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1.  INTRODUCTION 

Generating data on the spatial distribution and 
population trends of marine species can be challeng-
ing, yet it is necessary to understand habitat use 
(Houstin et al. 2022), identify potential areas of over-
lap with human activities (Awbery et al. 2022), and 
inform conservation and management efforts (Bovery 
& Wyneken 2015). Given the logistical challenges 
associated with observing marine animals offshore, 

indirect approaches like satellite tracking (Godley et 
al. 2008), oceanographic features (i.e. highly produc-
tive areas as fronts; Scales et al. 2014), and bycatch 
rates (Lewison et al. 2014) are often used as proxies 
for abundance and distribution. Nevertheless, direct 
observation, typically via boat or aircraft surveys, rep-
resents the most robust approach to obtain such data 
(Williams & Thomas 2007, Gannier & Epinat 2008, 
Lauriano et al. 2011, Panigada et al. 2017). Aerial sur-
veys by aircraft or helicopters are efficient, especially 
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ABSTRACT: Knowledge of the distribution and density of marine species is key to understanding 
habitat use and interactions with human activities. Yet such information for sea turtles remains 
scarce, especially at foraging areas, where low turtle density represents an additional challenge in 
comparison to turtle aggregations at coastal breeding areas. Aerial surveys with aircraft are an effi-
cient method for collecting these data over broad scales, while more novel unoccupied aerial 
vehicles (UAVs) are better suited for finer-scale data collection. However, their use is less devel-
oped, especially in offshore areas. Here we explored, for the first time in the Mediterranean, the 
potential of UAV surveys to estimate turtle density (surface and total) at foraging areas and its tem-
poral trend. Between 2017 and 2023, we conducted 427 flights in the Pelagian Islands Archipelago 
(PIA), Italy, a regionally important foraging area of the loggerhead sea turtle Caretta caretta. To 
convert from surface to total density, we used data from multisensor biologgers deployed on 22 tur-
tles to calculate the proportion of time turtles are visible from aerial surveys (availability time pro-
portion, ATP). Results show that the mean surface turtle density in the PIA (0.336–0.477 turtles 
km–2) is among the highest reported globally for a loggerhead turtle foraging area. Such densities 
make it possible to assess population trends through periodic UAV surveys, which are less expen-
sive than aircraft surveys and which can minimize the typical biases of aerial surveys (distance sam-
pling, perception, and misidentification). A standardized methodology is needed for meaningful 
comparisons, including ATP at the visible depth layer vs. surface.  
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in remote areas, and have been widely used to study 
marine megafauna such as dolphins (Slooten et al. 
2004, Durden et al. 2017), manatees (Langtimm et al. 
2011, Alves et al. 2016), dugongs (Holley et al. 2006), 
sharks (Rowat et al. 2009, Westgate et al. 2014), seals 
(Fuirst et al. 2023), seabirds (Certain & Bretagnolle 
2008), porpoises (Hammond et al. 2002, Gilles et al. 
2009), whales (Andriolo et al. 2006), and sea turtles 
(Gómez de Segura et al. 2006, Fuentes et al. 2015). 
However, there is an inherent bias due to the failure 
to count animals that are present but not visible at the 
surface (termed availability bias; Marsh & Sinclair 
1989a). Marine megafauna sightings are usually 
largely affected by this error, which can be influenced 
by environmental conditions (e.g. water turbidity), 
survey type, and animal diving patterns (Marsh & Sin-
clair 1989a,b, Pollock et al. 2006). Estimating total 
density (throughout the entire water column) from 
observed (surface) density therefore requires a cor-
rection factor that can ac count for the proportion of 
time that animals spend at visible depths (i.e. detec-
tion layer; e.g. Pollock et al. 2006, Fuentes et al. 2015). 

Being able to fly at high altitude and speed over 
largely spaced (e.g. 10–15 km spacing; Pierantonio et 
al. 2023) and wide transect strips (e.g. up to 400 m; 
DiMatteo et al. 2022), aerial surveys by aircraft or 
helicopters are generally used for large areas and are 
less suited to fine-scale surveys (10s of km wide or 
less), but they can still sometimes be used for this pur-
pose. However, to obtain an adequate sample size in 
areas where animals occur at low densities, multiple 
surveys over the same transects would be needed, 
which is logistically challenging for aerial surveys by 
these occupied vehicles. They typically require sev-
eral operators, specialized crew (pilots), airfield avail-
ability, and expensive fuel, causing aerial crewed sur-
veys to be costly (i.e. >1000 USD per survey hour; 
Colefax et al. 2018), making multiple surveys unlikely 
for intra- or inter-annual monitoring. 

Compared to the limitations associated with air-
craft/helicopter surveys, unoccupied aerial vehicles 
(UAVs) have several advantages, such as being logis -
tically simpler, and having higher operator safety, 
 repeatability, and lower operational costs (Verfuss et 
al. 2019). UAVs can increase data accuracy and qual-
ity through their automated features to follow pre-
 designed transects, collect videos and images at high 
(frame) rates and resolution, low altitude and perpen-
dicular perspective, potentially viewable countless 
times (Rees et al. 2018, Schofield et al. 2019, Yaney-
Keller et al. 2021). In addition, with multiple surveys 
on closely spaced transects conducted on the same 
small area (a few km wide), UAVs can provide a high 

number of sightings, making it possible to provide es-
timates of surface density at a fine scale (i.e. with high 
spatial resolution within a small area) as well as spatial 
or temporal comparisons. In particular, UAV surveys 
would make it possible to investigate temporal trends 
(intra- and inter-annual), in contrast to aircraft-based 
surveys, where repeated surveys (if any) are carried 
out after several years due to the aforementioned lo-
gistical and financial constraints. While coarse-scale 
density estimates (such as those obtained by aircraft-
based surveys) might not accurately reflect the con-
ditions throughout the entire area considered, fine-
scale estimates (such as those obtained by UAV-based 
surveys) might not capture the general patterns and 
optimal habitats for the studied animals. Therefore, in-
tegrating data derived from diverse spatial scales may 
provide a more comprehensive understanding of the 
status of animal populations. However, while coarse 
surveys by aircraft have been widely used so far (see 
above), fine-scale aerial surveys by UAVs are relatively 
recent (Rees et al. 2018). 

UAVs also have a lower environmental footprint 
than aircraft and boats, cause minimal or no disturb-
ance to marine megafauna (Bevan et al. 2015, 2018, 
Christiansen et al. 2016), are allowed to fly at low alti-
tude for better visibility, and have greater freedom of 
movement during flight (e.g. sudden course changes 
to approach sighted animals). Moreover, the vertical 
view removes the bias due to reduced detection as the 
distance of the subject from the observer increases 
(distance sampling bias), typical of aircraft-based sur-
veys (with the exception of aircraft equipped with 
glass bottoms/floors), and reviewing videos/photos 
multiple times minimizes misclassification (false posi-
tives; Aniceto et al. 2018) and perception (false neg-
atives) biases (Hodgson et al. 2013, 2018). Like crewed 
aircraft, UAVs can also be equipped with specific in-
struments such as RGB cameras with variable resolu-
tions and near-infrared and infrared cameras, which 
can detect animals in poor visibility conditions (e.g. 
during night, among vegetation; Gooday et al. 2018, 
Whitworth et al. 2022, Román et al. 2023). Drawbacks 
are represented by the limited area covered by UAVs 
(due to battery limits and airspace regulations), the 
need for optimal weather conditions (e.g. less resis-
tance to gusts and strong winds than aircraft), and the 
need for time-consuming post-processing of videos 
(Colefax et al. 2018). 

Most of the current information on sea turtle distri-
bution is limited to fractions of each population or 
derived from data opportunistically collected and 
potentially biased. Typically, sea turtles are easier to 
observe at breeding or nesting sites (Robinson et al. 
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2023), either as counts of egg clutches laid by adult 
females at nesting beaches (the most common index 
of sea turtle population abundance and distribution) 
or as breeding adults aggregating at nearby marine 
areas. Not surprisingly, UAVs have been used for a 
variety of sea turtle studies at breeding sites (e.g. 
Schofield et al. 2017, Yaney-Keller et al. 2021, Sellés-
Ríos et al. 2022, Staines et al. 2022) or for stranding 
events at beaches (Escobar-Flores & Sandoval 2021). 
Unfortunately, adults only constitute a fraction of the 
population (e.g. Casale & Heppell 2016), while juve-
niles, representing the bulk of the population, can 
only be found in foraging areas at significantly lower 
densities. In these areas, sea turtle distribution or 
density was estimated by UAVs only in a few cases 
(Robinson 2020, Odzer et al. 2022), while offshore 
areas were reached with a maximum of 3 km from the 
coast (Sykora-Bodie et al. 2017, Gray et al. 2019). Lim-
itations for this approach may include the distance 
from the coast, the need to launch UAVs from vessels, 
and the generally lower turtle density expected to be 
lower at foraging areas than at breeding sites, which 
are frequented by a higher number of individuals dur-
ing the mating season (Dickson et al. 2021, 2022). 

In contrast to the shallow waters generally found at 
breeding areas, foraging areas can be much deeper. 
In such conditions, turtles may only be visually 
spotted when they are near the surface. Hence, the 
counts of individuals observed through aerial surveys 
in offshore deep waters typically overlook those 
below visible depths. The associated availability bias 
arising from the missed sighted turtles and affecting 
the total density estimates is corrected by a correction 
factor usually provided by other studies using surface 
or depth sensors. However, data for estimating cor-
rection factors are usually limited to some areas, and 
their use assumes that the proportion of time spent at 
surface is spatially and temporally uniform, which is 
not the case (Thomson et al. 2012, Hochscheid 2014). 
Despite the necessity of applying appropriate correc-
tion factors to ensure the accuracy and comparability 
of densities derived from aerial surveys over time and 
across spatial areas, a standardized methodology that 
incorporates multi-layer correction is missing. 

In the Mediterranean Sea, most information about 
sea turtle density and distribution at sea has been de-
rived from satellite tracking (Stokes et al. 2015, Levy et 
al. 2017), capture-mark-recapture methods (Casale et 
al. 2007b, Baldi et al. 2023), and bycatch (Casale 2011, 
Casale et al. 2015) or stranding records (Tomás et al. 
2008, Casale et al. 2010, Türkozan et al. 2013). Infor-
mation from aerial surveys is limited to areas in the 
western and central Mediterranean Sea (Gómez de 

 Segura et al. 2003, 2006, Lauriano et al. 2011). Two 
studies have used aerial surveys to estimate turtle den-
sity at coarse scale (at basin and sub-basin levels; Di-
Matteo et al. 2022, Pierantonio et al. 2023, respec-
tively). However, fine-scale in-water sea turtle 
densities and trends are lacking, especially for forag-
ing areas where the generally expected lower density 
and logistical challenges have discouraged the use of 
UAVs so far. 

The Tunisian continental shelf is one of the main 
neritic foraging areas for Mediterranean loggerhead 
turtles Caretta caretta. Turtles frequenting this area 
exhibit a wide size range (18.2–87 cm curved cara-
pace length [CCL]; Casale et al. 2007a, 2016), oppor-
tunistically feeding on both epipelagic and benthic 
prey (Casale et al. 2008). Satellite tracking and gen -
etic analyses have revealed strong connectivity with 
several rookeries in Greece, Cyprus, Italy, Turkey, 
and Libya (reviewed in Casale et al. 2018, Cerritelli 
et al. 2022). High levels of turtle bycatch also occur in 
this area (Casale et al. 2007a, Echwikhi et al. 2010, 
2012, Cambiè et al. 2020). 

The Pelagian Islands Archipelago (PIA; Italy, Fig. 1), 
located at the northeast edge of the Tunisian platform, 
consists of 3 islands: 2 on the continental shelf (Lam-
pedusa and Lampione) and 1 in oceanic waters (Li-
nosa). Offshore areas located west of Lampione and 
south of Lampedusa have been identified as a conser-
vation hotspot due to high densities of sea turtles 
 (Casale et al. 2013, 2020). In the PIA, there are 4 
Natura 2000 sites (a European network of protected 
areas covering valuable and threatened species and 
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Fig. 1. Offshore (Lampedusa Island) and nearshore (Linosa 
Island) surveyed areas (red squares; indicated by red arrows) 
in the Pelagian Islands Archipelago (central Mediterranean 
Sea; blue square). Thin black line: 200 m bathymetry; light 
blue areas: ITA040013 Natura 2000 sites; dark blue areas:  

ITA040014 Natura 2000 sites
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habitats) (ITA040001, ITA040002, ITA040013, ITA0400
14), and 2 of them (ITA040014 and especially the 
larger ITA040013) extend to offshore areas surround-
ing the islands, emphasizing the biological im -
portance of this area and the adjacent waters. 

The present study used UAVs to quantify the den-
sity and distribution of sea turtles in the PIA. Our spe-
cific objectives were to (1) estimate the surface den-
sity of loggerhead turtles in the PIA, (2) calculate 
correction factors to convert surface density into total 
density in the PIA, (3) initiate monitoring inter-
annual changes in turtle density, and (4) validate the 
use of UAVs for assessing fine-scale spatio-temporal 
density variation of sea turtles at foraging areas. 

2.  MATERIALS AND METHODS 

2.1.  Study site 

The PIA study area encompasses both neritic and 
oceanic regions. Although Lampedusa and Linosa 
islands are relatively close to each other (around 40 km 
apart), Lampedusa is part of the African continental 
plate (Tunisian shelf) and is surrounded by gently 
sloping seafloors that do not exceed 200 m in depth. 
In contrast, Linosa has a volcanic origin, and its sea-
floor plunges rapidly to depths of up to 1000 m. 

2.2.  Aerial surveys 

UAV surveys were conducted in the PIA using a DJI 
Phantom 4 PRO (DJI, Shenzhen) flying at an altitude 
of 74 m, at a speed of 40 km h–1, and recording videos 
with a 90° camera angle (nadir position) in 4K and 
60 fps resolution. The flight altitude was empirically 
determined to achieve a desired swath width of 100 m 
at the sea surface. Surveys were conducted only when 
the Beaufort sea state (BSS) was <3, with wave height 
<0.5 m and wind speed <10 km h–1. UAVs flew auton-
omously along transects designed and transmitted 
prior to each flight by the LITCHI app (https://flylit
chi.com/, VC Technology). The flight operations 
were performed in visual line of sight (VLOS) and in 
compliance with flight regulations. 

Two survey types (offshore and nearshore) were 
used to maximize the area covered during each flight 
and to address both the logistic issues related to the 
marine offshore environment and the coastal mor-
phology of the nearshore areas. One survey type com-
prised offshore aerial surveys that were conducted 
in 2 arbitrarily chosen subareas, located at 5 km 

(LMP5, take-off/landing central point: 35°27’ 26” N, 
12°34’ 8” E) and 10 km (LMP10, take-off/landing 
 central point: 35°25’ 15” N, 12°32’ 17” E) south of 
Lampedusa Island in 2017 and 2018 (Jul–Oct 2017; 
Jun–Sep 2018). In both areas, we used a squared (1 × 
1 km) concentric flight path 10.6 km long, covering a 
1 km2 area (Fig. S1 in the Supplement at www.int-res.
com/articles/suppl/n054p395_supp.pdf). Such a tran-
sect design minimized UAV distance from the pilot 
and facilitated fast UAV retrieval in the case of any 
problems or when battery level was low. UAVs took off 
and landed on a 5 m long motorboat, kept with the en-
gine off during drone flight phase. In the same areas, a 
turtle-shaped decoy (Fuentes et al. 2015) was sub-
merged 9 times at depths of 1–4 m and BSS 0–2 to as-
sess the maximum depth of detection with the same 
flight settings as above. The other survey type com-
prised nearshore aerial surveys that were conducted in 
four 1 km2 coastal areas of Linosa Island (take-off/
landing points: 35°51’ 21” N, 12°52’ 6” E; 35°51’ 22” N, 
12°52’ 11” E; 35°51’ 23” N, 12°52’ 16” E; 35°51’ 22” N, 
12°51’ 35” E) between 2020 and 2023 (Aug–Nov 2020; 
May–Sep 2021; Jul–Oct 2022; Jul 2023). UAVs took 
off and landed on the coast. The same transect design 
(Fig. S2) was used for all areas, consisting of 11 strip 
lines arranged in a flag shape and covering an area of 
1 km2 over a total path length of 10.2 km. 

For both offshore and nearshore surveys, only 1 
area per day was surveyed with multiple consecutive 
flights (up to 10) over the same transect. Each flight 
constituted a single survey, providing 1 turtle density. 
Multiple flights over the same transects allowed us to 
obtain an adequate number of sightings to calculate 
an average density (representing the response vari-
able) by avoiding potentially confounding factors 
such as the specific area. Since the surveyed area was 
1 km2, the resulting density was equivalent to the 
count, and the response variable was treated as a 
count for convenience. Multiple observations of the 
same individual across different flights did not affect 
the density estimate, which is an average of densities 
from each flight. 

2.3.  Surface turtle density 

All turtle sightings were assumed to be loggerhead 
turtles due to the rarity of other species in the study 
area (Casale et al. 2018) and the high flight altitude 
complicating visual discrimination between species. 
Videos were reviewed on a 4K screen by different in-
dependent observers with the same video analysis ex-
perience. Methods for videos from Lampedusa and 
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Linosa differed slightly as follows. Two and 3 ob -
servers reviewed the Lampedusa and Linosa videos, 
respectively. To minimize perception bias (false neg-
atives) in Lampedusa videos, a first observer watched 
all videos, labelling all turtles as C (certain; Fig. S3a) 
or U (uncertain; Fig. S3b). This step was repeated by 
the same observer, without checking data from pre-
vious views, until the total number of sightings (C+U) 
did not increase anymore (a stage reached with 3 
views). Then, to minimize misiden tification bias (false 
positives), a second observer watched only the sec-
tions of the videos including C and U sightings with-
out knowing the categories assigned by the previous 
observer. A final classification in 3 categories N/C/U 
was achieved by assigning N (not a turtle) if the sight-
ing was labelled N by the second observer, U if it was 
labelled U by at least 1 observer, and C if it was la-
belled C by both observers. To minimize perception 
bias (false negatives) in Linosa videos, 2 observers in-
dependently watched all videos just 1 time, labelling 
sightings as C or U. Then, to minimize misidentifica-
tion bias (false positives), a third observer selectively 
watched and assigned all the sightings reported by 
previous observers to a final category (N/C/U). Two 
count values were considered as the minimum and 
maximum number of turtles observed: C and C+U. 

A drawback of the above transects is that the same 
turtle can be counted again if it moves within the sur-
veyed area fast enough to reach another transect line. 
To address this potential problem, a double counting 
correction (DCC) was performed as follows. For each 
sighting, the GPS position was derived by time, UAV 
speed, and flight path coordinates. Then 2 sightings in 
the same flight were considered as possible sightings 
of the same turtle if the hypothetical swimming speed 
(hss) needed to move between the 2 sighting points 
was lower than the theoretical maximum speed (smax 
= 3.63 km h–1; maximum speed observed in a group of 
10 turtles tracked in the same area; Casale et al. 
2012a). This comparison was performed for all pairwise 
combinations of turtles present in the same flight. Pos-
sible duplicate sightings (i.e. of the same turtle) were 
removed, leading to 2 additional corrected counts: 
corrected C+U (Cc+Uc) and corrected C (Cc). Mean 
surface density and 95% CI were estimated by the 
bootstrap method (no. of repetitions = 10 000; Puth et 
al. 2015) for each count (C, C+U, Cc, Cc+Uc). For Li-
nosa, where data over 4 years were available, the same 
variables were estimated for each year to investigate 
interannual differences. The consistency over time 
(years) of the proportion of possible duplicate sight-
ings in Linosa was investigated through a chi-squared 
test using the chisq.test R function. 

To assess the possible effect of BSS and sun glare on 
the detection capacity of turtles through video analy-
sis, a generalized linear mixed model (GLMM; 
glmmTMB R package; Brooks et al. 2017; binomial 
distribution) in R (R Core Team 2022; v. 4.1.3) was run 
on offshore data (Lampedusa; where environmental 
data were recorded) with the formula Y ~ BSS + SUN 
+ (1|date: flight) + (1|date), where Y is the sighting 
category (being C as 1 and U as 0), SUN is the propor-
tion of screen affected by sun glare in each sighting as 
a 3 level factor (0, 1–25%, 25–50%, converted to 0, 1, 
and 2, respectively), and BSS as a numeric variable 
with 3 values (0, 1, 2; see Hodgson et al. 2013). Flight 
and date were included as random effects, with flight 
nested within date. 

2.4.  Interannual changes 

Annual differences in surface density were investi-
gated in Linosa (where data from multiple years were 
available) for both C+U and C values, assuming no 
interannual difference in DCC (as supported by 
results) and therefore no need for DCC (and Cc+Uc 
and Cc) for interannual comparisons. A GLMM (R 
package glmmTMB; Brooks et al. 2017) with a Pois-
son distribution (log linked) was run in the form: 
counts ~ year + (1|month: date), where counts is the 
number of sightings, year is the year as a factor, and 
date nested into month (month as factor) are random 
factors to account for possible day and seasonal 
effects. A type II Wald test was performed using the 
Anova function (‘car’ package; Fox & Weisberg 2018) 
to assess the effect of the year factor to counts. 
Finally, the possible occurrence of temporal (annual) 
trends was evaluated through a GLMM model like to 
the one above but with year as a numeric variable. 

2.5.  Total turtle density 

Total turtle density was only estimated at Lampe-
dusa offshore as this was the only site where we were 
also able to calculate the correction factor, i.e. the 
proportion of time spent by the turtles in the detec-
tion depth layer (availability time proportion, ATP). 
To calculate ATP, we used data from 4 different 
sources. Three ATP values were estimated from data 
obtained through a prototype biologger consisting of 
a camera, a depth sensor, and a VHF and ARGOS-
GPS transmitter. This biologger was deployed on 22 
loggerhead sea turtles (CCL: 53.1–75.5 cm, mean = 
65.1 cm) during July 2019, October 2021, and June–
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September 2022. A wood support was glued with 
epoxy resin on the second central scute of carapace 
and the biologger was attached to it through rubber 
bands joined by galvanic time releases (GTRs), in a 
position that placed the turtle’s head as visible in the 
camera frame. After 3–12 h (depending on the GTR 
model), the biologger detached and floated at sur-
face. Using the VHF and ARGOS-GPS transmitters, 
the device was located and recovered using a motor-
boat. Three ATP values were obtained from the bio-
logger data: (1) ATP based on video observations 
(camera outside water; no. of turtles = 21) (Video 
ATP); (2) ATP based on the pressure sensor, with a 
depth of 0 m reflecting only the surface (no. of turtles 
= 19) (Depth0 ATP); and (3) a depth of 0–2 m reflect-
ing the layer where turtles are visible from the UAV 
(no. of turtles = 19) (Depth2 ATP). A fourth ATP value 
(here referred to as SWS ATP) was obtained from 
selected satellite tracking data of a group of 11 turtles 
(Casale et al. 2012b, 2013) while they were within a 
selected area of the Tunisian continental shelf 
(<200 m bathymetry) southwest PIA and in the period 
June–October (same as the UAV period) (Fig. S4). 
SWS ATP was calculated from data obtained by the 
salt water switch (SWS), which detects when the tag is 
in or out of water. Tags on 9 turtles provided propor-
tion of time spent underwater (TUW). The other 2 
tags provided the mean dive duration (MDD) and the 
dive number (DN) that occurred within a time interval 
(Ti; 6 h), and TUW was calculated as (MDD*DN)/Ti. 
Only data relative to daylight hour slots (06:00–
18:00 h CET) were considered. TUW was converted to 
ATP using TUW = 1 – ATP. A possible spatial effect 
on ATP was investigated by equally dividing the 
entire area of tag selection into 4 subareas (bottom-
left, BL; bottom-right, BR; upper-left, UL; upper-right, 
UR) and running a GLMM (with beta distribution; 
package glmmTMB; Brooks et al. 2017) with the for-
mula: ATP ~ Subarea + (1|ID), where ID is the individ-
ual  turtle (random factor). 

Mean ATP and 95% CI were estimated by a basic 
bootstrap method (n = 1000), using the ‘boot’ pack-
age (Davison & Hinkley 1997) in R (R Core Team 
2022). To assess the effect of the 4 ATP sources above 
on ATP estimates, a Kruskal-Wallis test (ATP ~ 
source) was performed, where ATP is the ATP value 
obtained from each turtle. 

Mean total density and 95% CI were estimated by 
using mean ATP as conversion factor: Dt = Ds/ATP, 
where Dt is the total density and Ds is the surface den-
sity estimated for Lampedusa offshore areas. Dt was 
calculated for the 4 counts (C+U; Cc+Uc; C; Cc) and 
1 ATP type (Depth2). 

2.6.  Power analysis 

To evaluate the feasibility of detecting spatio-
 temporal differences by UAV surveys, the sample size 
(number of surveys) needed to detect a hypothetical 
spatial or annual difference of 10%, 20%, and 30% 
from an observed mean surface density was estimated 
by conducting a power analysis through a simulation 
approach. First, for each of the 4 counts (C+U; 
Cc+Uc; C; Cc) of the offshore area and the 2 counts 
(C+U and C) of the nearshore area, the mean number 
of counts was calculated as well as a hypothetical 
mean increased by 10, 20 and 30%. Second, assuming 
a Poisson distribution, for each of the above 6 count 
types, 2 groups of n surveys were simulated through 
the rpois function, one with observed lambda and the 
other with the hypothetical lambda. Third, a GLM with 
Poisson distribution was run in the form count ~ G, 
where G is the group (2 groups: with observed and 
with hypothetical lambda) and tested with the anova 
function. This step was repeated 1000 times and the 
proportion of cases with p < 0.05 gave the power level. 
The second and third steps were repeated with in-
creasing values of n (starting from 100, with steps of 1) 
until the resulting power was at least 80%. 

3.  RESULTS 

We conducted a total of 128 flights (Table S1) in off-
shore Lampedusa (2017–2018) and 399 in nearshore 
Linosa (2020–2023) areas (Table S1). From the offshore 
surveys, we recorded 61 turtle sightings (45 C and 
16 U), while in the nearshore area there were 197 turtle 
sightings (65 C and 132 U) (Table S1). The maximum 
detection depth in the offshore area was 2 m (Table S2). 
BSS and sun glare did not show any significant effects 
on the sighting category (C/U) (GLMM; n = 61). 

3.1.  Surface turtle density 

Mean surface density in the offshore area in Lampe-
dusa ranged from 0.336 (C) to 0.477 (C+U) turtles 
km–2 (Table S3, Fig. 2). The mean proportion of 
potential duplicate sightings was –6.5% and –4.4% 
for C+U and C, respectively. Mean surface density in 
the nearshore area in Linosa ranged from 0.158 (Cc) 
to 0.504 (C+U) turtles km–2 (Table S3; annual means 
in Table 1). The mean proportion of potential dupli-
cate sightings was –21.4 and –5.9% of C+U and C, 
respectively. This proportion was not significantly 
different among years for both C+U and C counts 
(Pearson chi-squared test; n = 268; Table S4). 
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3.2.  Interannual changes in the nearshore area 
(Linosa) 

Both C+U and C counts did not significantly differ 
among years (GLMM and Wald chi-squared test; χ2 = 
7.081, df = 3, p = 0.069, n = 399 for C+U; and χ2 = 
6.7521, df = 3, p = 0.080, n = 399 for C). No signifi-
cant temporal trend of C+U counts was detected, 
while C counts showed a negative relationship with 
years that was close to significance (GLMM; est = 
–0.468; p = 0.052; n = 399). 

3.3.  Total turtle density in the offshore area 
(Lampedusa) 

The 3 ATP estimations obtained from biologgers 
(Video; Depth0; Depth2) were derived from data from 
22 turtles. The ATP type obtained from satellite tags 
(SWS) was estimated from 11 turtles, and no signifi-
cant effects of subarea on this ATP were detected (GLMM; BL: reference category; BR: p = 0.993; UL: 

p = 0.193; UR: p = 0.784). Mean and 95% CI for the 4 
ATP types (Video; Depth0; Depth2; SWS) are pro-
vided in Table S5. ATP estimated from different 
sources were significantly different (Kruskal-Wallis 
χ2 = 57.741, df = 3, p < 0.001; n = 606, Fig. 3). Specifi-
cally, video ATP significantly differed from all the 
other ATP types (Dunn test; p < 0.01; n = 606). SWS 
ATP was significantly different from all the other ATP 
types (Dunn test; p < 0.01; n = 606), except Depth0 
ATP. The most appropriate type of conversion factor 
in this study was assumed to be Depth2 ATP, because 
in the surveyed area, UAVs can detect a turtle 2 m 
deep (see above). This type of ATP represented the 
highest ATP mean value among the 4 ATP estimates 
and led to the lowest total density estimate compared 
to the other ATPs. Mean total density estimates 
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Fig. 2. Surface turtle density at (A) Lampedusa (years 2017–2018) and (B) Linosa (2020–2023). Red point: mean; vertical bars: 
95% CI; C+U: all certain + uncertain (C+U) sightings; Cc+Uc: C+U corrected for duplicates; C: C sightings; Cc: C corrected  

for duplicates

Dataset                       Year                           Mean (95% CI) 
 
C+U                           2020                      0.851 (0.436–1.213) 
                                    2021                      0.648 (0.451–0.835) 
                                    2022                      0.287 (0.202–0.367) 
                                    2023                      0.308 (0.038–0.500) 

C                                  2020                      0.277 (0.149–0.394) 
                                    2021                      0.253 (0.121–0.363) 
                                    2022                      0.080 (0.032–0.117) 
                                    2023                          0.115 (0–0.231)

Table 1. Annual surface density (bootstrapped mean and 
95% CI, no. of repetitions = 10 000) from 2020 to 2023 mea-
sured as turtles km–2 relative to Linosa flights. Dataset C+U: 
all certain + uncertain (C+U) sightings; dataset C: only  

C sightings

AT
P

0.00

0.25

1.00

0.50

0.75

n = 21

n = 19

Depth2Depth0SWSvideo
Source

n = 547

n = 19

Fig. 3. Distribution of the availability time proportion (ATP) 
values (proportion of time spent in the detection depth layer; 
range: 0–1) for each ATP source. Video: camera; SWS: satel-
lite tag; Depth0: depth sensor considering surface = 0 m; 
Depth2: depth sensor with surface ≥–2 m. Box: lower (Q1) 
and upper (Q3) quartiles; whiskers: values within Q1 or Q3 + 
(1.5 × interquartile range); black dots: outliers; thick black  

line: median. Sample size shown above the boxes
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ranged from 0.621 to 0.882 turtles km–2 depending on 
the count type (C+U, Cc+Uc, C, and Cc) (Table S3). 

3.4.  Power analysis 

The sample size (no. of surveys) needed to detect a 
significant difference of 10, 20 and 30% from the 
observed mean surface density with a power of 80% 
varied from 402 to 4864 depending on the area (off-
shore, nearshore), the difference level, and the count 
type (Table 2). 

4.  DISCUSSION 

We explored, for the first time, the use of UAVs 
for estimating sea turtle density in Mediterranean 
 foraging areas, proposing a detailed correction meth-
odology to address biases affecting density esti-
mates. This UAV application constitutes an alter-
native method that can provide finer-scale spatial and 
po tentially temporal resolution than aircraft-based 
 surveys. 

4.1.  Turtle density in the PIA 

The present study represents the first endeavour to 
estimate surface and total density of loggerhead tur-
tles at a fine scale on the Tunisian shelf and the 
nearby oceanic area. Results support the importance 
of the Tunisian shelf as a neritic foraging area for log-
gerhead turtles in the Mediterranean Sea, as pre-
viously indicated by indirect approaches such as 
bycatch records (Casale et al. 2010, Casale 2011), 
genetic markers (Garofalo et al. 2013, Karaa et al. 
2016), and satellite tracking (Casale et al. 2012a, 2013, 
Mingozzi et al. 2016). Moreover, the area is also 

frequented by small juveniles (min. CCL reported by 
bycatch data in the PIA area: 18.2 cm; Casale et al. 
2016) that may not be detected by aerial surveys 
(Barco et al. 2018); therefore, the real turtle density 
may be even higher. 

High turtle density in the shallow waters around 
Linosa Island may be due to a ‘sea mount effect’ (Fiori 
et al. 2016, Vassallo et al. 2018), whereby marine me -
gafauna aggregate close to these geological struc-
tures due to their high productivity. However, citizen 
science reports (Casale et al. 2020) revealed a het-
erogeneous surface turtle density in the PIA, with 
higher values between Lampedusa and Linosa islands 
than around each island, in agreement with aerial sur-
veys that reported higher surface turtle density in 
oceanic waters (Pierantonio et al. 2023). Expanding 
UAV surveys in the oceanic zone of the PIA would 
enhance our understanding of turtle distribution over 
a broader area and allow us to investigate the 
influence of island proximity and bathymetry on sea 
turtle aggregation. 

The present results (0.158–0.504 turtles km–2) are 
also similar to the latest estimates of loggerhead den-
sity provided for the wide area (109 709 km2) of the 
Sicily Channel (0.665 turtles km–2; Pierantonio et al. 
2023), which is the highest surface turtle density in 
the whole central and northwestern Mediterranean 
Sea. The turtle density values observed in this study 
in the PIA area are similar to or higher than the values 
reported from the oceanic (both surface and total 
density; Gómez de Segura et al. 2003, 2006) or neritic 
(surface density; Carreras et al. 2004, Cardona et al. 
2005) foraging areas in the western Mediterranean, 
respectively. 

Considering that the total density from the above-
mentioned area of the western Mediterranean was 
probably overestimated (by a correction factor ob -
tained from SWS ATP that underestimates the time 
spent in visible depth layers; see Section 4.3), the total 
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                                       Dataset                Mean surface          Sample size needed to identify difference between means of: 
                                                                   density (95% CI)                                        10%                         20%                         30% 
 
Offshore area                C+U             0.477 (0.336–0.609)                                     3372                         872                          402 
                                        Cc+Uc           0.445 (0.320–0.563)                                     3577                         930                          427 
                                             C                0.352 (0.242–0.453)                                     4681                        1172                         537 
                                            Cc               0.336 (0.23 4–0.430)                                     4864                        1238                         573 

Nearshore area             C+U             0.504 (0.383–0.609)                                     3115                         860                          381 
                                             C                0.168 (0.113–0.201)                                     9563                        2552                        1138

Table 2. Number of flights needed to detect a spatial or annual difference of 10, 20 and 30% in mean surface density with p < 
0.05 and power = 80%. Estimates provided by iterative power analysis. C+U: all certain + uncertain (C+U) sightings;  

Cc+Uc: C+U corrected for duplicates; C: C sightings; Cc: C corrected for duplicates
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turtle density in the neritic zone of the PIA is probably 
much higher than in those areas of the western Medi-
terranean. Moreover, the latter is also frequented by 
loggerhead turtles of Atlantic origin (Clusa et al. 
2014), while the PIA is an exclusive foraging area for 
the Mediterranean loggerhead population. For these 
reasons, monitoring sea turtle density in this area 
would be valuable for investigating trends in the 
Mediterranean population. 

In general, the loggerhead turtle surface density 
within the Tunisian shelf appears to be one of the 
highest worldwide estimated at foraging areas by aer-
ial surveys, as well as total density, especially when 
comparing estimates derived by ATP based on depth 
layers, like in the Middle Atlantic (Barco et al. 2018) 
and the East Pacific Ocean (Seminoff et al. 2014) 
(Table S6). 

4.2.  Potential value of UAVs for monitoring sea 
turtle density at foraging areas 

Even though turtle density at foraging areas is 
much lower than at breeding areas, results show 
that the turtle density in the study area is high 
enough to allow statistical comparisons among 
areas and years using data collected through UAV 
surveys. In this respect, the multiple-year survey 
campaign carried out in the present study (i.e. 
Linosa surveys) represents the first attempt to use 
UAV-based surveys for detecting inter-annual dif-
ferences at turtle Mediterranean foraging areas. 
Only very strong trends could have been detected 
in such a short study period, and a higher number 
of surveys is needed, as shown by the power analy-
sis. Nevertheless, the present results showed the 
feasibility of long-term fine-scale monitoring at sea 
through UAV surveys. Given the geographical posi-
tion of PIA and the ecological role of the wider area 
for turtles, PIA is a good candidate for establishing 
long-term monitoring programmes both in the 
neritic and oceanic zones for monitoring sea turtle 
population trends. 

Surveying offshore areas with UAVs is challenging 
because it requires taking off and landing on stations 
at sea. For this reason, very few studies worldwide 
have conducted such surveys, other than the present 
one (Yaney-Keller et al. 2021, Odzer et al. 2022). Not-
withstanding, smart planning of the drone flight path 
(e.g. squared concentric) and careful coordination 
of logistical operations (e.g. multiple batteries and 
 precision in motorboat positioning) can make UAV 
surveys in offshore areas feasible. 

4.3.  Availability bias and other  
methodological aspects 

Selecting an appropriate ATP is crucial for deter-
mining total density and abundance. The present 
results complement a previous study (Barco et al. 
2018) in showing the impact of maximum detection 
depth on ATP and consequently on total density 
values. ATP referred to the surface layer (SWS and 
Depth0), commonly used as a conversion factor, may 
be greatly underestimated because turtles can be 
detected by aerial surveys also at deeper layers, re -
sulting in an overestimated total turtle density. For 
instance, Depth0 and SWS ATP values were signifi-
cantly smaller (25–29%, respectively) than Depth 2 
ATP. These 2 surface ATP (SWS and Depth0) are 
affected by slightly different biases: SWS ATP would 
report only periods when the transmitter is well out of 
water — but the turtle may be at surface even if the 
transmitter is totally or partially submerged — while 
Depth0 ATP would report periods spent at depths 
greater than 0 m, due to sensor accuracy (as shown by 
a comparison between videos and depth data in this 
study). 

Since ATP depends on a variety of biological and 
environmental factors, it probably varies geographi-
cally, undermining meaningful comparisons of sur-
face densities from distant areas. For the same rea-
sons, caution is needed when applying a single ATP 
value to surface densities over wide areas (e.g. DiMat-
teo et al. 2022, Pierantonio et al. 2023). Finer-scale 
estimates would be more appropriate. 

The ATP values here observed lay within the range 
of the Mediterranean ATP (0.06–0.59; Hochscheid et 
al. 2007, Revelles et al. 2007, see Table S7). Such a 
great variability may be, at least in part, due to turtle 
size and life stage, diel cycle and behavioural mode 
(Hochscheid 2014, Patel et al. 2015), seasons, and the 
frequented habitat (oceanic vs. neritic; Thomson et al. 
2012), as well as the different depth ranges consid-
ered as ‘surface’. ATP in neritic zones where turtles 
can reach and feed at the sea bottom and in oceanic 
zones where turtles cannot reach the sea bottom are 
probably different; therefore, turtle surface densities 
in different habitats cannot be directly compared. 
Thus, spatial resolution is an important factor to con-
sider, and total densities derived from proper correc-
tions are needed to make meaningful comparisons 
over time and space. 

The need for estimating total turtle abundance can 
be relaxed for trend analyses. If annual ATPs are not 
available — which is likely the case — the same cor-
rection factor (ATP value) is used for the study period, 
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making the value of adding the uncertainty associ-
ated with the abundance estimate (e.g. Benson et al. 
2020) questionable. In such cases, if the availability 
bias is assumed to be constant and area-specific, sur-
face turtle density would be sufficient to monitor tem-
poral trends in the same area, as attempted in the pre-
sent study and others based on aerial (Barco et al. 
2018) or boat surveys (Archibald & James 2016). Aer-
ial surveys in very shallow coastal waters where even 
turtles at the sea bottom are visible (Dickson et al. 
2021) do not need to account for availability bias, at 
least theoretically. However, even in such cases, hab-
itat features such as algae, mangroves, rocks, etc., 
may interfere with turtle observations and lead to mis-
counts (Odzer et al. 2022) and underestimated turtle 
density. 

The present results indicate that environmental 
conditions do not affect the certainty of the detected 
sightings and, as also reported by other studies 
(Marsh & Sinclair 1989b, Gómez de Segura et al. 2006, 
Lauriano et al. 2011, Hodgson et al. 2013), suggest 
that BSS ≤ 2 represents a reasonable threshold to 
conduct safe and reliable UAV surveys at sea. Tran-
sects designed as in the present study bear the prob-
lem of possible double counting, a problem that in -
creases with increasing total densities, making a 
correction necessary. Strip line transects do not have 
this problem, but they may not be feasible with UAVs 
because of coastline conformation or UAV flight reg-
ulations. For instance, the requirement to fly while 
maintaining constant visual contact with the drone 
severely limits the potential application of UAVs, 
which are constantly evolving and achieving ever-
better performance (e.g. capable of several km of 
autonomous flight), especially at remote locations 
and open sea. 

The above considerations, also based on the pre-
sent results, advocate for incorporating multiple cor-
rections to counts obtained from aerial surveys (in 
addition to distance sampling bias needed in aircraft-
based surveys): availability bias (underwater animals 
not available to observation), perception bias (missed 
animals, i.e. false negatives), misidentification bias 
(objects mistaken for animals, i.e. false positives), and 
double counting (of the same animal). However, most 
studies considered only distance sampling bias (if air-
craft-based) and availability bias. Few studies based 
on aerial surveys considered perception bias (Fuentes 
et al. 2015, Sykora-Bodie et al. 2017), misidentifica-
tion bias (e.g. through categories of detection confi-
dence like certain vs. uncertain sightings; Sykora-
Bodie et al. 2017, Stokes et al. 2023), and double 
counting (Barco et al. 2018), with only 1 study, other 

than the present one, correcting density for all the 
biases (Barco et al. 2018). 

In addition to the enhanced accuracy of UAV sur-
veys attributable to automated flight, camera resolu-
tion and angle, and image reviewing, the possibility 
of conducting multiple flights in the same area and 
in short time intervals allows for the estimation of a 
range of potential density values, thereby enhancing 
the reliability of the final estimate. In particular, for 
fast-breathers such as turtles, the number of individ-
uals in the visible range may vary considerably 
among flights. Then, the corrections described in 
this study can improve the precision of the density 
estimate. 

4.4.  Conclusions and recommendations 

UAV surveys can greatly improve our knowledge of 
the fine-scale distribution of turtles and on seasonal 
or interannual trends. Although limited to the north-
ern part of the Tunisian continental shelf, the present 
results confirm the importance of this neritic foraging 
area for Mediterranean loggerhead turtles. In particu-
lar, PIA may represent a suitable station for long-term 
monitoring of the Mediterranean population, and 
other offshore stations in the Tunisian shelf and the 
adjacent oceanic zones are desirable to provide valu-
able indications of the overall turtle abundance and 
distribution in this important neritic foraging area. 
Such stations could also provide insights into possible 
seasonal variability. 

Aerial surveys are subject to several biases, and fail-
ing to correct them through adequate methods may 
provide erroneous density estimates and/or make 
comparisons among different areas impossible, limit-
ing their value for conservation. A standardized meth-
odology is needed to ensure accurate and compa-
rable densities of turtles. Specifically, we recommend 
carefully planning transect design to minimize dou-
ble counting and performing a power analysis to eval-
uate the sample size feasibility. Corrections for per-
ception and misidentification biases are possible with 
UAVs and should be always considered. When cor-
rection for availability bias is sought to estimate total 
turtle density, ATP should be calculated as the pro-
portion of time spent within the detection layer and 
obtained from the same or very close areas. 
 
 
Acknowledgements. We thank all the fishers and the volun-
teers of the Lampedusa Turtle Rescue Center who collabo-
rated with this project. C.A. was supported by the PON ‘Ric-
erca e Innovazione’ 2014-2020 REACT EU programme. 

404



Agabiti et al.: Fine-scale turtle density by UAVs

LITERATURE CITED 
 
Alves MD, Kinas PG, Marmontel M, Borges JCG, Costa AF, 

Schiel N, Araújo ME (2016) First abundance estimate of 
the Antillean manatee (Trichechus manatus manatus) in 
Brazil by aerial survey. J Mar Biol Assoc UK 96: 955– 966  

Andriolo A, Martins CCA, Engel MH, Pizzorno JL and others 
(2006) The first aerial survey to estimate abundance of 
humpback whales (Megaptera novaeangliae) in the 
breeding ground off Brazil (Breeding Stock A). J Ceta-
cean Res Manage 8: 307– 311 

Aniceto AS, Biuw M, Lindstrøm U, Solbø SA, Broms F, Car-
roll J (2018) Monitoring marine mammals using un -
manned aerial vehicles:  quantifying detection certainty. 
Ecosphere 9: e02122  

Archibald DW, James MC (2016) Evaluating inter-annual 
relative abundance of leatherback sea turtles in Atlantic 
Canada. Mar Ecol Prog Ser 547: 233– 246  

Awbery T, Akkaya A, Lyne P, Rudd L and others (2022) Spa-
tial distribution and encounter rates of delphinids and 
deep diving cetaceans in the Eastern Mediterranean Sea 
of Turkey and the extent of overlap with areas of dense 
marine traffic. Front Mar Sci 9: 860242  

Baldi G, Furii G, Del Vecchio M, Salvemini P and others 
(2023) Behavioural plasticity in the use of a neritic forag-
ing area by loggerhead sea turtles:  insights from 37 years 
of capture– mark– recapture in the Adriatic Sea (Medi-
terranean Sea). ICES J Mar Sci 80: 210– 217  

Barco SG, Burt ML, DiGiovanni RA, Swingle WM, Williard 
AS (2018) Loggerhead turtle Caretta caretta density and 
abundance in Chesapeake Bay and the temperate ocean 
waters of the southern portion of the Mid-Atlantic Bight. 
Endang Species Res 37: 269– 287  

Benson SR, Forney KA, Moore JE, LaCasella EL, Harvey JT, 
Carretta JV (2020) A long-term decline in the abundance 
of endangered leatherback turtles, Dermochelys coria-
cea, at a foraging ground in the California Current Eco-
system. Glob Ecol Conserv 24: e01371 

Bevan E, Wibbels T, Najera BMZ, Martinez MAC and others 
(2015) Unmanned aerial vehicles (UAVs) for monitoring 
sea turtles in near-shore waters. Mar Turtle Newsl 145: 
19– 22 

Bevan E, Whiting S, Tucker T, Guinea M, Raith A, Douglas R 
(2018) Measuring behavioral responses of sea turtles, 
saltwater crocodiles, and crested terns to drone disturb-
ance to define ethical operating thresholds. PLOS ONE 
13: e0194460  

Bovery CM, Wyneken J (2015) Seasonal variation in sea tur-
tle density and abundance in the southeast Florida Cur-
rent and surrounding waters. PLOS ONE 10: e0145980 

Brooks ME, Kristensen K, van Benthem KJ, Magnusson A 
and others (2017) glmmTMB balances speed and flexibil-
ity among packages for zero-inflated generalized linear 
mixed modeling. R J 9: 378– 400  

Cambiè G, Jribi I, Cambera I, Vagnoli G, Freggi D, Casale P 
(2020) Intra-gear variation in sea turtle bycatch:  implica-
tions for fisheries management. Fish Res 221: 105405   

Cardona L, Revelles M, Carreras C, San Félix M, Gazo M, 
Aguilar A (2005) Western Mediterranean immature log-
gerhead turtles:  habitat use in spring and summer 
assessed through satellite tracking and aerial surveys. 
Mar Biol 147: 583– 591  

Carreras C, Cardona L, Aguilar A (2004) Incidental catch of 
the loggerhead turtle Caretta caretta off the Balearic 

Islands (western Mediterranean). Biol Conserv 117: 
321– 329  

Casale P (2011) Sea turtle by-catch in the Mediterranean. 
Fish Fish 12: 299– 316  

Casale P, Heppell SS (2016) How much sea turtle bycatch is too 
much? A stationary age distribution model for simulating 
population abundance and potential biological removal 
in the Mediterranean. Endang Species Res 29: 239– 254  

Casale P, Cattarino L, Freggi D, Rocco M, Argano R (2007a) 
Incidental catch of marine turtles by Italian trawlers and 
longliners in the central Mediterranean. Aquat Conserv 
17: 686– 701  

Casale P, Freggi D, Basso R, Vallini C, Argano R (2007b) A 
model of area fidelity, nomadism, and distribution pat-
terns of loggerhead sea turtles (Caretta caretta) in the 
Mediterranean Sea. Mar Biol 152: 1039– 1049  

Casale P, Abbate G, Freggi D, Conte N, Oliverio M, Argano 
R (2008) Foraging ecology of loggerhead sea turtles 
Caretta caretta in the central Mediterranean Sea:  
evidence for a relaxed life history model. Mar Ecol Prog 
Ser 372: 265– 276  

Casale P, Affronte M, Insacco G, Freggi D and others (2010) 
Sea turtle strandings reveal high anthropogenic mortal-
ity in Italian waters. Aquat Conserv 20: 611– 620  

Casale P, Affronte M, Scaravelli D, Lazar B, Vallini C, Luschi 
P (2012a) Foraging grounds, movement patterns and 
habitat connectivity of juvenile loggerhead turtles (Ca -
retta caretta) tracked from the Adriatic Sea. Mar Biol 159: 
1527– 1535  

Casale P, Broderick AC, Freggi D, Mencacci R, Fuller WJ, 
Godley BJ, Luschi P (2012b) Long-term residence of juve-
nile loggerhead turtles to foraging grounds:  a potential 
conservation hotspot in the Mediterranean. Aquat Con-
serv 22: 144– 154  

Casale P, Freggi D, Cinà A, Rocco M (2013) Spatio-temporal 
distribution and migration of adult male loggerhead sea 
turtles (Caretta caretta) in the Mediterranean Sea:  
further evidence of the importance of neritic habitats off 
North Africa. Mar Biol 160: 703– 718  

Casale P, Freggi D, Furii G, Vallini C and others (2015) 
Annual survival probabilities of juvenile loggerhead sea 
turtles indicate high anthropogenic impact on Mediter-
ranean populations. Aquat Conserv 25: 690– 700  

Casale P, Freggi D, Paduano V, Oliverio M (2016) Biases and 
best approaches for assessing debris ingestion in sea tur-
tles, with a case study in the Mediterranean. Mar Pollut 
Bull 110: 238– 249  

Casale P, Broderick AC, Camiñas JA, Cardona L and others 
(2018) Mediterranean sea turtles:  current knowledge and 
priorities for conservation and research. Endang Species 
Res 36: 229– 267  

Casale P, Ciccocioppo A, Vagnoli G, Rigoli A, Freggi D, 
Tolve L, Luschi P (2020) Citizen science helps assessing 
spatio-temporal distribution of sea turtles in foraging 
areas. Aquat Conserv 30: 123– 130  

Cerritelli G, Casale P, Sozbilen D, Hochscheid S, Luschi P, 
Kaska Y (2022) Multidirectional migrations from a major 
nesting area in Turkey support the widespread distribu-
tion of foraging sites for loggerhead turtles in  the Medi-
terranean. Mar Ecol Prog Ser 683: 169– 177  

Certain G, Bretagnolle V (2008) Monitoring seabirds popula-
tion in marine ecosystem:  the use of strip-transect aerial 
surveys. Remote Sens Environ 112: 3314– 3322  

Christiansen F, Rojano-Doñate L, Madsen PT, Bejder L 

405

https://doi.org/10.1017/S0025315415000855
https://doi.org/10.1002/ecs2.2122
https://doi.org/10.3354/meps11648
https://doi.org/10.3389/fmars.2022.860242
https://doi.org/10.1093/icesjms/fsac227
https://doi.org/10.3354/esr00917
https://doi.org/10.1371/journal.pone.0194460
https://doi.org/10.1371/journal.pone.0145980
https://doi.org/10.32614/RJ-2017-066
https://doi.org/10.1016/j.fishres.2019.105405
https://doi.org/10.1007/s00227-005-1578-9
https://doi.org/10.1016/j.biocon.2003.12.010
https://doi.org/10.1111/j.1467-2979.2010.00394.x
https://doi.org/10.3354/esr00714
https://doi.org/10.3389/fmars.2016.00277
https://doi.org/10.1016/j.rse.2008.01.019
https://doi.org/10.3354/meps13946
https://doi.org/10.1002/aqc.3228
https://doi.org/10.3354/esr00901
https://doi.org/10.1016/j.marpolbul.2016.06.057
https://doi.org/10.1002/aqc.2467
https://doi.org/10.1007/s00227-012-2125-0
https://doi.org/10.1002/aqc.2222
https://doi.org/10.1007/s00227-012-1937-2
https://doi.org/10.1002/aqc.1133
https://doi.org/10.3354/meps07702
https://doi.org/10.1007/s00227-007-0752-7
https://doi.org/10.1002/aqc.841


Endang Species Res 54: 395–408, 2024

(2016) Noise levels of multi-rotor unmanned aerial ve -
hicles with implications for potential underwater impacts 
on marine mammals. Front Mar Sci 3: 277  

Clusa M, Carreras C, Pascual M, Gaughran SJ and others 
(2014) Fine-scale distribution of juvenile Atlantic and 
Mediterranean loggerhead turtles (Caretta caretta) in the 
Mediterranean Sea. Mar Biol 161: 509– 519  

Colefax AP, Butcher PA, Kelaher BP (2018) The potential for 
unmanned aerial vehicles (UAVs) to conduct marine 
fauna surveys in place of manned aircraft. ICES J Mar Sci 
75: 1– 8  

Davison AC, Hinkley DV (1997) Bootstrap methods and their 
applications. Cambridge University Press, Cambridge  

Dickson LC, Katselidis KA, Eizaguirre C, Schofield G (2021) 
Incorporating geographical scale and multiple environ-
mental factors to delineate the breeding distribution of 
sea turtles. Drones (Basel) 5: 142 

Dickson LCD, Negus SRB, Eizaguirre C, Katselidis KA, Scho-
field G (2022) Aerial drone surveys reveal the efficacy of a 
protected area network for marine megafauna and the 
value of sea turtles as umbrella species. Drones 6:291  

DiMatteo A, Cañadas A, Roberts J, Sparks L and others 
(2022) Basin-wide estimates of loggerhead turtle abun-
dance in the Mediterranean Sea derived from line tran-
sect surveys. Front Mar Sci 9: 930412  

Durden WN, Stolen ED, Jablonski TA, Puckett SA, Stolen 
MK (2017) Monitoring seasonal abundance of Indian 
River Lagoon bottlenose dolphins (Tursiops truncatus) 
using aerial surveys. Aquat Mamm 43: 90  

Echwikhi K, Jribi I, Bradai MN, Bouain A (2010) Gillnet fish-
ery– loggerhead turtle interactions in the Gulf of Gabes, 
Tunisia. Herpetol J 20: 25– 30 

Echwikhi K, Jribi I, Bradai MN, Bouain A (2012) Interactions 
of loggerhead turtle with bottom longline fishery in the 
Gulf of Gabès, Tunisia. J Mar Biol Assoc UK 92: 853– 858  

Escobar-Flores JG, Sandoval S (2021) Unmanned aerial 
vehicle (UAV) for sea turtle skeleton detection in the 
Mexican Pacific. Remote Sens Appl Soc Environ 22: 
100501  

Fiori C, Paoli C, Alessi J, Mandich A, Vassallo P (2016) Sea-
mount attractiveness to top predators in the southern 
Tyrrhenian Sea (central Mediterranean). J Mar Biol 
Assoc UK 96: 769– 775 

Fox J, Weisberg S (2018) An R companion to applied re -
gression. Sage, Los Angeles, CA 

Fuentes M, Bell I, Hagihara R, Hamann M and others (2015) 
Improving in-water estimates of marine turtle abundance 
by adjusting aerial survey counts for perception and 
availability biases. J Exp Mar Biol Ecol 471: 77– 83  

Fuirst M, Ferguson SH, Higdon JW, Young BG, Lea EV, 
Koski WR, Yurkowski DJ (2023) A review of aerial survey 
density estimates of bearded seals (Erignathus barbatus) 
in the Canadian Arctic highlights important knowledge 
gaps and research needs. Polar Biol 46: 1251– 1263  

Gannier A, Epinat J (2008) Cuvier’s beaked whale distri-
bution in the Mediterranean Sea:  results from small 
boat surveys 1996– 2007. J Mar Biol Assoc UK 88: 
1245– 1251  

Garofalo L, Mastrogiacomo A, Casale P, Carlini R and others 
(2013) Genetic characterization of central Mediterranean 
stocks of the loggerhead turtle (Caretta caretta) using 
mitochondrial and nuclear markers, and conservation 
implications. Aquat Conserv 23: 868– 884  

Gilles A, Scheidat M, Siebert U (2009) Seasonal distribution 

of harbour porpoises and possible interference of off-
shore wind farms in the German North Sea. Mar Ecol 
Prog Ser 383: 295– 307  

Godley BJ, Blumenthal JM, Broderick AC, Coyne MS, God-
frey MH, Hawkes LA, Witt MJ (2008) Satellite tracking of 
sea turtles:  Where have we been and where do we go 
next? Endang Species Res 4: 3– 22  

Gómez de Segura A, Tomás J, Pedraza SN, Crespo EA, Raga 
JA (2003) Preliminary patterns of distribution and abun-
dance of loggerhead sea turtles, Caretta caretta, around 
Columbretes Islands Marine Reserve, Spanish Mediter-
ranean. Mar Biol 143: 817– 823  

Gómez de Segura A, Tomás J, Pedraza SN, Crespo EA, 
Raga JA (2006) Abundance and distribution of the 
endangered loggerhead turtle in Spanish Mediterran-
ean waters and the conservation implications. Anim 
Conserv 9: 199– 206  

Gooday OJ, Key N, Goldstien S, Zawar-Reza P (2018) An 
assessment of thermal-image acquisition with an 
unmanned aerial vehicle (UAV) for direct counts of coas-
tal marine mammals ashore. J Unmanned Veh Syst 6: 
100– 108  

Gray PC, Fleishman AB, Klein DJ, McKown MW, Bézy VS, 
Lohmann KJ, Johnston DW (2019) A convolutional neu-
ral network for detecting sea turtles in drone imagery. 
Methods Ecol Evol 10: 345– 355  

Hammond PS, Berggren P, Benke H, Borchers DL and others 
(2002) Abundance of harbour porpoise and other ceta-
ceans in the North Sea and adjacent waters. J Appl Ecol 
39: 361– 376  

Hochscheid S (2014) Why we mind sea turtles’ underwater 
business:  a review on the study of diving behavior. J Exp 
Mar Biol Ecol 450: 118– 136  

Hochscheid S, Bentivegna F, Bradai MN, Hays GC (2007) 
Overwintering behaviour in sea turtles:  Dormancy is 
optional. Mar Ecol Prog Ser 340: 287– 298  

Hodgson A, Kelly N, Peel D (2013) Unmanned aerial 
vehicles (UAVs) for surveying marine fauna:  a dugong 
case study. PLOS ONE 8: e79556  

Hodgson JC, Mott R, Baylis SM, Pham TT and others (2018) 
Drones count wildlife more accurately and precisely than 
humans. Methods Ecol Evol 9: 1160– 1167  

Holley DK, Lawler IR, Gales NJ (2006) Summer survey of 
dugong distribution and abundance in Shark Bay reveals 
additional key habitat area. Wildl Res 33: 243– 250  

Houstin A, Zitterbart DP, Heerah K, Eisen O, Planas-Bielsa 
V, Fabry B, Le Bohec C (2022) Juvenile emperor penguin 
range calls for extended conservation measures in the 
Southern Ocean. R Soc Open Sci 9: 211708  

Karaa S, Maffucci F, Jribi I, Bologna MA and others (2016) 
Connectivity and stock composition of loggerhead tur-
tles foraging on the North African continental shelf (Cen-
tral Mediterranean):  implications for conservation and 
management. Mar Ecol 37: 1103– 1115  

Langtimm CA, Dorazio RM, Stith BM, Doyle TJ (2011) New 
aerial survey and hierarchical model to estimate manatee 
abundance. J Wildl Manag 75: 399– 412  

Lauriano G, Panigada S, Casale P, Pierantonio N, Donovan 
GP (2011) Aerial survey abundance estimates of the log-
gerhead sea turtle Caretta caretta in the Pelagos Sanctu-
ary, northwestern Mediterranean Sea. Mar Ecol Prog Ser 
437: 291– 302  

Levy Y, Keren T, Leader N, Weil G, Tchernov D, Rilov G 
(2017) Spatiotemporal hotspots of habitat use by logger-

406

https://doi.org/10.1007/s00227-013-2353-y
https://doi.org/10.1093/icesjms/fsx100
https://doi.org/10.3390/drones5040142
https://doi.org/10.3390/drones6100291
https://doi.org/10.3389/fmars.2022.930412
https://doi.org/10.1578/AM.43.1.2017.90
https://doi.org/10.1017/S0025315411000312
https://doi.org/10.1016/j.rsase.2021.100501
https://doi.org/10.1016/j.jembe.2015.05.003
https://doi.org/10.1007/s00300-023-03200-1
https://doi.org/10.1017/S0025315408000428
https://doi.org/10.1002/aqc.2338
https://doi.org/10.3354/meps08020
https://doi.org/10.3354/esr00060
https://doi.org/10.3354/meps12146
https://doi.org/10.3354/meps09261
https://doi.org/10.1002/jwmg.41
https://doi.org/10.1111/maec.12375
https://doi.org/10.1098/rsos.211708
https://doi.org/10.1071/WR05031
https://doi.org/10.1111/2041-210X.12974
https://doi.org/10.1371/journal.pone.0079556
https://doi.org/10.3354/meps340287
https://doi.org/10.1016/j.jembe.2013.10.016
https://doi.org/10.1046/j.1365-2664.2002.00713.x
https://doi.org/10.1111/2041-210X.13132
https://doi.org/10.1139/juvs-2016-0029
https://doi.org/10.1111/j.1469-1795.2005.00014.x
https://doi.org/10.1007/s00227-003-1125-5


Agabiti et al.: Fine-scale turtle density by UAVs

head (Caretta caretta) and green (Chelonia mydas) sea 
turtles in the Levant basin as tools for conservation. Mar 
Ecol Prog Ser 575: 165– 179  

Lewison RL, Crowder LB, Wallace BP, Moore JE and others 
(2014) Global patterns of marine mammal, seabird, and 
sea turtle bycatch reveal taxa-specific and cumulative 
megafauna hotspots. Proc Natl Acad Sci USA 111: 
5271– 5276  

Marsh H, Sinclair DF (1989a) Correcting for visibility bias in 
strip transect aerial surveys of aquatic fauna. J Wildl 
Manag 53: 1017– 1024  

Marsh H, Sinclair DF (1989b) An experimental evaluation of 
dugong and sea turtle aerial survey techniques. Wildl 
Res 16: 639– 650  

Mingozzi T, Mencacci R, Cerritelli G, Giunchi D, Luschi P 
(2016) Living between widely separated areas:  Long-term 
monitoring of Mediterranean loggerhead turtles sheds 
light on cryptic aspects of females spatial ecology. J Exp 
Mar Biol Ecol 485: 8– 17  

Odzer MN, Brooks AML, Heithaus MR, Whitman ER (2022) 
Effects of environmental factors on the detection of sub-
surface green turtles in aerial drone surveys. Wildl Res 
49: 79– 88  

Panigada S, Lauriano G, Donovan G, Pierantonio N, Cañadas 
A, Vázquez JA, Burt L (2017) Estimating cetacean density 
and abundance in the Central and Western Mediterran-
ean Sea through aerial surveys:  implications for manage-
ment. Deep Sea Res II 141: 41– 58  

Patel SH, Morreale SJ, Panagopoulou A, Bailey H and others 
(2015) Changepoint analysis:  a new approach for reveal-
ing animal movements and behaviors from satellite 
telemetry data. Ecosphere 6: 291 

Pierantonio N, Panigada S, Lauriano G (2023) Quantifying 
abundance and mapping distribution of loggerhead tur-
tles in the Mediterranean Sea using aerial surveys:  impli-
cations for conservation. Diversity (Basel) 15: 1159  

Pollock KH, Marsh HD, Lawler IR, Alldredge MW (2006) 
Estimating animal abundance in heterogeneous environ-
ments:  an application to aerial surveys for dugongs. 
J Wildl Manag 70: 255– 262  

Puth MT, Neuhäuser M, Ruxton GD (2015) On the variety of 
methods for calculating confidence intervals by boot-
strapping. J Anim Ecol 84: 892– 897  

R Core Team (2022) R:  a language and environment for sta-
tistical computing. R Foundation for Statistical Comput-
ing, Vienna 

Rees AF, Avens L, Ballorain K, Bevan E and others (2018) The 
potential of unmanned aerial systems for sea turtle 
research and conservation:  a review and future direc-
tions. Endang Species Res 35: 81– 100  

Revelles M, Cardona L, Aguilar A, San Félix M, Fernández G 
(2007) Habitat use by immature loggerhead sea turtles in 
the Algerian Basin (western Mediterranean):  swimming 
behaviour, seasonality and dispersal pattern. Mar Biol 
151: 1501– 1515  

Robinson NJ, Bigelow WF, Cuffley J, Gary M and others 
(2020) Validating the use of drones for monitoring the 
abundance and behaviour of juvenile green sea turtles in 
mangrove creeks in the Bahamas. Testudo 9: 24– 35 

Robinson NJ, Aguzzi J, Arias S, Gatto C and others (2023) 
Global trends in sea turtle research and conservation:  
using symposium abstracts to assess past biases and 
future opportunities. Glob Ecol Conserv 47: e02587 

Román A, Tovar-Sánchez A, Fernández-Marín B, Navarro G, 

Barbero L (2023) Characterization of an Antarctic pen-
guin colony ecosystem using high-resolution UAV 
hyperspectral imagery. Int J Appl Earth Obs Geoinf 125: 
103565 

Rowat D, Gore M, Meekan MG, Lawler IR, Bradshaw CJA 
(2009) Aerial survey as a tool to estimate whale shark 
abundance trends. J Exp Mar Biol Ecol 368: 1– 8  

Scales KL, Miller PI, Hawkes LA, Ingram SN, Sims DW, 
Votier SC (2014) On the front line:  frontal zones as prior-
ity at-sea conservation areas for mobile marine verte-
brates. J Appl Ecol 51: 1575– 1583  

Schofield G, Katselidis KA, Lilley MKS, Reina RD, Hays GC 
(2017) Detecting elusive aspects of wildlife ecology 
using drones:  new insights on the mating dynamics and 
operational sex ratios of sea turtles. Funct Ecol 31: 
2310– 2319  

Schofield G, Esteban N, Katselidis KA, Hays GC (2019) 
Drones for research on sea turtles and other marine verte-
brates — a review. Biol Conserv 238: 108214 

Sellés-Ríos B, Flatt E, Ortiz-García J, García-Colomé J, 
Latour O, Whitworth A (2022) Warm beach, warmer tur-
tles:  using drone-mounted thermal infrared sensors to 
monitor sea turtle nesting activity. Front Conserv Sci 3: 
954791 

Seminoff JA, Eguchi T, Carretta J, Allen CD and others 
(2014) Loggerhead sea turtle abundance at a foraging 
hotspot in the eastern Pacific Ocean:  implications for at-
sea conservation. Endang Species Res 24: 207– 220  

Slooten E, Dawson SM, Rayment WJ (2004) Aerial surveys 
for coastal dolphins:  abundance of Hector’s dolphins off 
the South Island west coast, New Zealand. Mar Mamm 
Sci 20: 477– 490  

Staines MN, Smith CE, Madden Hof CA, Booth DT, Tibbetts 
IR, Hays GC (2022) Operational sex ratio estimated from 
drone surveys for a species threatened by climate warm-
ing. Mar Biol 169: 152   

Stokes KL, Broderick AC, Canbolat AF, Candan O and 
others (2015) Migratory corridors and foraging hotspots:  
critical habitats identified for Mediterranean green tur-
tles. Divers Distrib 21: 665– 674  

Stokes HJ, Mortimer JA, Laloë JO, Hays GC, Esteban N 
(2023) Synergistic use of UAV surveys, satellite tracking 
data, and mark-recapture to estimate abundance of elu-
sive species. Ecosphere 14: e4444   

Sykora-Bodie ST, Bezy V, Johnston DW, Newton E, Loh-
mann KJ (2017) Quantifying searshore sea turtle den-
sities:  applications of unmanned aerial systems for pop-
ulation assessments. Sci Rep 7: 17690  

Thomson JA, Cooper AB, Burkholder DA, Heithaus MR, Dill 
LM (2012) Heterogeneous patterns of availability for 
detection during visual surveys:  spatiotemporal variation 
in sea turtle dive-surfacing behaviour on a feeding 
ground. Methods Ecol Evol 3: 378– 387  

Tomás J, Gozalbes P, Raga JA, Godley BJ (2008) Bycatch of 
loggerhead sea turtles:  insights from 14 years of strand-
ing data. Endang Species Res 5: 161– 169  

Türkozan O, Özdilek SY, Ergene S, Uçar AH and others 
(2013) Strandings of loggerhead (Caretta caretta) and 
green (Chelonia mydas) sea turtles along the eastern 
Mediterranean coast of Turkey. Herpetol J 23: 11– 15 

Vassallo P, Paoli C, Alessi J, Mandich A, Würtz M, Fiori C 
(2018) Seamounts as hot-spots of large pelagic aggrega-
tions. Mediterr Mar Sci 19: 444– 458  

Verfuss UK, Aniceto AS, Harris DV, Gillespie D and others 

407

https://doi.org/10.1073/pnas.1318960111
https://doi.org/10.2307/3809604
https://doi.org/10.1071/WR9890639
https://doi.org/10.1016/j.jembe.2016.08.007
https://doi.org/10.1071/WR20207
https://doi.org/10.1016/j.dsr2.2017.04.018
https://doi.org/10.1890/ES15-00358.1
https://doi.org/10.3390/d15121159
https://doi.org/10.2193/0022-541X(2006)70%5b255%3AEAAIHE%5d2.0.CO%3B2
https://doi.org/10.1111/1365-2656.12382
https://doi.org/10.3354/esr00877
https://doi.org/10.1007/s00227-006-0602-z
https://doi.org/10.1016/j.jembe.2008.09.001
https://doi.org/10.1016/j.marpolbul.2019.01.009
https://doi.org/10.12681/mms.15546
https://doi.org/10.3354/esr00116
https://doi.org/10.1111/j.2041-210X.2011.00163.x
https://doi.org/10.1038/s41598-017-17719-x
https://doi.org/10.1002/ecs2.4444
https://doi.org/10.1111/ddi.12317
https://doi.org/10.1007/s00227-022-04141-9
https://doi.org/10.1111/j.1748-7692.2004.tb01173.x
https://doi.org/10.3354/esr00601
https://doi.org/10.3389/fcosc.2022.954791
https://doi.org/10.1111/1365-2435.12930
https://doi.org/10.1111/1365-2664.12330


Endang Species Res 54: 395–408, 2024

(2019) A review of unmanned vehicles for the detection 
and monitoring of marine fauna. Mar Pollut Bull 140: 
17– 29  

Westgate AJ, Koopman HN, Siders ZA, Wong SNP, Ronconi 
RA (2014) Population density and abundance of basking 
sharks Cetorhinus maximus in the lower Bay of Fundy, 
Canada. Endang Species Res 23: 177– 185  

Whitworth A, Pinto C, Ortiz J, Flatt E, Silman M (2022) 
Flight speed and time of day heavily influence rainforest 

canopy wildlife counts from drone-mounted thermal 
camera surveys. Biodivers Conserv 31: 3179– 3195  

Williams R, Thomas L (2007) Distribution and abundance of 
marine mammals in the coastal waters of British Colum-
bia, Canada. J Cetacean Res Manag 9: 15– 28  

Yaney-Keller A, San Martin R, Reina RD (2021) Comparison 
of UAV and boat surveys for detecting changes in breed-
ing population dynamics of sea turtles. Remote Sens 13: 
2857

408

Editorial responsibility: Clive McMahon, 
 Hobart, Tasmania, Australia 
Reviewed by: N. J. Robinson and 2 anonymous referees 

Submitted: January 10, 2024 
Accepted: July 4, 2024 
Proofs received from author(s): July 31, 2024

https://doi.org/10.3354/esr00567
https://doi.org/10.1007/s10531-022-02483-w
https://doi.org/10.3390/rs13152857
https://doi.org/10.47536/jcrm.v9i1.688



