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1.  INTRODUCTION 

The great hammerhead shark Sphyrna mokarran 
(Rüppell, 1837) is the largest species of hammerhead 
shark, with a maximum total length of 6 m (Compa-
gno 1984, Ebert et al. 2013) and a maximum reported 
lifespan of 45 yr (Piercy et al. 2010, Tovar-Ávila & Gal-
legos-Camacho 2014). This species is found in tropi-
cal and temperate waters worldwide, and it inhabits 
coastal areas along the continental shelf (Compagno 

1984). S. mokarran exhibits nomadic and migratory 
behaviours; it engages in large-scale, long-distance 
migrations and exhibits seasonal residency, site fidel-
ity, and extensive international movements (Compa-
gno 1984, Hammerschlag et al. 2011, Guttridge et al. 
2017, Gallagher & Klimley 2018). As apex predators, 
large S. mokarran primarily consume other sharks 
and rays (Raoult et al. 2019). In the Arabian Gulf (also 
known as the Persian Gulf), S. mokarran neonates 
predominantly feed on teleosts (e.g. flathead fishes of 
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the family Platycephalidae), shifting to feeding on 
eagle rays (family: Myliobatidae) as they mature (Hsu 
et al. 2022a). 

The scalloped hammerhead shark Sphyrna lewini 
(Griffith & Smith, 1834) is another large hammerhead 
species, with a maximum total length of >4 m (Froese 
& Pauly 2023) and a maximum reported lifespan of 
15 yr (Liu & Chen 1999). This species is found in trop-
ical and warm temperate waters worldwide (Com -
pagno 1984, Ebert et al. 2013). It exhibits complex 
spatial usage patterns associated with both coastal 
and oceanic habitats (Estupiñán-Montaño et al. 
2021). S. lewini is highly mobile and has diverse 
migratory patterns (Compagno 1984). Female S. 
lewini utilise various habitats throughout their life, 
whereas male sharks alternate between coastal and 
pelagic migratory patterns, either remaining near-
shore throughout their life or migrating offshore 
before returning to coastal habitats (Coiraton et al. 
2020). As a tertiary consumer, S. lewini exhibits con-
siderable trophic plasticity and feeds on various prey 
items, including bony fishes, crustaceans, and cepha-
lopods (Torres-Rojas et al. 2010, Rojas et al. 2014). 

Both S. mokarran and S. lewini have experienced 
population declines (Noriega et al. 2011, Pérez-Jimé-
nez 2014, Ayres et al. 2024). Because they are targeted 
or bycatch species, S. mokarran and S. lewini face 
major threats from fisheries exploitation (Bezerra et 
al. 2016, Guzman et al. 2020). Given their longevity 
and slow growth rates (Liu & Chen 1999, Harry et al. 
2011, Drew et al. 2015, Hsu et al. 2021), both species 
have been classified as Critically Endangered on the 
International Union for Conservation of Nature Red 
List of Threatened Species (Rigby et al. 2019a,b). 
Although S. lewini has been extensively studied, 
 considerable gaps remain in the knowledge regard-
ing hammerhead sharks, particularly regarding the 
trophic ecology of S. mokarran (Gallagher & Klimley 
2018). 

Stable isotopes can serve as effective ecological 
tracers for investigating diet, trophic position, and 
movement as well as broader questions regarding 
community dynamics and feeding strategies among 
aquatic organisms (Hussey et al. 2012, Shipley & Mat-
ich 2020). The most common elements used in studies 
on diet and trophic structure are carbon and nitrogen, 
which are typically expressed as the ratios δ15N 
(15N/14N) and δ13C (13C/12C), respectively. These 
ratios provide insights into the dietary niche and hab-
itat history of consumers (Shiffman et al. 2012). Stable 
isotope data can also help with constructing an isoto-
pic niche, that is, a multivariate space defined by iso-
topic values, to elucidate ecological shifts (Newsome 

et al. 2007). Furthermore, isotopes in neonates can 
reflect the maternal diet and foraging locations 
because neonates rely on maternal energy stores, 
such as the yolk and placenta (Hussey et al. 2010, 
Olin et al. 2011). 

To date, stable isotope analysis has predominantly 
been used to investigate S. lewini (Arnés-Urgellés et 
al. 2021, Cerutti-Pereyra et al. 2022). Few studies have 
focused on S. mokarran, and each of the studies that 
have done so analysed fewer than 30 individuals 
(Rumbold et al. 2014, Raoult et al. 2019, Peterson et al. 
2020, Lubitz et al. 2023). Furthermore, the Indian 
Ocean has been much less studied (Ducatez 2019), 
resulting in a lack of isotope data for S. mokarran in 
this area. In this study, we measured stable isotopes 
(δ15N and δ13C) in the muscle tissues of neonate and 
juvenile S. mokarran and S. lewini from the western 
Arabian Gulf, which is part of the Indian Ocean. 
Because the sample size was only sufficient for 
S. mokarran (n = 73), we tested the following hypo -
theses. (1) No between-sex differences in isotopic 
niche are present in S. mokarran juveniles. (2) S. mo -
karran juveniles do not exhibit any ontogenetic 
changes in isotopic niche as they mature. 

2.  MATERIALS AND METHODS 

2.1.  Sample collection 

Between April 2016 and November 2020, we col-
lected 73 Sphyrna mokarran samples (5 neonates; 
39 female and 29 male juveniles) and 10 S. lewini 
samples (7 neonates; 1 female and 2 male juveniles) 
from the Jubail fish market, Eastern Province, 
Saudi Arabia (27° 00’ 08.6" N, 49° 40’ 18.7" E). Neo-
nates were identified by open umbilical scars, and 
all specimens were immature juveniles (Hsu et al. 
2021, 2022b). The specimens were caught by com-
mercial fishing vessels operating in Saudi Arabian 
waters of the Arabian Gulf by using gillnets, long-
lines, trolls, and handlines, with gillnets being the 
predominant gear (Hsu et al. 2022b). Precaudal 
length, fork length, and total length were measured 
to the nearest 0.1 cm. Total somatic weight was 
measured to the nearest 0.01 kg. 

2.2.  Stable isotope measurement 

We referenced Bond & Hobson (2012) for the termi-
nology of stable isotope ratios. Approximately 10 g of 
muscle samples were extracted from the dorsal ante-
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rior part of the shark body to measure the values of 
δ13C and δ15N. The samples were dried at 70°C, 
ground to a fine powder, and transported to the Labo-
ratorio de Biogeoquímica de Isótopos Estables, Insti-
tuto Andaluz de Ciencias de la Tierra (CSIC-UGR, 
Granada, Spain) for analysis. The transportation of 
samples was facilitated by CITES Export Permits 
issued by the Kingdom of Saudi Arabia (permit 
numbers: 19-SA-0010008-PD–19-SA-0010015-PD) and 
Spain (permit numbers: ES-MA-00001-19P and ES-
MA-00002-19P). 

The samples were exposed to chloride vapours over-
night to eliminate inorganic carbon. Organic matter 
was then analysed for its isotopic composition by using 
a Carlo Erba NC1500 elemental analyser connected to 
a Delta Plus XP mass spectrometer (EA-IRMS; Thermo-
Finnigan). Commercial CO2 and N2 were used as inter-
nal standards for the carbon and nitrogen isotopic anal-
yses, respectively. Internal standards for δ13C were set 
at –30.63 and –11.65‰ (Vienna Peedee belemnite), 
and those for δ15N were set at –1.02 and +16.01‰ 
(air). Reference gases and in-house standards (with dif-
ferent C:N ratios and isotopic composition) were cali-
brated against international reference materials for 
carbon (USGS-24 and IAEA-C6) and nitrogen (IAEA-
N1, IAEA-N2, and IAEA-N3). The precision, calculated 
after adjustment for the daily drift of the mass spec-
trometer and  systematic incorporation of standards in 
analytical batches, was higher than ±0.1‰ for both 
δ13C and δ15N. 

The isotopic composition is reported in terms of 
δ‰, which were calculated as follows: 

                                            (1) 

where R = 13C/12C for δ13C and 15N/14N for δ15N. 
Although urea and lipid treatments are often rec-

ommended for isotope analysis (Li et al. 2016, Carlisle 
et al. 2017, Bennett-Williams et al. 2022), neither was 
performed for the muscle samples in the current 
study, which followed the precedent set by Lubitz et 
al. (2023). Only 3 samples had a C:N ratio of >3.5, 
indicating that lipid extraction was unnecessary (Post 
et al. 2007). Urea treatment has been demonstrated to 
increase δ15N in the muscle tissue of elasmobranchs 
(Carlisle et al. 2017, Crook et al. 2019, Bennett-
Williams et al. 2022). Hence, we used the equation 
(δ15Ntreated = 0.984 × δ15Nuntreated + 2.063; R2 = 0.89) 
to convert the untreated-sample values to treated-
sample values, which are reported alongside the 
untreated-sample values to facilitate comparison with 
other studies on S. mokarran (Peterson et al. 2020, 
Lubitz et al. 2023). For δ13C, we present the untreated 

d = Rstandard

Rsample
–1c m# 1000
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sample values because a study reported that lipid/
urea treatment led to minimal variations in δ13C 
(approximately 0‰) in the muscle tissue of elasmo-
branchs (Bennett-Williams et al. 2022). 

2.3.  Statistical analysis 

Only S. mokarran had a sufficient sample size, and 
therefore, only this species was included in the statis-
tical analysis. The 95% confidence interval region on 
the δ15N and δ13C biplot was determined using the 
‘cov.mve’ function in the R package ‘MASS’ (Ven -
ables & Ripley 2002). Between-group isotopic niche 
partitioning was indicated by nonoverlapping 95% 
confidence interval regions. For juveniles, a log- linear 
model with a Gaussian likelihood function was used 
to measure the effects of sex and total 
length on δ15N and δ13C, which were 
log-transformed to approximate Gaus-
sian distribution values. Be tween-sex 
overlap in 95% confidence intervals 
was calculated using the ‘overlap’ 
function in the R package ‘niche -
ROVER’ (Lysy et al. 2023) with 5000 
iterations. All computations were per-
formed using R (version 4.2.1; R Core 
Team 2022). 

3.  RESULTS 

The total lengths of the Sphyrna 
mokarran neonates ranged from 74.0 to 
98.0 cm, whereas those of the S. mokar -
ran juveniles ranged from 103.0 to 
236.0 cm (Table 1). The total lengths of 
the S. lewini neonates ranged from 50.6 
to 60.0 cm, whereas those of the 
S. lewini juveniles ranged from 85.0 to 
178.5 cm (Table 1). The S. mokarran 
samples predominantly comprised ju -
veniles (93%; n = 68/73), whereas the 
S. lewini samples predominantly com-
prised neonates (70%; n = 7/10). For 
both species, the δ15N values were 
higher in neonates than in juveniles, 
whereas the δ13C values were similar 
between neonates and juveniles. Fur-
thermore, the δ15N values were lower 
in S. mokarran juveniles (11.8 ± 1.0‰, 
±SE) than in S. lewini juveniles (12.7 ± 
1.6‰). However, the δ13C values were 

similar between S. mokarran (–14.5 ± 1.1‰) and 
S. lewini (–14.5 ± 0.1‰). The small sample size of 
S. lewini juveniles precluded a statistical comparison 
of δ15N and δ13C between the species. The C:N ratios 
were generally lower than 3.5 (Table 1). 

The 95% confidence interval region for female 
S. mokarran juveniles (Fig. 1a) substantially over-
lapped with that for male juveniles; approximately 
62.5% of all female juveniles overlapped with male 
juveniles, and 95.3% of all male juveniles overlapped 
with female juveniles, indicating similar isotopic 
niches between the sexes. How ever, a few individuals 
exhibited extreme values; 1 female juvenile and 
1 neonate of S. mokarran exhibited very high δ15N 
values (>18‰ for untreated muscle tissues). Further-
more, 1 female and 1 male S. mokarran juvenile exhib-
ited very high δ13C values (more than –12‰; Fig. 1a). 
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Fig. 1. Biplot of δ15N and δ13C in untreated muscle tissues of (a) Sphyrna mokar-
ran and (b) S. lewini. All examined specimens were neonates or juveniles.  

No lipid or urea treatment was performed
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S. lewini neonates generally exhibited 
high δ15N values (Fig. 1b). 

Both species exhibited prominent 
ontogenetic changes in the δ15N value 
(Fig. 2a). The δ15N value decreased 
from 14 to 11‰ as the total length in -
creased from 70 to 100 cm. As individ-
uals became juveniles, the δ15N value 
stabilised at approximately 11–12‰; 
the δ15N values of the female juveniles 
mixed with those of the male juveniles. 
The S. lewini neonates also experi-
enced a decrease in δ15N values as they 
grew from 50 to 60 cm in total length, 
with δ15N values of S. lewini juveniles 
indistinguishable from those of the 
S. mokarran juveniles (Fig. 2b). The 
log-linear model revealed no signifi-
cant effect of total length or sex on the 
δ15N values of the S. mokarran juve-
niles (log-linear model, p = 0.053 and 
0.410, respectively; Table 2). 

No between-species, between-sex, 
or between-developmental-stage pat-
tern was observed in the δ13C values 
(Fig. 2b). The effects of total length 
and sex on the δ13C values of S. mokar-
ran juveniles were nonsignificant (p = 
0.103 and 0.286, respectively; Table 2). 

4.  DISCUSSION 

In this study, we elucidated the 
trophic ecology of 2 large hammer-
head shark species, Sphyrna mokarran 
and S. lewini, by measuring δ15N and 
δ13C in their muscle tissues. This study 
improves the understanding of S. 
mokarran, offering insights into the 
effects of sex, total length, and devel-
opmental stage on re source utilisation 
by this species. 

Sex exerted no significant effect on 
the δ15N and δ15C values of the S. mokar -
ran juveniles: no between-sex dif fer -
ence was noted in feeding patterns or 
habitat use. This finding differs from 
the sexual segregation observed by Klimley (1987) in 
S. lewini but is consistent with the finding of Lubitz et 
al. (2023), who observed no significant between-sex 
difference in S. lewini from eastern Australian waters. 
Female S. lewini move offshore at smaller sizes than 

do their male counterparts, forming schools com-
posed primarily of intermediate-sized females (Klim-
ley 1987). Sexual segregation can be also observed on 
the basis of isotopic profiles: male S. lewini from the 
eastern tropical Pacific Ocean exhibit reduced hab-

281

Fig. 2. Effects of total length (LT) on (a) δ15N and (b) δ13C of juvenile and  
neonate hammerhead sharks

Response variable         Covariate             Estimate                    SE                    p 
 
δ15N                                 Total length          5.47 × 10–4        2.77 × 10–4         0.053 
                                                  Sex              –1.49 × 10–2        1.80 ×10–2         0.410 

δ13C                                 Total length          1.25 × 10–3        7.56 ×10–4         0.103 
                                                  Sex                  5.30 × 10–2        4.92 × 10–2         0.286

Table 2. Estimates, standard errors (SE), and corresponding p-values for the 
logarithm of δ15N and δ13C values of Sphyrna mokarran juveniles as the re-
sponse variable and the total length and sex (female as the reference level). 
Neonates were removed from modelling to avoid the interference from the  

maternal effect
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itat use and less varied movement patterns compared 
with females (Estupiñán-Montaño et al. 2021). That 
study suggested that sexual segregation is not a uni-
versal trait in Sphyrna spp. and varies de pending on 
species, developmental stage, and geographic region. 

In our study, the δ15N values for untreated muscle 
tissues of S. mokarran juveniles from the Arabian Gulf 
ranged from 11.6 to 11.8‰ (Table 1), which closely 
align with the mean value for untreated muscle tis-
sues of S. mokarran juveniles from eastern Australia 
(11.4‰) (Lubitz et al. 2023). This consistency sug-
gests similar feeding patterns between S. mokarran 
populations in the Arabian Gulf and eastern Aus-
tralia, despite limited gene flow and movement be -
tween these regions (Brunjes et al. 2024). Dietary 
analysis indicated that S. mokarran juveniles in the 
western Arabian Gulf predominantly consume bony 
fish and shift to consuming eagle rays as they mature 
(Hsu et al. 2022a). S. mokarran juveniles mostly con-
sume the bartail flathead Platycephalus indicus (Lin-
naeus, 1758); in addition, they consume cephalopods, 
crustaceans, and bivalve molluscs (Hsu et al. 2022a). 

A prominent maternal effect was observed in the 
δ15N values of both S. mokarran and S. lewini neo-
nates. This effect results from a shift from yolk to 
 placental feeding before neonates develop effective 
foraging skills (Hussey et al. 2010) and is widely 
observed across Sphyrna spp. (Olin et al. 2018). 
Although muscle tissue exhibits a slower isotopic 
turnover than do liver tissue and blood (Logan & Lut-
cavage 2010, Niella et al. 2021), considerable changes 
occur in both δ15N and δ13C at 30 d after a shift to iso-
tope-depleted diets (Logan & Lutcavage 2010). The 
total length at which the maternal effect was observed 
was approximately 70–100 cm, which corresponded 
to 40–137 d, in S. mokarran (Hsu et al. 2021), and 
60 cm, which corresponded to approximately 50 d, in 
S. lewini (Chen et al. 1990). These durations are suffi-
cient to reflect a shift in energy sources for neonates 
(Hussey et al. 2010, Olin et al. 2018). 

This study has 2 major implications for the conser-
vation of threatened hammerhead shark species. 
First, nearshore shallow waters, where hammerhead 
sharks face the highest risk of extinction (Dulvy et al. 
2021), are key habitats of shark prey serving as carbon 
sources. Our findings of elevated δ13C values in 
some S. mokarran individuals indicate the use of 
these nearshore shallow waters as feeding grounds 
(Roemer et al. 2016). Second, the δ13C values indi-
cated that S. mokarran exhibits a higher degree of 
dependence on the shallow waters of the western Ara-
bian Gulf (maximum depth: approximately 50 m), 
using it as a feeding ground for both neonates and 

juveniles, than does S. lewini. This finding is sup-
ported by the fact that S. mokarran individuals were 
sighted 10 times more often than S. lewini individuals 
were (111 vs. 11 times, respectively) during 135 visits 
to the main fishing landing site in the western Arabian 
Gulf over a 4 yr period (Hsu et al. 2022b). 
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