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1. INTRODUCTION

Continuous human occupation and introduction of 
non-native mammals to the Hawaiian Islands has 
wrought dramatic landscape-level changes to island 
habitats and caused rapid loss of biodiversity (Munro 

1944,  Olson & James 1984, Reed et al. 2012). Today, 
many remaining native Hawaiian species occur in 
highly fragmented and inaccessible habitats (Pratt & 
Jacobi 2009). Available avian fossil and archaeologi-
cal re cords indicate the widespread and plentiful 
occurrence of seabirds during the early period of 
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ABSTRACT: Haleakalā National Park and montane areas on east Maui, Hawaiian Archipelago, 
support critical nesting habitat for endangered ‘ua‘u Hawaiian petrel Pterodroma sandwichensis. 
Habitat loss, non-native predators, and damage by feral ungulates are limiting factors for ground-
nesting petrels at Haleakalā and throughout Hawai‘i. Because nesting habitats differ among the 
Hawaiian Islands, habitat distribution modeling for Hawaiian petrel has been island specific. 
Based on 2453 known nest site locations, we provide the first landscape-scale predictive model 
describing relative abundance and habitat available for nesting petrels throughout upper 
Haleakalā (1830 to 3055 m). We evaluated (principal components analyses and Pearson’s correla-
tion) 13 spatial landscape and climate predictor variables associated with nest sites and the back-
ground landscape followed by random forest modeling to predict nest site density. Six variables 
(elevation, slope, topographic position index at 2 scales, heat load index, presence-absence ash/
cinder, and presence-absence vegetation) indicated nest sites occurred non-randomly throughout 
the central part of the summit and crater; greatest concentrations were predicted along the crater 
rim and a ridgeline extending southwest from the summit. Moderately high predicted density 
occurred in the northeastern and northern crater. Lower elevations to the north, west, and south 
flanks of Haleakalā had relatively fewer predicted nest sites. Although we focused on higher ele-
vations on Haleakalā, there is no reason to suspect that conservation efforts would not be success-
ful at lower elevations, provided nesting petrels were protected from invasive predators, grazing 
ungulates, and significant land alteration.  
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human occupation (800 to 1000 yr ago; Kirch 2011, 
Rieth et al. 2011), including ‘ua‘u Hawaiian petrel 
Ptero droma sand wichensis, from low elevations near 
the ocean to high-elevation lava fields flanking vol-
canoes on Maui and Hawai‘i (Olson & James 1982a,b, 
Moniz 1997). Hawaiian petrel is listed as endangered 
in the USA (US Fish and Wildlife Service 2016), by 
Hawai‘i State (Hawai‘i Revised Statutes §195D-4 n.d.) 
and internationally in the IUCN Red List of Threat-
ened Species (BirdLife International 2018). Hawaiian 
petrels nest and are monitored on Kaua‘i, Lāna‘i, 
Maui, and Hawai‘i. 

Hawaiian petrel persists with appreciable conserva-
tion management almost exclusively in remote montane 
areas of the Hawaiian Islands (US Fish and Wildlife 
Service 2016, BirdLife International 2018). Although 
they once supported nesting petrels, and presence 
has been detected at low levels on Moloka‘i (US Geo-
logical Survey & Maui Nui Seabird Recovery Program 
unpubl. data) and O‘ahu, nesting on these islands has 
yet to be confirmed (Day & Cooper 2002, Young et al. 
2019, Kubler-Dudgeon et al. 2020). Re maining Hawai-
ian petrel nesting habitat varies from brushy, low-land 
’ōhi’a lehua Metro sideros polymorpha−uluhe fern 
Dicranopteris linea ris forest on Lāna‘i, to dense rain-
forest on Kaua‘i, to xeric, largely barren, high-elevation 
(>2500 m) lava flows on Hawai‘i, and older, high-ele-
vation lava-flow and alpine shrubland habitats on 
Haleakalā, east Maui. Such island habitats are typical 
of other tropical and sub-tropical Pterodroma spp. 
(e.g. P. phaeo pygia, P. feae, P. desertas, P. madeira, 
and P. baraui) that mostly nest within earthen bur-
rows, but also use rock crevices or caves when soil is 
not available (Cruz & Cruz 1990, Probst et al. 2000, 
Fjeldså et al. 2020). Because of the diversity among 
habitats on the different Hawaiian islands, predictive 
habitat modeling for Hawaiian petrel has been island 
specific (VanZandt et al. 2014, Troy et al. 2017). Such 
island-specific conservation information is required 
be cause Hawaiian petrel exhibits inter-island gene tic 
variation, with petrels on Haleakalā displaying ge-
netic isolation from those on neighboring Hawai‘i and 
Lanai (Welch et al. 2012a). This is important be cause 
island-specific conservation management can in-
crease specific sub-population growth to maintain in-
ternal recruitment and decrease the risks of cata-
strophic declines to philopatric populations that lack 
dispersal capability (Welch et al. 2012b). 

Haleakalā (the eastern volcano of the Island of 
Maui) supports critical remaining nesting habitat for 
Hawaiian petrels and has the largest known breed-
ing population throughout the Hawaiian Archipel-
ago. Loss of habitat, predation by non-native preda-

tors, and habitat damage by feral ungulates are 
major limiting factors for ground-nesting Hawaiian 
petrels (Hodges & Nagata 2001, Raine et al. 2020). 
Additional impacts in Hawai‘i are caused by habitat-
altering invasive plants (VanZandt et al. 2014), 
grounding of birds associated with anthropogenic 
lights at night, and collisions of birds with utility lines 
and other structures (Travers et al. 2021). The pri-
mary management actions during the past several 
decades to increase Hawaiian petrel numbers on 
Haleakalā have focused on excluding feral ungulates 
(goats, pigs) with perimeter fencing to prevent habitat 
de struction and trampling of nest sites, and control-
ling invasive mammalian predators (rats, mongooses, 
and cats) using rodenticide and lethal trapping (Lar-
son 1967, Hodges & Nagata 2001, Kaho loa‘a et al. 
2019, Kelsey et al. 2019). 

Accurate spatial predictions of suitable nesting 
habitat and relative abundance are integral for 
informing monitoring and conservation strategies for 
Hawaiian petrels throughout the Hawaiian Islands 
(Troy et al. 2017), but these have yet to be developed 
for Haleakalā. Herein, we provide the first land-
scape-scale predictive model describing the relative 
abundance and most likely contemporary habitat 
available for nesting petrels throughout the upper 
elevations of Haleakalā. Specifically, our goals were 
to (1) assemble all available nest site location data, 
(2) evaluate a suite of environmental variables asso-
ciated with known nest sites versus randomly located
potential nest sites, and (3) predict and map potential
suitable contemporary nesting habitat. Our results
are intended to provide critical new information that
can be used in the future to search more systemati-
cally for additional nest sites and to improve predic-
tive models that can be used to evaluate the degree
to which important conservation actions, including
predator control and fencing, overlap with or enclose
important nesting habitat, respectively.

2. MATERIALS AND METHODS

2.1.  Hawaiian petrel nest sites and monitoring  
on Haleakalā 

In 1954, Richardson & Woodside (1954) located and 
described 2 Hawaiian petrel nesting sites near the 
western floor of the crater within Haleakalā National 
Park (HALE; Fig. 1). Early efforts to locate and de -
scribe nest sites were extremely limited until the 
1970s when Kjargaard (1978) increased the oppor-
tunistic search effort on foot by looking for sign 
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(guano, feathers, tracks) in accessible areas initiated 
by Larson (1967) and others during 1966 to 1971. Fol-
lowing Larson (1967), Simons (1985) contributed 
additional study of Hawaiian petrel breeding biology 
at HALE. Since 1988, opportunistic nest searching on 
foot and looking for petrel sign has occurred within 
HALE, along with annual monitoring of selected nest 
sites. Beginning in 1997, HALE staff used Global 
Positioning System (GPS) units to geolocate all known 
historic nest site locations and, by expanding oppor-
tunistic search efforts annually, have continually added 
new nest site locations when they are  discovered. 

More systematic searches for nest sites on 
Haleakalā adjacent to HALE were implemented in 
various management areas overseen by Hawai‘i 
State Department of Land and Natural Resources 
Department of Forestry and Wildlife (DLNR-
DOFAW) and the State Department of Hawaiian 
Homelands (DHHL; Table 1, Fig. 1). West of HALE, 
near the summit of the volcano, the Haleakalā High 

Altitude Observatory has conducted astronomical 
research since 1958 and from 2011 to 2018, during 
construction of the Daniel K. Inouye Solar Telescope 
(DKIST), researchers conducted area-focused nest 
site searches, predator control, and nest monitoring 
within the fenced Alpine Wildlife Sanctuary (AWS) 
which encompasses the DKIST construction site and  
west of the AWS within an adjacent ‘Kula control’ 
site located in the DLNR-DOFAW Kula Forest 
Reserve (not shown; Chen et al. 2019; Table 1, Fig. 1). 
Beginning in 2011, south of HALE and the AWS, 
searches for nest sites have occurred in the upland 
area known as ‘DHHL Kahikinui’ to inform habitat 
planning and conservation associated with the 
Auwahi Wind Farm Project (Table 1, Fig. 1; Tetra 
Tech 2012). Since 2013, the Maui Nui Seabird Recov-
ery Project (MNSRP) has searched for nest sites (with 
recorded effort) within ‘Kahikinui’ which includes 
lands managed by DLNR-DOFAW (Nakula Natural 
Area Reserve and Kahikinui Forest Reserves, not 
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Fig. 1. Study area located on Haleakalā, east Maui delineated by the 1830 m contour (bold black line). Colored dots show  
Hawaiian petrel nest site locations according to sub-area jurisdictions
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shown) and MNSRP has also searched for nest sites 
in the northern portions of the ‘Kahikinui’ area near 
the crater rim along the southern flank of HALE 
(Table 1, Fig. 1). Nest site searching and monitoring 
have continued annually to document changes in 
Hawaiian petrel presence and nesting abundance. In 
2020, MNSRP in collaboration with HALE extended 
search efforts to the crater rim within the national 
park boundary (J. Learned unpubl. data 2021). From 
2013 to 2021, 24.9% of the combined Natural Area 
Reserves above 1830 m elevation (1.79 km2) were 
exhaustively searched at least once annually to 
locate nest sites (MNSRP unpubl. data). This is 
equivalent to 1% of the total area evaluated herein. 
Although recent efforts in other areas to locate petrel 
nest sites have been aided by using scent-trained 
dogs (Aikman et al. 2001, Galase 2019, Bolton et al. 
2021), search efforts on Haleakalā have been con-
ducted on the ground by unaided human observers. 

2.2.  Study area and nest site locations 

We delineated the study area (modeling domain) to 
be all land above 1830 m elevation on Haleakalā 
(163 km2), which included all known and recorded 
nest site locations through 2020. The modeling 
domain encompassed 4 study sub-areas where nest 
searching has occurred: HALE, Alpine Wildlife Sanc-
tuary (AWS), DHHL, and Kahikinui (Table 1, Fig. 1). 
We combined burrow location datasets from the 4 
study sub-areas and removed nest locations with 

duplicate names and locations, nests with missing 
locations, and potential nests sites that were tem-
porarily marked but later determined to not be nest 
sites. The final dataset used for predictive modeling 
contained 2453 unique nest site locations from the 4 
study areas (Table 1). We counted the number of nest 
sites in 10 × 10 m grid cells across the modeling 
domain (to match the spatial resolution of predictor 
variables and modeling, see Sections 2.3 and 2.4) 
resulting in 1960 grid-cell locations containing nest 
site counts (dependent variable; range: 1 to 8 nest 
sites per grid cell). 

2.3.  Environmental predictors 

We used spatially continuous predictor variables 
that quantified the landscape and were hypothesized 
to be important for describing Hawaiian petrel nest-
ing habitat on Haleakalā (Table 2). To generate topo-
graphic variables, we obtained a 10 m resolution dig-
ital elevation model (DEM; US Geological Survey 
2013) from which we derived slope, topographic 
position index (TPI; De Reu et al. 2013, Coates et al. 
2020), surface roughness (Riley et al. 1999, Williams 
et al. 2009, Evans et al. 2014, Vorsino et al. 2014, 
Coates et al. 2020), and heat load index (HLI; 
McCune & Keon 2002, Evans et al. 2014). TPI quanti-
fies the elevation of a location as higher (positive val-
ues), lower (negative values), or similar (values near 
zero) to the surrounding landscape at a given scale 
(Gallant 2000); this variable can represent small hills 
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Region Area (ha)      Jurisdiction Sampling Nest sites 

Haleakalā National       7321          National Park Service Opportunistic, targeteda 1877 
Park (HALE) 

Alpine Wildlife  210           DOFAW (Alpine Wildlife Sanctuary,        Area-focused searchesb 407 
Sanctuary (AWS)/ Kula Forest Reserve,  
Kula control site Kahikinui Forest Reserve) 

DHHL Kahikinui 366           Department of Hawaiian Homelands      Opportunistic, systematic searchesd         68 
(Kahikinui Forest Project)c 

Kahikinui 718           DOFAW (Kahikinui Forest Reserve,        Opportunistic, systematic searchese        101 
Nakula Natural Area Reserve) 

Nest sites for model input: 2453 

aR. Kaholoa‘a unpubl. data (2020) 
bChen et al. (2019) 
chttps://dhhl.hawaii.gov/2022/12/06/new-plan-guides-kahikinui-forest-restoration/ 
dJ. Learned unpubl. data (2020) 
eTetra Tech (2012)

Table 1. Study regions and Hawaiian petrel nest site counts from Haleakalā, east Maui. Areas of individual regions represent  
specific area searched in study above 1830 m elevation
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Table 2. Spatial predictor variables used for modeling Hawaiian petrel nest site abundance and nesting habitat at Haleakalā, 
east Maui. All variables were re-sampled to a 10 × 10 m (100 m2) grid cell resolution to match the variable with the greatest res-
olution (elevation). Variables in bold italic were used in the final model. TPI: topographic position index; HLI: heat load index;  

MGS: mean growing season; LOS: length of growing season

Category 
 

Variable  
name 

Scale 
 

Type 
 

Description 
 

Native dataset, data  
type, resolution, source 

Topography Elevation 1 cell; 100 m2 Continuous Elevation (m) Topography National Elevation 
Topography Dataset, 
raster, 10 m, US 
Geological Survey 
(2013)

Slope 3 × 3 cells; 0.1 ha Continuous Maximum slope angle (degrees) 
between focal cell elevation and 
surrounding elevations (9-cell 
window)

TPI03 3 × 3 cells; 0.1 ha Continuous Topographic position index; 
(focal cell elevation) -  
MEAN(focal + neighborhood 
elevations)

TPI05 5 × 5 cells; 0.25 ha Continuous

TPI10 10 × 10 cells; 1 ha Continuous
TPI100 100 × 100 cells; 100 ha Continuous

Rough03 3 × 3 cells; 0.1 ha Continuous Terrain roughness; square root 
of the average of the squared 
differences in elevation between 
the target center cell and neigh -
borhood cells

Rough05 5 × 5 cells; 0.25 ha Continuous
Rough10 10 × 10 cells; 1 ha Continuous

Rough100 100 × 100 cells; 100 ha Continuous

HLI 3 × 3 cells; 0.1 ha Continuous Predicted potential annual direct 
incident radiation based on slope, 
aspect (folded to SW = max,  
NE = min), and latitude

Substrate RockType 1 cell; 100 m2 Categorical Geologic rock type simplified to: 
Lava flows, Cinder and spatter, 
Sand and gravel, Ash (including 
tephra), Intrusion, Lithic debris

Geology of Hawai‘i, 
shapefile, 15−50 m, 
Sherrod et al. (2007)

Ash01 1 cell; 100 m2 Binary Geologic rock type simplified to: 
Not ash/cinder, Ash/cinder

Vegetation VegType 1 cell; 100 m2 Categorical Categories: Barren, Forest, 
Shrub, Grass/Herbaceous, Devel -
oped, with developed removed  
(converted to nearest neighbor) 

LANDFIRE 2016 
Existing Vegetation 
Type, raster, 30 m, 
LANDFIRE (2016) 

Veg01 1 cell; 100 m2 Binary Categories: Not vegetated, Vege -
tated, with developed removed 
(converted to nearest neighbor)

MGS 1 cell; 100 m2 Continuous Mean growing season NDVI  
value

USGS ARD Data-
base, raster, 30 m, 
Dwyer et al. (2018)LOS 1 cell; 100 m2 Continuous Length of growing season

Biophysical Veg0Ash0 1 cell; 100 m2 Binary No vegetation or cinder/ash LANDFIRE 2016/
Geology of Hawai‘iVeg0Ash1 1 cell; 100 m2 Binary No vegetation, cinder/ash present

Veg1Ash0 1 cell; 100 m2 Binary Vegetation present, no cinder/ash

Veg1Ash1 1 cell; 100 m2 Binary Vegetation and cinder/ash present

Climate Rain 1 cell; 100 m2 Continuous Cumulative annual rainfall (mm) Rainfall Atlas of 
Hawai‘i, raster, 
250 m, Giambelluca 
et al. (2013)

Wind 1 cell; 100 m2 Continuous Mean annual wind speed (m s−1)  
at 22:00 h local time

Evapotranspiration of 
Hawaii, raster, 250 m, 
Giambelluca et al. 
(2014)
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and depressions (fine scales) or mountaintops/ridges 
and valley bottoms (large scales). Roughness is a 
measure of how variable elevations are in the sur-
rounding landscape and is scale dependent. We 
evaluated TPI and roughness at 4 scales (0.1, 0.25, 1, 
and 100 ha, equivalent to 3, 5, 10, and 100 cell [10 × 
10 m] neighborhoods; Table 2). HLI quantifies the 
potential annual direct incidental radiation based on 
slope, aspect, and latitude. We also included geolog-
ical rock type (Sherrod et al. 2007) as a categorical 
variable (RockType) and as a binary class indicating 
the presence-absence of the cinder/ash rock type 
(Ash01; Table 2). 

To generate biological variables, we included ex -
isting vegetation type (LANDFIRE 2016) as a cate-
gorical variable (VegType) and as a binary class 
to indicate vegetation presence-absence (Veg01; 
Table 2). We also included the 4 possible binary com-
binations of Veg01 and Ash01 as predictive layers, 
be cause nest sites (i.e. burrows) are not typically 
found in cinder/ash unless vegetation exists to pro-
vide soil cohesion. We derived an index of mean 
growing season (MGS) and length of growing season 
(LOS) from monthly estimates (2001−2018) of the 
Normalized Difference Vegetation Index (NDVI) 
acquired from the USGS Analysis Ready Data 
(Dwyer et al. 2018). Analysis Ready Data are pro-
duced from Landsat 4-8 satellite images that have 
been accurately georegistered, calibrated, and pre-
processed (top of atmosphere and atmospheric cor-
rection). We included 2 spatially continuous climatic 
variables: cumulative annual rainfall (Rain; Giambel-
luca et al. 2013) and mean annual wind speed (Wind; 
Giambelluca et al. 2013; Table 2). The large area and 
complex topography at higher elevations on Halea -
kalā result in large zonal variability across the study 
area landscape for these 2 climatic variables. 

We converted non-raster data sources (polygons of 
RockType and VegType) to 10 m resolution raster 
format. We resampled raster datasets with a native 
resolution coarser than the DEM (10 m) to 10 m by 
nearest neighbor (for categorical variables) or bilin-
ear (for continuous variables) methods before gener-
ating derivative variables. We prepared and derived 
all variables using ArcGIS (ESRI) in Hawai‘i Albers 
Equal Area Projection (EPSG 102007). 

We evaluated (1) the degree to which the potential 
environmental predictor variables differentiated nest 
sites from background sites; and (2) correlations 
among predictor variables. Our selection of meaning-
ful predictor variables was informed by first evaluat-
ing variables that contained redundant information. 
Evaluation consisted of 2 steps (see Supplement at 

www.int-res.com/articles/suppl/n052p231_supp.pdf). 
First, we used principal components analysis (PCA) to 
visualize the interrelationships among the variables 
and evaluate the degree to which nest sites and back-
ground sites diverged along the PCA axes. Second, 
we generated a matrix of Pearson correlation coeffi-
cients (r) of pairwise relationships among the predic-
tor variables and identified correlated pairs where r ≥ 
0.70 (~50% variation explained by the other vari-
able).  

2.4.  Modeling to predict nest site distribution 

We used random forests (RF; Breiman 2001) to pre-
dict the number of petrel nest sites per 100 m2 (10 × 
10 m cells). RF is a supervised machine learning 
modeling algorithm that extends the capabilities of 
classification and regression trees (CART; Olden et 
al. 2008) by recursively creating a very large number 
of trees from bootstrap sampling of the dataset. RF 
compares the predictions of each tree to the data not 
included in the bootstrap sample (the validation, or 
‘out-of-bag’ sample), thereby creating numerous, 
internally cross-validated models. Unlike CART, 
trees are not ‘pruned’ but allowed to develop to their 
full extent. We calculated variable importance (VI) 
by randomly permuting the values of each predictor 
within each recursion and then recalculating the 
change in model performance. Because each recur-
sion uses a different random subset of the response 
data and a different random subset of the predictor 
variables, it is considered an ensemble modeling pro-
cedure. The algorithm processes high-dimensional 
data very efficiently and avoids overfitting data. Fur-
thermore, outliers and spatial autocorrelation have 
less influence on predicted values compared with 
parametric models, and complex, non-linear rela-
tionships are incorporated directly in the model. One 
of the principal criticisms of RF (and machine learn-
ing in general) for explanatory purposes is that 
regression coefficients and their measures of uncer-
tainty are not calculated (Humphries & Huettmann 
2018, Humphries et al. 2018). In addition, because 
individual trees cannot be examined, RF can be per-
ceived as a black box. However, by acknowledging 
these criticisms and, more importantly, when predic-
tion is specifically the goal, RF has been recognized 
as an effective and appropriate machine learning 
algorithm (Cutler et al. 2007, Crisci et al. 2012). 

Input response data included the count of nest sites 
and predictor variable values within the 1960 grid 
cells (10 × 10 m) containing nest sites from the com-
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bined datasets. Background data included predictor 
variable values extracted at 50 000 randomly se lected 
cells from the full study area grid (~1.63 × 106 grid 
cells). Because nest site locations were mostly col-
lected opportunistically, we assumed geographic 
sampling bias of environmental conditions was asso-
ciated with individual nest sites. Geographic sam-
pling bias occurs when areas are overrepresented 
due to relatively greater local sampling effort or 
when some of the environmental space suitable for a 
species is poorly represented (Kramer-Schadt et al. 
2013, Fourcade et al. 2014). Landscape environ -
mental parameters tend to be spatially autocorrelated 
and geographic bias will propagate environmental 
bias through a model. This can confound interpre -
tation of model results, cause overfitting, and lead 
to poor model performance. ‘Spatial thinning’ can re-
duce the effects from sampling bias (Boria et al. 2014, 
Steen et al. 2021). Spatial thinning consists of filtering 
data in areas where response data are highly concen-
trated while retaining greater proportions of data in 
areas where concentrations are less (Aiello-Lammens 
et al. 2015). We used the spThin package in R (Aiello-
Lammens et al. 2015) to generate 100 spatially 
thinned datasets with a nearest neighbor distance of 
60 m between nest site locations. This resulted in 100 
thinned sets of 542 to 548 grid cells. 

We developed and evaluated models with the ran-
domForest package in R (Liaw & Wiener 2002). 
Model development consisted of 3 steps. First, based 
on the PCA and Pearson’s correlation, we removed 
one of each pair of variables where r > 0.70. Second, 
we split each thinned dataset into training (75%) and 
test (25%) sets, then partitioned the training data 
with 10-fold cross-validation, with model runs (N = 
500 per thinned set) for each partition k split into 
training (70%) and out-of-bag sets. Third, we tuned 
models in each thinned set to determine the total 
number of trees and optimal number of predictor 
variables to include at each split in the trees. Lastly, 
we conducted individual model runs with the re -
maining predictor variables and optimal variable 
numbers and splits in the trees. 

Due to inter-relationships among elevation, wind, 
rain, and vegetation (based on PCA [Table S1, Fig. S1] 
and correlation [Table S2, Fig. S2]), we evaluated 4 
candidate models (Table 3) to assess the degree to 
which model performance varied with different com-
binations of variables (see Supplement): Model 1 = 
Topography (Elevation, HLI, Slope, TPI03, TPI100) + 
Substrate (Ash01) + Vegetation (Veg01); Model 2 = 
Topography (Elevation, HLI, Slope, TPI03, TPI100) + 
Substrate (Ash01); Model 3 = Topography (Elevation, 

HLI, Slope, TPI03, TPI100) + Substrate (Ash01) + Veg-
etation (Veg01) + Climate (Wind); and Model 4 = 
Topography ([NO Elevation], HLI, Slope, TPI03, 
TPI100) + Substrate (Ash01) + Vegetation (Veg01) + 
Climate (Wind, Rain). We used 3 measures to evaluate 
performance within and between the models: (1) the 
stability of the model mean squared error (MSE) as 
the number of trees increased; (2) the MSE of the 
cross-validations; and (3) comparison of pseudo-R2 
values (1 − [MSE/σ2]) between training and test sets 
with ordinary least square regression (see Supple-
ment). We evaluated variable importance (VI) as the 
proportional increase in MSE when a variable was not 
included in the models (see Supplement). 

Using our final selected model, predicted number 
of petrel nest sites per 100 m2 cell were calculated by 
averaging predictions among thinned sets with pre-
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Model              Set       Estimate     SE         LCL       UCL 
 
Model 1 = Topography (Elev, HLI, Slope, TPI03, TPI100) 

+ Substrate (Ash01) + Vegetation (Veg01)   
MSE                 Test         0.050     0.0001     0.049      0.050 
                        Train       0.052     0.0001     0.052      0.052 

Pseudo-R2        Test         0.206     0.0007     0.205      0.207 
                        Train       0.204     0.0007     0.202      0.205 
 
Model 2 = Topography (Elev, HLI, Slope, TPI03, TPI100) 

+ Substrate (Ash01)                                       
MSE                 Test         0.052     0.0002     0.051      0.052 
                        Train       0.051     0.0002     0.051      0.051 

Pseudo-R2        Test         0.222     0.0008     0.220      0.223 
                        Train       0.215     0.0008     0.213      0.216 
 
Model 3 = Topography (Elev, HLI, Slope, TPI03, TPI100) 

+ Substrate (Ash01) + Vegetation (Veg01) + 
Climate (Wind)                                              

MSE                 Test         0.051     0.0002     0.050      0.051 
                        Train       0.051     0.0002     0.051      0.052 

Pseudo-R2        Test         0.217     0.0008     0.215      0.218 
                        Train       0.217     0.0008     0.215      0.218 
 
Model 4 = Topography ([NO Elevation], HLI, Slope, 

TPI03, TPI100) + Substrate (Ash01) + Vegeta-
tion (Veg01) + Climate (Wind, Rain) 

MSE                 Test         0.051     0.0002     0.051      0.052 
                        Train       0.052     0.0002     0.052      0.052 

Pseudo-R2        Test         0.206     0.0007     0.205      0.207 
                        Train       0.204     0.0007     0.202      0.205

Table 3. Mean square error (MSE) and pseudo-R2 values in 
training and test datasets among 4 model groups of random 
forest models to predict Hawaiian petrel nest site relative 
abundance on Haleakalā, east Maui. Model 1 was selected 
as the final model. Predictor variables were associated with 
4 categories (see Table 2): Topography, Substrate, Climate, 
and Vegetation. SE and lower and upper 95% confidence  

intervals (LCL and UCL) are shown
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cision estimated using 1 standard deviation (SD). We 
mapped predicted nest density (per 100 m2) and SD, 
and examined the distributions of predictor variable 
values for the background study area compared with 
those weighted by predicted nest density to describe 
the modeled results on the landscape and in habitat 
space. 

3.  RESULTS 

3.1.  Nest sites and model performance 

The distribution of observed nest sites counted 
among the 100 m2 cells was right skewed (Fig. 2): 
82% of cells included single sites, with an additional 
13% of cells having 2 sites; very few cells (~0.5%) 
had 5 to 8 nest sites (Fig. 2). 

Overall, the 4 predictive models had similar, low 
MSE (≤0.05; Table 3), indicating models did not 
overfit the data and were consistent in model pre-
dicted values. Model 1 without climate and Model 2 
without climate and vegetation required fewer (3 to 
4) variables for splitting trees compared with the other 
2 model groups (6 variables each). MSEs for all 4 mod-
els reached an asymptote at 3 variables per tree split. 
Beta regressions indicated MSEs for test data were 
less than those for training data, indicating that the 
model predicted well throughout the study area, but 
the differences in MSE between test and training data 

were greatest for Model 3 (mean difference in MSE of 
−0.19); for the remaining 3 models mean differences 
in MSE were less than −0.05 (Table S3). Overall, this 
reflects model consistency and accuracy. 

The patterns for pseudo-R2 were similar to those of 
MSE; ordinary least squares regression indicated 
negligible differences among training and test sets 
(Table 3). Because pseudo-R2 values are not the same 
as R2 values derived by least-squares estimation, val-
ues are only meaningful when compared with other 
pseudo-R2 from models evaluating the same data 
(Table 3). Moreover, pseudo-R2 values between 0.2 
and 0.4 indicate very good model fit (McFadden 
1974). Performance within models was reflected in 
performance between the models for both MSE and 
pseudo-R2 with negligible differences in either meas-
ure among the 4 models. Thus, among the 4 models, 
pseudo-R2 values indicated relatively good model fit 
for both training and test data (Table 3). 

Absolute pairwise differences in predicted number 
of Hawaiian petrel nest sites within 10 × 10 m grid 
cells were similar among models, with 95 to 99% of 
the differences falling within a range of −0.4 to 0.3 
nest sites per cell (Fig. S3); however, the range in dif-
ferences did vary among the pairwise comparisons 
(Fig. S3). The greatest differences were between 
models with elevation (Models 1 to 3) and Model 4 
without elevation (Fig. S3a,b,c), and the least differ-
ences were among models with elevation (Models 1 
to 3) and without rain (Fig. S3d,e,f). When vegetation 
was paired with wind and rain (Model 4), there was 
little difference in number of predicted nest sites 
compared with when vegetation and climate (wind 
and rain) were excluded (Model 2) (Fig. S3b). 

The ECDFs highlighted small percent differences 
in predicted number of nest sites among models 
(Fig. S4) and were consistent with results of the ab-
solute differences (Fig. S3). The greatest differences 
in predicted number of nest sites occurred be tween 
the model without elevation (Model 4) and the model 
with elevation and without wind and rain (Model 1); 
differences approached 200% (Fig. S4a). The com-
parison between the model without elevation 
(Model 4) and the model without rain, wind, and veg-
etation (Model 2) approached percent differences of 
50%, but 95 to 99% of differences were be tween ~5 
and 10% (Fig. S4c). Percent differences among the 
other pairwise combinations also were small, with 95 
to 99% ranging from 2 to 10% (Fig. S4b,d,e,f). 

Although differences among models were not 
great, pairwise comparisons (Figs. S3 & S4) and VI 
(Fig. 3) revealed elevation (VI of ~35−45%) was the 
strongest predictor in models where it was present 
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Fig. 2. Proportion of total occupied grid cells (1960 total) 
showing the number of Hawaiian petrel nest sites (N) per  

100 m2 grid cell on Haleakalā, east Maui
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(Models 1 to 3; Fig. 3). In the absence of elevation, 
wind and rain were relatively less important, yet 
each accounted for ~25% variable importance 
(Fig. 3). In the model without elevation (Model 4; 
Fig. 3), the cumulative importance of rain and wind 
was similar to that of elevation in the other 3 models 
where elevation was included. Slope (VI of ~20%) 
had the second highest VI among all models, except 
in the model without elevation (Model 4), where the 
values for rain and wind were greater (Fig. 3). HLI 

had moderate importance (VI of ~10%), particularly 
in the model group without elevation (Model 4; 
Fig. 3). The TPI03 and TPI100 had lower importance 
in Models 1 to 3 (VI of <10%), and the binary vari-
ables Ash01 and Veg01 also showed lower impor-
tance in Models 3 and 4 (VI of <10%). 

Based on the collective patterns of MSE, pseudo-
R2, absolute differences in predicted values, ECDFs, 
and large VI for elevation, we selected Model 1 (ele-
vation, slope, HLI, TPI03, TPI100, the presence-
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Fig. 3. Variable importance (VI) expressed as percent increase in MSE (mean ± 95% CI) for 9 variables in 4 model groups used for 
prediction of the number of nest sites of Hawaiian petrels on Haleakalā, east Maui. Model 1: Topography (Elevation, Heat Load 
Index [HLI], Slope, Topographic Position Index [TPI03 and TPI100]) + Substrate (Ash01) + Vegetation (Veg01) was selected as the 
final model for nest site prediction. Variables in Models 1 to 4 and definitions of all predictor variables are given in Table 2
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absence of cinder/ash [Ash01], and the presence-
absence of vegetation [Veg01]) for predicting and 
mapping relative nest site abundance on Haleakalā. 

3.2.  Final model predictions 

Predicted nest site abundance reflected the influ-
ence of the strongly right-skewed empirical distribu-
tion of observed number of nest sites (Fig. 2), with no 
values >2 nest sites per 100 m2 (Fig. 4). The greatest 
concentrations of nest sites were predicted to be in a 
crescent along the crater rim from the northwest to 
southeast and straddling the ridgeline descending to 

the southwest from the summit (Fig. 4). Other areas 
with moderately high predicted density included the 
relatively flat, eastern and northern interior of Halea -
kalā crater, particularly where cinder cones are not 
present (Fig. 4). A large proportion of area, especially 
the lower elevation flanks along all sides of Halea -
kalā, was predicted to have few nest sites (Fig. 4). 

Inspection of the distributions of landscape para -
meter values (weighted by predicted nest density) and 
compared with background values revealed Model 1 
predicted more nest sites at higher elevations (2100 
to 2300 m and >2600 m; Fig. 5A) and in areas with 
slopes <10° and 35 to 45° compared to background 
(Fig. 5B). Nest sites were predicted more frequently 

where local topographic positions 
were similar to or slightly greater than 
the local mean (TPI03; Fig. 5C), and 
where landscape-scale topographic 
positions were greater than the land-
scape-scale mean (TPI100; Fig. 5D). 
Nest sites were predicted to be more 
abundant at slightly lower HLI values 
than background (Fig. 5E) and where 
vegetation was lacking compared with 
the background (Fig. 6C,D). 

4.  DISCUSSION 

With 2453 Hawaiian petrel nest site 
locations recorded since 1954 on 
Halea kalā, east Maui, we de veloped a 
RF model to predict nest site locations 
per 100 m2 throughout 163 km2 of 
available, high-elevation habitat. Our 
model highlighted 2 important as -
pects about the nesting habitat on 
Halea ka lā. First, nest sites were non-
randomly distributed and aggregated 
with greater densities in higher, and 
more rugged and topographically 
variable areas of the volcano. Second, 
at the landscape scale, elevation, slope, 
and topographic variability were the 
main factors underlying predicted nest 
site locations, while substrate (i.e. 
presence-absence of volcanic cinder/
ash) and presence-absence of vegeta-
tion were relatively less important 
(in crease in MSE of ~6%) at the 10 m 
scale. 

The clumped distribution of pre-
dicted nest sites could potentially re -
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Fig. 4. Final predicted relative Hawaiian petrel nest site density (per 10 × 10 m 
grid cell; 100 m2; top) and SD (bottom) on Haleakalā, east Maui. Predictions 
were based on a random forest model (Model 1) that included elevation, slope, 
small-scale topographic position index (TPI03, 30 × 30 m), large-scale topo-
graphic position index (TPI100, 1000 × 1000 m), heat load index, presence of 
volcanic cinder/ash, and presence of vegetation (see Table 2 for description of  

predictor variables)
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sult from environmental filtering, legacy effects from 
predation and habitat alteration by non-native spe-
cies, subsequent habitat protection and recovery 
(Hodges & Nagata 2001, Kelsey et al. 2019), and 
smaller-scale alpine volcanic geo morpho logy (Brandt 
et al. 1995). Environmental filtering is often ex -
pressed through habitat selection, and while the RF 

model is not a habitat selection model per se, results 
indicated Hawaiian petrel nest sites occurred in 
areas with different habitat conditions compared 
with random background environmental conditions. 
Furthermore, the contemporary distribution reported 
here may result from certain legacy effects. For 
example, the densest areas of seabird colonies may 
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Fig. 5. Continuous predictor variable values for entire 
study area (grey shaded) and weighted by modeled 
predicted relative nest density (red shaded). TPI03 
and TPI100: topographic position indices at 2 scales; 
HLI: heat load index. See Table 2 for description of  

predictor variables
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be regulated in part by internal recruitment among 
strongly philopatric individuals as is typical of Pro-
cellariiformes (Warham 1990, Clark et al. 2019, Bird 
et al. 2022). Also, extreme environmental conditions 
(e.g. winter, aridity, and high elevation) at Haleakalā 
likely regulate invasive mammal populations and 
may result in similar dynamics as have been hypoth-
esized for colonies of Hutton’s shearwater Puffinus 
huttoni and sooty shearwater Ardenna grisea that 
have been shown to persist due to inverse, density-
dependent predation (Lyver et al. 2000, Cuthbert 
2002). More information about long-term burrow 
occupancy and recruitment would help us to under-
stand possible density-dependent patterns associ-
ated with coloniality and spatial clustering of Hawai-
ian petrel nest sites at Haleakalā. Additionally, more 
information about the distribution and interaction 
among petrels with invasive mammals at Haleakalā 
would be beneficial for understanding spatial popu-
lation dynamics associated with nest site distribution 

while also helping to better understand the effects of 
predators and predator management efforts. 

Predictor variables appeared to be ecologically 
meaningful measures of environmental conditions 
for predicting nest site distribution on Haleakalā. 
The patterns in spatial distribution of predicted nest 
sites may result in part from inherent scale-depen-
dent patterns in geomorphology. Our RF model 
results were consistent with results from an analysis 
of Hawaiian petrel habitat selection that included a 
much smaller area focused on the west flank and 
crater rim of Haleakalā (Brandt et al. 1995). Our more 
spatially extensive results indicated slopes (30 m 
scale) <10° and 35 to 45° had more nest sites com-
pared with the background. Slope >45° represents 
habitat that is dangerous or impossible to survey 
effectively and there likely are petrels nesting in 
inaccessible areas not well represented in our model-
ing. It is possible that flat areas in the crater floor 
have more soil available for petrels to excavate bur-
rows (see locations in Fig. 1), or perhaps availability 
of nesting habitat is also influenced by additional 
landscape features (not measured in this study). 
Topographic position indices (TPI) at 2 scales (30 and 
1000 m) were important; the first scale (30 m) in -
cludes small landforms such as ledges, fractured 
dikes, and large boulders, and the larger scale 
(1000 m) reflects larger variability in the landscape 
associated with lava channels, larger dikes, gullies, 
and ridges. Brandt et al. (1995) found nest sites were 
most likely to be located on steep slopes, under large 
rocks, and in the vicinity of shrubs. Presence of cin-
der/ash in our model was negatively related to pre-
dicted nest site density, consistent with Brandt et al. 
(1995), who pointed out that large areas near the 
summit composed of loose cinder and ash were not 
usable by petrels and likely do not support stable 
burrowing habitat. However, their results indicated 
that red-colored soil was more common than ex -
pected at nest sites. While it is not clear from Brandt 
et al. (1995) what color can be ascribed to cinder/ash, 
future model improvement might be possible by 
quantifying substrate color from high-resolution 
satellite imagery. More effort is needed to re solve 
potential nesting habitat throughout Halea kalā, 
where in the absence of excluded ungulates, petrels 
may now be able to excavate and maintain fragile 
earthen burrows (R. Kaholoa‘a pers. obs.) more typi-
cal of Hawaiian petrel on other Hawaiian Islands and 
among gadfly petrels in general. 

Mostly consistent with previous studies throughout 
Hawai‘i, we found predicted nest sites on Haleakalā 
were associated with relatively high elevation and 
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Fig. 6. Binary predictor variable values (presence = 1, ab-
sence = 0) for entire study area (grey) and weighted by  

modeled predicted relative nest site density (red)
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steep, rocky, unvegetated habitat (Fig. 5). On Halea -
kalā, although impossible to determine for certainty, 
the importance of elevation as a predictor may in part 
reflect an artefact of the abandonment of formerly 
used lower elevation sites. On Lana‘i and Kaua‘i bur-
rows were found in lower elevation forests with a 
well-developed understory of ferns (VanZandt et al. 
2014, Troy et al. 2017). On Lāna‘i, VanZandt et al. 
(2014) used logistic regression to model nest site 
para meters and stratified-random location para -
meters and found petrel nest locations at 600 to 
1000 m were best described by greater slopes where 
understory was dominated by native vegetation with 
an open canopy. On forested montane areas of 
Kaua‘i, Troy et al. (2017) used similar presence/avail-
able logistic regressions and found petrel nest habi-
tat suitability was best described by areas with 
greater mean annual wind speeds and in areas with 
greater slope and native vegetation cover. These pat-
terns underscore the need to include such data as 
analyzed herein for Haleakalā together with nest 
sites data from multiple islands (Troy et al. 2017, 
Raine et al. 2021) to investigate linkages between 
Hawaiian petrel niche dimensions or habitat selec-
tion based on nest site characteristics. Although we 
did not quantify habitat parameters immediately sur-
rounding nests at Haleakalā, such data do exist for 
subsets of the data analyzed herein (e.g. Kahikinui; 
J. Learned unpubl. data) and a standardized ap -
proach among the other jurisdictional areas on 
Haleakalā could provide better information to 
describe nest site requirements that can be used to 
inform conservation in the future. 

The RF models were relatively consistent within 
and across model sets, especially regarding variable 
importance, lending confidence to their ability to 
predict accurate patterns in the present Hawaiian 
petrel nest site distribution on Haleakalā. Neverthe-
less, several caveats exist. First, nest sites were iden-
tified and located predominantly by opportunistic 
sampling, and even though spatially thinning the 
datasets helped reduce spatial sampling bias, our 
model predictions likely were influenced to some de -
gree by the opportunistic nature of the original sam-
pling in the field. Most importantly, biased effort 
focused more on areas where nests were more likely 
to occur, thus positively influencing predicted densi-
ties for specific habitat characteristics. Next, al -
though our predictor variables were spatially contin-
uous, ecologically sensible, and based broadly on 
prior studies (e.g. Brandt et al. 1995, VanZandt et al. 
2014, Troy et al. 2017), we emphasize that our results 
are primarily predictive and not explanatory per se. 

This was especially so for the substrate and vegeta-
tion variables, which had spatial scales that were rel-
atively coarse compared with the size of a localized 
nest site area (i.e. a few m2), thus making it difficult 
to understand important smaller-scale habitat associ-
ations with nest sites. For example, Brandt et al. 
(1995) and Raine et al. (2021) reported clear selection 
for substrate and vegetation within a few meters of 
nest site sites on Haleakalā and Kaua‘i, respectively. 
Additionally, whereas our predictor variables repre-
sent biophysical components of the environment, 
additional potentially important biotic factors, in -
cluding the occurrence or expected density of non-
native predators and invasive plants, were not in -
cluded. Although these factors can be important for 
predictive modelling, such spatially explicit data on 
biological and ecological interactions can be difficult 
to obtain (Giannini et al. 2013, Wisz et al. 2013). Nev-
ertheless, we acknowledge future model perform-
ance may be enhanced by including such ecological 
interactions and other meaningful variables (Leach 
et al. 2016, Dormann et al. 2018). 

Existing long-term data also offer the unique abil-
ity to evaluate the effects of climate change and cli-
mate variability on petrel reproductive output and 
re  covery. Climate change and variation in ocean 
 climate conditions can influence range expansion of 
predators (e.g. cats and mongooses), and survival 
and reproductive output among seabirds in Hawai‘i 
and the subtropics (Waugh et al. 2015). Linking cli-
matological variation with spatial patterns in occu-
pancy could inform future management of threats 
associated with predators that may change with cli-
mate at Haleakalā. A logical step could be to conduct 
ecological niche factor analysis (Hirzel et al. 2002) to 
describe the degree of selection for specific habitat 
conditions (niche breadth). Similar steps have been 
suggested as important research priorities that can 
shed more light on understanding the relationships 
between environmental parameters and breeding 
success of ecologically similar Barau’s petrel Ptero-
droma baraui (Pinet et al. 2009). 

5.  CONCLUSIONS 

Island-specific extirpations, low population size, 
and cumulative impacts from non-native species 
were among the main reasons Hawaiian petrel re -
mains listed under the Endangered Species Act as 
endangered (US Fish and Wildlife Service 1967). 
Throughout the Hawaiian Islands, fossil evidence 
(Olson & James 1982b) and historical observations 
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(Munro 1955) indicate Hawaiian petrels once oc cur -
red across a large elevation gradient with variable 
biophysical conditions. The current range of Hawai-
ian petrel throughout Hawai‘i is a relic of predation 
by rats, mongooses, feral cats, and feral pigs, and se-
vere habitat alteration by feral goats, pigs, other un -
gulates, and invasive plants. It is possible that habitat 
conditions where nest sites have been de scribed on 
Haleakalā may not reflect optimal biophysical 
habitat, but instead represent a narrower range of 
former nesting conditions that describe refugia from 
predation and habitat alteration. Yet, in its current 
state, Haleakalā remains one of the most significant 
nesting areas throughout the species’ range. Our re-
sults provide critical new information to better evalu-
ate breeding population size, to assess the degree to 
which predator control and fencing overlap with or 
enclose predicted habitat, and to identify areas that 
could be systematically targeted to locate additional 
unknown nest sites and improve predictive models in 
the future. Although this study focused on predicting 
nest site locations at higher elevations on Haleakalā, 
suitable nesting habitat might exist at lower eleva-
tions, provided nesting petrels are protected from in-
vasive predators, grazing ungulates, and significant 
land alteration. Variation in ocean climate conditions, 
climate change and its influence on range-expansion 
of predators (e.g. cats and mongooses), recent efforts 
by the State of Hawai‘i and federal agencies to in-
crease renewable energy re sources (including wind 
power), and new science infrastructure at Haleakalā 
may place additional stress on the species. Recently, 
conservation efforts in Hawai‘i have targeted reintro-
duction and social attraction of extirpated species, 
such as Hawaiian petrel and ‘a‘o Newell’s shearwater 
Puffinus newelli to protected, predator-proof nesting 
areas at lower elevations in the main Hawaiian Is-
lands (e.g. Nihoku on Kaua‘i and Kahakuloa-Maka-
maka’ole on west Maui; Young et al. 2018, Raine et 
al. 2023, Vander Werf et al. 2023). Our predicted nest-
ing habitat can inform such efforts and help guide 
placement of additional ungulate fencing that could 
increase conservation easements and assist spatial 
management efforts for increased protection and in-
vasive predator control to benefit nesting petrels. 
Lastly, although our initial predictive maps are useful 
for evaluating habitat extent in general, we caution 
they not be used to extrapolate true breeding pair 
abundance. Future evaluation of ongoing monitoring 
data incorporating breeding propensity and annual 
occupancy would help inform such an estimate of the 
breeding population at Haleakalā and surrounding 
high-elevation habitat on east Maui. 
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