, showed that larval fish collected from inside
high-productivity Tortugas eddies had enhanced
survival and physiological condition compared to
those outside eddies in the oligotrophic Florida Cur-
rent. Corals that are well fed have more energy re-
serves and thus may be less sensitive to stressors
including ocean acidification and thermal anomalies
(Schoepf et al. 2013). Additionally, some coral spe-
cies can up-regulate heterotrophic feeding during
times of stress (Grottoli et al. 2006). However, other
differences among the sites, such as in water quality
variables and amount of human interaction, cannot
be ruled out at this time in explaining the high
growth rates we observed in the Dry Tortugas.

New subfossil evidence from reef drilling studies
and surface collections on the Tortugas platform sug-
gests that although A. palmata was relatively rare in
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DRTO for the last 8000 yr (Toth et al. 2019), it was
present for nearly 2000 yr in this area, with our sam-
ples dating from ~4500 to 2700 yr BP. The disappear-
ance of the species generally coincides with a region-
wide shutdown of reef accretion by 3000 yr BP (Toth
et al. 2018). Hypothesized to have resulted from cli-
matic cooling in the late Holocene across the region
(Toth et al. 2018), this suggests that the late Holocene
has been unhospitable to this cold-sensitive genus
(Porter et al. 1982) at this location. With increasing
ocean temperatures in the region (Kuffner et al.
2015), this location may once again support A. pal-
mata, as observed for its congener, A. cervicornis, in
southeastern Florida (Precht & Aronson 2004). A.
palmata has also recently been observed on the high-
latitude reefs of the Flower Garden Banks, where it
had been absent since the relatively warm climate of
~10000 to 7000 yr BP (Precht et al. 2014). Similarly, in
the Pacific, recent expansion of several coral species
has followed the northward-flowing Kuroshio Cur-
rent in Japan (Yamano et al. 2011).

Our results indicate that assisted migration (i.e.
reintroduction in this case) across a species’ historic
or Holocene range (Toth et al. 2019) can assist man-
agers in achieving the goals outlined in species re-
covery plans by reducing Allee effects, increasing
the potential for sexual reproduction, and thus
increasing the potential for subsequent recruitment
and natural selection (NMFS 2015). This may be par-
ticularly relevant to subtropical reefs, where the nat-
ural expansion of species’ ranges into areas until
recently too cold provides evidence that humans
could assist the movement of populations as ocean
conditions continue to warm at rates unprecedented
during the Holocene (Marcott et al. 2013)—indeed,
likely too fast for coral species to respond on their
own because of decades-long generation times. How-
ever, naturally expanding populations are bringing
their predators and pests with them (Yamano et al.
2011), so it behooves managers to ensure that reefs
chosen for stepping-stone reintroductions are places
where ecological processes, including predator—-prey
relationships, remain intact (Shaver & Silliman 2017,
Ladd et al. 2018). Nonetheless, the Holocene record
unlocks a valuable tool in coral restoration planning
(Toth et al. 2019) as conditions become more like
the mid-Holocene (Marcott et al. 2013) and the brief
late-Holocene warm period from 1400 to 1000 yr BP
(Richey et al. 2007). Since oceanic currents, seasonal-
ity, and other local-scale geophysical patterns dic-
tated by location and ocean floor morphology are
likely to be similar to those in the past, it could be
very instructive to examine how species distribution

patterns varied over the past millennia in defining
place-based and species-specific restoration strate-
gies (Toth et al. 2019).

In conclusion, our findings suggest that assisted
migration, guided by historic and Holocene range
extensions and aimed at providing stepping-stone
populations to invigorate sexual reproduction and
reef connectivity, could be a useful tool in the recov-
ery of A. palmata and, hence, ecosystem restoration.
However, reef restoration may only be a stop-gap
mechanism to help marine species persist during the
time period yet to be defined by the climate change
commitment (Wigley 2005), which is ever changing
with continued perturbations to the global carbon
cycle (Mackenzie & Lerman 2006). Depending on the
climate scenario realized (Meehl et al. 2005), the
ocean environment could progress quickly through
and beyond the bounds of climate variability experi-
enced during the mid- to late Holocene, potentially
rendering ecosystem restoration a futile endeavor.
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