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ABSTRACT: Many of the world's contemporary species of turtle are extinct or threatened with
extinction due to habitat loss, increases in anthropogenic sources of mortality, and poaching (ille-
gal collection). The slow life-history strategy of most turtle species magnifies the effects of poach-
ing because the loss of even a few mature individuals can impact population growth. Returning
poached turtles to their population of origin, where possible, can mitigate these effects, but iden-
tifying the origin of these individuals can be challenging. We hypothesized that spot patterns
might allow assignment of Endangered spotted turtles Clemmys guttata to their population of ori-
gin. We characterized and compared spot patterns from carapace photographs of 126 individuals
from 10 sites. To explore other types of information these photographs might provide, we also doc-
umented carapacial scute abnormalities and quantified their association with genetic diversity
and latitude. Spot pattern similarity was not higher within populations than among populations
and did not accurately differentiate populations. Carapacial scute abnormalities occurred in 82 %
of turtles and were not correlated with estimates of neutral genetic diversity. Abnormalities were
positively correlated with latitude, implicating thermal stress during the early stages of develop-
ment in the generation of some scute deformities. However, this relationship became non-signifi-
cant when line (scute seam) abnormalities were excluded from the data, suggesting a different
primary cause for the more severe scute deformities. Further research should continue to investi-
gate the drivers of these deformities, as monitoring shifts in the frequency of scute deformities
may provide relevant information for conservation and recovery of endangered turtles.
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1. INTRODUCTION

Effective management and conservation of wildlife
populations require a sound knowledge of popula-
tion demographics, which involves unique marking
or identification of individuals within a population.
Photographs provide a non-invasive tool for individ-
ual identification of some species, and are especially
useful for species that are large and difficult to catch,
easily stressed by handling, or are difficult to capture
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repeatedly. In some instances, photographic methods
can reduce or eliminate the need for invasive mark-
ing methods that may cause discomfort, increase
infection risk, alter animal behavior or performance,
or become lost over time (Golay & Durrer 1994,
Nichols et al. 1998, Dugger et al. 2006, Reisser et al.
2008, Saraux et al. 2011, Walker et al. 2012).
Naturally occurring spot patterns have been used
to successfully identify individuals of many taxa,
including leopards Panthera pardus kotiya (Miththa-
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pala et al. 1989, Kittle et al. 2017), sharks (Arzouman-
ian et al. 2005, Speed et al. 2007, Van Tienhoven et
al. 2007, Holmberg et al. 2009), African penguins
Spheniscus demersus (Sherley et al. 2010), and red-
spotted newts Notophthalmus viridescens (Gill
1978). Facial or cranial scale patterns can be used to
identify individual sea turtles (e.g. Reisser et al. 2008,
Schofield et al. 2008, Rees et al. 2013, Dunbar et al.
2014) and European adders Vipera berus (Bauwens
et al. 2018), and variations in whisker spots on the
nose can be used to distinguish individual polar
bears Ursus maritimus (Anderson et al. 2007) and
Australian sea lions Neophoca cinerea (Osterrieder
et al. 2015). Natural body markings can even be used
to identify individual Archey's frogs Leiopelma
archeyi (Bradfield 2004).

If markings are either heritable or are driven by
environmental variation, then some may also be pop-
ulation- or site-specific. Heritability and environ-
mental effects of natural markings vary among taxa.
Some aspects of spot patterns in giraffes Giraffa ca-
melopardalis are partially heritable (Lee et al. 2018),
while natural markings of Andean bears Tremarctos
ornatus are not related to kinship (i.e. not heritable;
Van Horn et al. 2015). Five different coat patterns
were described in Eurasian lynx Lynx lynx, and their
frequency of occurrence varied among areas into
which the animals were re-introduced (Thtler 2002),
suggesting that environmental drivers of markings
varied among areas. If markings are reliably popula-
tion- or site-specific (suggesting either heritability or
environmental drivers of natural markings), then
they could be used to assign confiscated, illegally
collected individuals to their populations of origin.
Live wild animals are confiscated by local, regional,
and national authorities for a variety of reasons (e.g.
injury, habitat destruction, poaching for the illegal
pet trade), and sometimes these animals can be re-
turned to the wild, after considering associated costs
and benefits (IUCN 2000). For species at risk, rein-
forcement of populations might improve the long-
term conservation potential (IUCN 2000); thus, if it
can be determined that the preservation and welfare
of existing wild populations of the species will not be
harmed, the addition/return of individuals to an exis-
ting population of the same taxon could be a power-
ful conservation tool for these species.

In addition to aiding in identification, photographs
may also contain information about wildlife health.
Wildlife diseases with external clinical signs, such as
sarcoptic mange, can be monitored in large felids
and canids using camera traps (Oleaga et al. 2011,
Ryser-Degiorgis 2013). Similar techniques were used

to monitor dermal disease in wild bottlenose dol-
phins Tursiops truncatus (Thompson & Hammond
1992). Photographs have also been used to monitor
the behavior of disease vector species such as the
European badger Meles meles, a potential source of
bovine tuberculosis (Chen et al. 2019), and to explore
interactions of wildlife with human activities, preda-
tors, and conspecifics. Images of marine mammals
can be used to quantify wounds and scars likely
caused by entanglement with fishing gear (Kiszka et
al. 2009), vessel collisions (Kraus 1990, Calambokidis
1995, COSEWIC 2002, Langtimm et al. 2004), and/
or intra-/inter-specific social interactions (Heithaus
2001, Kiszka et al. 2009).

The Endangered spotted turtle Clemmys guttata is
one of the smallest freshwater turtles in North Amer-
ica, and is distinguished by its smooth, black cara-
pace covered with yellow-orange spots (Ernst &
Lovich 2009). Spotted turtles are threatened by road
mortality, illegal collection for the pet trade, and ha-
bitat loss and degradation (van Dijk 2011, COSEWIC
2014, Howell & Seigel 2019), threats that have placed
approximately 61 % of the 365 species of turtles rec-
ognized worldwide at risk of extinction over the past
500 yr (Lovich et al. 2018). Conservation of turtles is
challenging because populations recover extremely
slowly from perturbations or catastrophic events.
This is largely due to their slow life-history strategy,
which includes slow growth rate, late age of matu-
rity, low fecundity, and low survival rate of eggs and
juveniles (Enneson & Litzgus 2008, Keevil et al.
2018). Thus, the most effective strategy for conserv-
ing turtle populations may be the protection and
maintenance of existing populations, rather than
investing resources in recovery after declines have
occurred (Congdon et al. 1994, Enneson & Litzgus
2008).

Adult survivorship has the greatest proportional
effect on population growth rate in spotted turtles
(Enneson & Litzgus 2008), so maximizing adult sur-
vival is essential to maintaining viable populations.
Illegal collection of adult spotted turtles may not
result in their death, but it mimics the effects of
increased mortality by removing these individuals
from a population. Returning confiscated spotted tur-
tles to their population of origin can reverse the
effects of their removal, but it is not always clear
where these turtles should be released. Microsatel-
lite markers can be used to assign confiscated turtles
to known populations (Davy & Murphy 2009), but
genetic testing can be expensive and difficult to
access. If spot patterns on spotted turtle carapaces
were more similar within populations than among
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populations (i.e. among more closely related individ-
uals than more distantly related individuals), per-
haps these patterns could be used to assign confis-
cated individuals to their population of origin.

Photographs may also provide information useful
for monitoring population viability or health. For
example, scute abnormalities on turtle shells are
easy to observe and quantify from photographs.
Using photographs collected during routine field
work, we were able to compare the occurrence of
carapacial scute abnormalities among isolated popu-
lations of spotted turtles in Ontario, Canada. Turtles
are excellent models for studying development insta-
bility because abnormalities can be easily seen in the
form of shell malformations (Kazmaier & Robel 2001,
Davy & Murphy 2009, Velo-Antén et al. 2011, Vas
2012, Farke & Distler 2015, Moustakas-Verho &
Cherepanov 2015, Cherepanov 2016, Zimm et al.
2017). Scute abnormalities may result when develop-
ing eggs are subject to sub-optimal temperature,
moisture, and/or salinity conditions (Lynn & Ullrich
1950, Kazmaier & Robel 2001, Telemeco et al. 2013);
they have also been linked to loss of genetic diversity
and latitude of the sampling site (Davy & Murphy
2009, Velo-Antén et al. 2011).

In this study, we explored the potential for digital
photographs to enable population-level assignments
or act as proxies for population health in the Endan-
gered spotted turtle. We annotated spot patterns on
mature spotted turtles from 10 sites and then com-
pared patterns among sites to investigate whether
they could be used to assign individuals to their pop-
ulation of origin. We also quantified the frequency of
carapacial scute abnormalities at these sites. These
abnormalities are partially determined by genetic
factors but may also provide a proxy for physiological
stress experienced during egg development, so we
explored their association with genetic diversity and
latitude.

2. MATERIALS AND METHODS
2.1. Sample collection

We photographed spotted turtles during wading
surveys conducted between April and October
(2008-2018) at 10 sites (fens, bogs, and coastal
marshes) across southern Ontario in the course of
long-term mark-recapture studies. The sites were
located in the Mixedwood Plains Ecozone, ranging in
latitude from 42.317 to 45.494° N. Pairwise distances
between sites ranged from 3.5 to 638 km. With the

exception of BP1 and BP2, these sites represent iso-
lated clusters of spotted turtles with little or no recent
gene flow (Davy & Murphy 2014), and we treated
each sampling site as an independent ‘population’ in
our analyses. Turtles were captured by hand and
marked by shell notching (Cagle 1939). We took
standard measurements, including carapace and
plastron length, documented any shell abnormalities
(e.g. missing, extra, or odd-shaped scutes; wavy lines
between scutes), and took photographs of each tur-
tle's carapace.

Hatchling spotted turtles emerge from the egg with
only 1 spot per scute, and accumulate additional
spots as they age (Ernst & Lovich 2009). As adult spot
patterns are unique to individuals, we hypothesized
that spot patterns might also be more similar within a
population than among populations. Juvenile spot
patterns are quite consistent among individuals and
could confound this analysis. To ensure no sub-adult
individuals were included in our analysis, we only
used photographs of mature turtles (turtles with a
straight carapace length [SCL] >97 mm). We ex-
cluded photographs that were very dark or blurry, and
photographs of turtles that had moss or algae growing
on the carapace that might have obscured spots.

2.2. Quantifying carapace spot patterns

We used pattern-based interactive individual iden-
tification software (I*S Spot) (Van Tienhoven et al.
2007, den Hartog & Reijns 2014) to annotate the spot
patterns of 126 individual spotted turtles from the 10
sampling sites. IS Spot is a free, computer-based
photo-matching program that uses natural markings
to identify individual study animals. We used the
program to annotate spot pattern of each turtle and
create a library of known individuals. Our hypothesis
was that turtles could be assigned to population of
origin based on their spot patterns, which predicts
that spot patterns are more similar among individu-
als from the same population than among individuals
from different populations. To test this prediction, we
compared each individual's spot pattern with that of
every other turtle in the database. For each compari-
son, the program lists pairwise numeric similarity
scores in order of decreasing similarity, with lower
scores representing closer matches (details in Van
Tienhoven et al. 2007).

I3S Spot requires the user to identify 3 fixed refer-
ence points on each photograph to correct for differ-
ences in viewing angle, rotation, and scaling among
photographs. The location of these points should be
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consistent and clearly distinguishable in all photos,
and the resulting triangle should cover most of the
region of interest for identification (den Hartog &
Reijns 2014). Anterior and vertebral scutes were most
consistently visible in our collection of photos, so we
positioned reference points between the third and
fourth marginal scutes posterior to the head, at the
peripheral edge of the suture, and between the last
2 marginals at the posterior periphery of the cara-
pace (Fig. 1). Within the annotation area, ellipses are
fitted to each spot, and the spot pattern of each indi-
vidual is established relative to these reference
points in roughly the same 2D recognition space or
coordinate system. Annotating too many spots may
result in a computationally expensive comparison,
while increasing the possibility of a false positive
match between 2 fingerprints; annotating too few
spots may not be distinctive enough (den Hartog &
Reijns 2014). To determine the scute sampling strat-
egy that would maximize our chance of correctly
assigning spotted turtles to their population of origin,
we chose 4 annotation areas (Al to A4, Fig. 1) and
compared pairwise similarity scores for a sub-sample
of 29 turtles from 4 sites (EO2, EO3, GH1, and HC).
Annotation area A2 resulted in the largest difference
between both median and mean scores for within-
site and among-site matches at each of the 4 sites
(Fig. S1 & Table S1 in the Supplement at www.
int-res.com/articles/suppl/n045p159_supp.pdf); there-
fore, it was used to annotate spot patterns for all 126
turtles. To assess whether spot patterns could be used
to identify the likely population of origin for spotted
turtles, we calculated similarity scores for each pair
of turtles and visualized these using a heat map.

Annotation
area A1

Fig. 1. We compared 4 annotation areas (A1-A4) to determine the scute sam-
pling strategy that would maximize the chance of correctly assigning individ-

2.3. Carapacial scute abnormalities

We also used photographs of spotted turtle shells
to quantify carapacial scute abnormalities, and to
explore associations between scute abnormalities
and genetic diversity, and between scute abnor-
malities and latitude. We summarized carapace
abnormalities from photographs of 206 spotted tur-
tles; these included the 126 turtles described in
Section 2.2 and additional individuals with SCL
< 97 mm for which we had clear photographs. Each
turtle received a binary score (yes/no) for the pres-
ence of carapacial scute abnormalities. These in-
cluded extra or missing scutes, abnormally shaped
scutes, split scutes, and any line (scute seam) ab-
normalities. Extra scutes were those that appeared
to be embedded between 2 normally positioned
scutes (Fig. 2A). Abnormally shaped scutes were
positioned correctly, but appeared either very
large, very small, asymmetric, or had a combination
of unusual size and asymmetry (Fig. 2B). Split
scutes were normally positioned scutes that were
divided in 2, usually down the middle, either verti-
cally or horizontally (Fig. 2D-F). Line abnormalities
were cases where the separating line between
scutes was wavy, zigzag, or otherwise uneven,
even if the scutes themselves were of normal size
and in the correct position (Fig. 2C,E).

We compared the frequency of scute abnormalities
(proportion of sampled turtles that had some type of
scute abnormality) at 9 study sites with previously
published indices of genetic diversity (heterozygos-
ity, allelic richness, and private allelic richness; Davy
& Murphy 2014); we did not have genetic data for site
EO3. The relationship between each
index of genetic diversity and the fre-
quency of scute abnormalities was
tested by calculating standard Pear-
son's correlation coefficients. We also
tested the relationship between lati-
tude of study site and frequency of
scute abnormalities for all 10 sites by
calculating a standard Pearson's cor-
relation coefficient.

Line abnormalities were the most
subjective of the abnormalities we do-
cumented, so we also excluded line
abnormalities from the dataset and re-
ran the analyses considering only mis-
shapen, split, extra, or missing scutes
as abnormalities. We conducted all

ual spotted turtles Clemmys guttata to their population of origin. All spots in

shaded (gray) scutes were annotated using I°S Spot. The same 3 reference
points (black dots) and reference triangle were used for each annotation area

statistical analyses in R version 3.5.1
(R Core Team 2018).
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Fig. 2. Examples of carapace abnormalities in spotted turtles Clemmys gut-

tata caught during annual wading surveys in southern Ontario, 2008-2018.

Common carapace abnormalities observed (indicated by arrows) included:

(A) extra scutes, (B) abnormally shaped (asymetrical) scutes (C,E) wavy

or zigzag lines (seams) between scutes, and (D,EF) split vertebral and
costal scutes
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3. RESULTS

3.1. Quantifying carapace spot
patterns

Pairwise I*S Spot similarity scores
based on spot patterns overlapped
substantially between within-site and
among-site comparisons (Fig. 3), indi-
cating that spot pattern similarity
assessed with the methods we applied
cannot be used to reliably assign a
spotted turtle to its site (or population)
of origin.

3.2. Carapacial scute abnormalities

Carapacial scute abnormalities were
observed in 82 % (170/206) of spotted
turtles. Wavy or zigzag lines between
scutes were the most common abnor-
mality (n = 167). These were most
often located between vertebrals 3
and 4 (n = 114), between the first ver-
tebral scute and the first costals (n =
94), and between vertebrals 2 and 3
(n = 67). Fifty-one turtles had extra
scutes, divided scutes, odd-shaped
scutes, or some combination thereof,
and 49 of those turtles also had uneven
lines between scutes. Extra scutes
were most common in this group (n =
33) and occurred mainly along the
marginal scutes, and between the first
vertebral and the first costals, but they
never occurred on the same turtle. Di-
vided scutes (n = 14) and odd-shaped

Fig. 3. Heat map of pairwise I°S Spot simi-
larity scores for spotted turtles Clemmys
guttata (n = 126) from 10 sampling sites in
southern Ontario, Canada, ordered approx-
imately from south-west to north-east, re-
flecting geographic proximity and genetic
similarity among sites (Davy & Murphy
2014). In each comparison, the first match in
the output file was always the subject tur-
tle's own photo (white squares in the diago-
nal). Low 1°S scores (dark blue) indicate
more similar spot patterns; high 13S scores
(vellow) indicate more dissimilar spot pat-
terns. White boxes indicate within-popula-
tion comparisons for each sampled site
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scutes (n = 13) were less common; both occurred
mainly along the vertebral scutes but rarely (n = 3) on
the same turtle.

None of the genetic diversity indices we tested
were correlated with the frequency of carapacial
scute abnormalities in our dataset, regardless of
whether line abnormalities were included in the
dataset (Table 1). The frequency of carapacial scute
abnormalities was positively correlated with latitude
(r2 = 0.69, p = 0.003; Table 1). However, this correla-
tion became non-significant when line abnormalities
were excluded from the data (Table 1).

4. DISCUSSION

In this study, we used digital photos to annotate
and compare carapace spot patterns among popula-
tions of spotted turtles, document and quantify cara-
pace abnormalities, and investigate possible rela-
tionships of the frequency of abnormalities with
genetic diversity and latitude. Regrettably, compari-
son of carapace spot patterns did not allow assign-
ment of individuals to their population of origin.
Spotted turtles at our study sites exhibited carapace
abnormalities similar to those seen in other temper-
ate freshwater turtle species. Frequency of these
carapace abnormalities would not be a reliable proxy
for genetic diversity, but the association with latitude
when line abnormalities are included suggests that
minor carapacial malformations may be a proxy for
thermal stress experienced during development,
when scutation develops.

Given a certain amount of phenotypic variability in
a population, theory predicts that individuals within
groups should be less variable (i.e. more similar in
heritable phenotype) than individuals from different
groups (Krause et al. 1996). In Mexico, intraspecific
analyses of the Cortes geoduck Panopea globose
shell shape suggested an adaptive or phenotypic

response to environmental conditions at different
sites (Leyva-Valencia et al. 2012). In California
(USA), populations of topsmelt silverside Atherinops
affinis from different regions were also morphologi-
cally distinct, suggesting the influence of environ-
mental factors and local habitats (O'Reilly & Horn
2004). We investigated phenotypic differences in
spot patterns among disjunct populations of spotted
turtles in the hope that they could be used to deter-
mine site of origin for recovered and/or rehabilitated
individuals. Despite distances of >10 km among our
sites, spot patterning was not population- or site-spe-
cific. This result suggests that spot patterns are either
not heritable or are not influenced by site-specific
environmental factors, or that the analysis we per-
formed failed to capture informative variation in
these patterns. Although we have found that spot
patterns and unique scute or scute seam abnormali-
ties are useful for identifying individual spotted tur-
tles, these were not informative for population-level
assignment. For now, genetic testing remains the
best option for assigning confiscated and/or rehabili-
tated Ontario spotted turtles to population of origin.

When developing embryos experience stressful
conditions, such as heat or humidity near the bound-
aries of the tolerable range, mechanisms that regu-
late development can be challenged, resulting in in-
creased phenotypic variance (Hoffmann & Hercus
2000, Badyaev et al. 2005). Observed morphological
variability may provide a valuable early indicator of
genetic and/or environmental stress (Palmer & Stro-
beck 1986, Parsons 1990), and detecting these can
inform conservation of endangered populations
(Leary & Allendorf 1989). Scute abnormalities do not
appear to affect fitness in freshwater turtles (Bujes &
Verrastro 2007, Davy & Murphy 2009, Farke & Distler
2015, Zimm et al. 2017). However, they may serve as
indicators of developmental instability (Vas 2012),
suboptimal thermal or hydric conditions during de-
velopment (Zangerl & Johnson 1957, Moustakas-

Table 1. Associations (Pearson's correlation coefficient) between the frequency of carapacial scute abnormalities (where ‘Line’

refers to the scute seam) observed in spotted turtles Clemmys guttata at 10 sites in southern Ontario, Canada, and site latitude

(as a proxy for thermal exposure while turtles are developing), as well as 3 measures of neutral genetic diversity, inferred pre-
viously with data from 11 microsatellite loci (Davy & Murphy 2014)

—— Line abnormalities included —— —— Line abnormalities excluded ——

t df r? P t df r? P
Observed heterozygosity -0.126 7 0.0023 0.9032 1.5485 7 0.2551 0.1654
Allelic richness -1.302 7 0.195 0.2341 0.7906 7 0.082 0.4551
Private allelic richness -0.093 7 0.0012 0.9284 0.2606 7 0.0096 0.8019
Latitude 4.2228 8 0.6903 0.0029 -0.225 8 0.0063 0.8276
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Verho & Cherepanov 2015, Cherepanov 2016, Zimm
et al. 2017), or potential exposure to environmental
contaminants (Bishop et al. 1998, Bell et al. 2006).
Thus, patterns in the occurrence of scute abnormali-
ties may be worthy of further investigation, espe-
cially where endangered species are concerned.

We observed carapace abnormalities in 67-100 %
of spotted turtles from 10 sites, which is similar to the
frequency of scute abnormalities (63—-75 %) reported
in some studies of the European pond turtle Emys
orbicularis (Ferndndez & Cordero-Rivera 2004, Velo-
Antén et al. 2011). However, in most other species,
the reported frequency of scute abnormalities (3—
44 %) is lower (MacCulloch 1981, Bishop et al. 1998,
Kazmaier & Robel 2001, Bujes & Verrastro 2007,
Davy & Murphy 2009, Vas 2012, Kosik et al. 2013,
McKnight & Ligon 2014, Farke & Distler 2015, Loehr
2016, Sacdanaku & Haxhiu 2016, Zimm et al. 2017,
Lada & Boldyreva 2018). Scute abnormalities in our
turtles were biased towards the vertebral scutes, sim-
ilar to findings in European pond turtles (Ferndndez
& Cordero-Rivera 2004, Kosik et al. 2013, Sa¢cdanaku
& Haxhiu 2016) and sea turtles (Zimm et al. 2017).
Extra scutes and divided scutes like those we ob-
served were also reported in co-occurring popula-
tions of snapping turtles Chelydra serpentina (Bishop
et al. 1998) and painted turtles Chrysemys picta
(MacCulloch 1981, Davy & Murphy 2009).

Some studies have suggested an association be-
tween decreasing genetic diversity and the inci-
dence of scute abnormalities (Velo-Antén et al. 2011,
Kosik et al. 2013). However, genetic diversity esti-
mated from microsatellite markers did not explain
the variation in frequency of abnormalities seen in
spotted turtles at our study sites. The only association
we found between scute abnormalities and charac-
teristics of the sampled population was between fre-
quency of carapace abnormalities and latitude of the
sampling sites, although this association became non-
significant when line abnormalities were not included
in the data. Potential links between latitude and
carapace malformation are consistent with previous
studies of painted turtles (Davy & Murphy 2009) and
Iberian populations of European pond turtles
(Cordero-Rivera et al. 2008, Velo-Antén et al. 2011).

Protection, maintenance, and enhancement of
existing populations are essential for long-term con-
servation and recovery of endangered turtle species
(Congdon et al. 1994, Enneson & Litzgus 2008). Un-
fortunately, spot pattern similarity did not prove use-
ful for assigning confiscated individuals back to their
populations of origin (at least in the case of Ontario
spotted turtles), leaving genetic assignment tests as

the only available option, and even these are imper-
fect (Davy & Murphy 2014). Nevertheless, the associ-
ation between carapace abnormalities and latitude
implicates environmental stressors in the develop-
ment of scute abnormalities, suggesting that long-
term monitoring of carapace abnormalities could
identify long-term shifts in stressors experienced by
developing turtle embryos. Given the limited ability
of turtle populations to recover after population
declines (Brooks et al. 1991, Congdon et al. 1993,
Heppell 1998, Enneson & Litzgus 2008, Keevil et al.
2018), monitoring the incidence of scute abnormali-
ties among age-classes could provide a valuable,
cost-effective 'early-warning system' for shifts in the
severity of developmental stressors.
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