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1.  INTRODUCTION 

Satellite telemetry has become an important tool for 
studying marine vertebrates, providing unique data on 

highly mobile and wide-ranging species and those oc -
cupying harsh and remote environments throughout 
both day and night (Cooke 2008). Telemetry provides 
an array of data relevant to the conservation and man-
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agement of marine vertebrates, including information 
on spatio-temporal movements, identification of home 
ranges and critical habitats, behaviour, population 
structure and overlap with anthropogenic activities 
(Cooke 2008, Costa et al. 2010, Williamson et al. 
2019). 

Satellite telemetry is a particularly applicable tool 
for baleen whale studies, where animals spend most 
of their lives underwater and inaccessible to research-
ers and travel long distances across remote habitats 
during their annual migrations between feeding and 
reproductive areas. Moreover, their large body size 
makes them relatively robust to the invasive attach-
ment and physical weight of a satellite tag. With the 
exception of the pygmy right whale Caperea margin-
ata, satellite-tracking studies have been carried out 
on all known baleen whale species (Mate et al. 1997, 
2000, 2015, Wade et al. 2006, Alves et al. 2010, Zerbini 
et al. 2011, Silva et al. 2013, Prieto et al. 2014, Lesage 
et al. 2017, Soldevilla et al. 2017, Cerchio et al. 2018, 
Risch et al. 2019, Mackay et al. 2020). 

Southern right whales (SRWs) Eubalaena australis 
have a circumpolar distribution across the Southern 
Hemisphere. Although classified as globally Least 
Concern by the IUCN (Cooke & Zerbini 2018), the 
population of SRWs inhabiting the south-west Atlan-
tic is of conservation concern due to widespread calf 
mortalities in recent decades (Rowntree et al. 2013). 
As a result, the International Whaling Commission 
adopted a Conservation Management Plan for south-
west Atlantic SRWs in 20121, aiming to protect habitat 
for the population and minimise anthropogenic threats 
to maximise its recovery to pre-exploitation levels. 

The vast majority of SRW research globally has fo -
cussed on the well-established winter calving grounds 
located in coastal temperate and subtropical habitats 
(Cooke & Zerbini 2018, Harcourt et al. 2019), given 
their proximity to human habitation, predictable winter 
whale occurrence and favourable weather conditions 
for field research (compared with oceanic and higher 
latitude habitats). However, the whales spend most of 
their year, and perhaps the entire year during non-
breeding stages of their life cycle, in pelagic foraging 
habitats located from mid to high latitudes across the 
Southern Hemisphere (Zerbini et al. 2016, 2018, Har-
court et al. 2019). The distribution and behaviour of 
SRWs using their pelagic feeding grounds are rel-
atively poorly documented yet suspected to have a 
major influence on post-whaling population recovery 
by affecting the number of calves born annually 
(Leaper et al. 2006, Seyboth et al. 2016) and calf sur-
vival (Rowntree et al. 2013). As a result, increasing 
conservation emphasis has been placed on under-

standing the foraging behaviour and movements of 
SRWs outside of the core calving grounds, primarily 
through the use of satellite telemetry (Carroll et al. 
2020). Satellite tags were first used to track move-
ments of SRWs in South Africa in 2001 (Mate et al. 
2011), and have since been widely employed on calv-
ing grounds in Argentina (Zerbini et al. 2016, 2018, 
2023), South Africa (Vermeulen et al. 2024), Australia 
and the Auckland Islands in New Zealand (Mackay et 
al. 2020) as well as in 2 deployments on a foraging 
ground (Kennedy et al. 2024). 

In the south-west Atlantic, a wintering aggregation 
of SRWs has been documented in coastal waters off 
the north-east Falkland Islands (Malvinas)2, hereafter 
FI, annually since 2017 (Weir & Stanworth 2020). These 
whales often engage in surface-active behaviour, with 
frequent observations of mating (Weir 2021, 2022) 
and the presence of gunshot song (a male reproduc-
tive display: Crance et al. 2019) recorded throughout 
the winter months (Cerchio et al. 2022), strongly sup-
porting reproductive behaviour. To date, no calves of 
the year have been confirmed in the FI wintering 
ground (hereafter FIWG), despite survey efforts oc -
curring during August and early September when 
calving occurs elsewhere (Rowntree et al. 2013). The 
composition of SRWs in the FIWG comprises both 
adults and juveniles, with a sex ratio biased towards 
males (Jackson et al. 2022a). Genetic analysis has 
revealed that the SRWs using the FIWG are part of 
the wider south-west Atlantic population (Jackson et 
al. 2022a), for which the major contemporary calving 
and nursery grounds are located at Peninsula Valdés 
(PV) in Argentina and Santa Catarina in Brazil (Cooke 
& Zerbini 2018). However, an adult female from a 
South African calving ground was also recently doc-
umented in the FIWG (Vermeulen et al. 2024), sug-
gesting that the islands represent an important 
strategic location for understanding the movements, 
connectivity and behaviour of SRWs across the wider 
south Atlantic region. As one of few permanently 
occupied human settlements located south of 50°S 
worldwide, the FI also offer access to SRWs close to 
some of their pelagic subantarctic foraging grounds. 

In this study, we used satellite telemetry to acquire 
novel information on the movements of SRWs from 
the FIWG with the objective of (1) better understand-
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1https://iwc.int/management-and-conservation/conservation-
management-plans/south-atlantic-southern-right-whale 

2Since 1965, the nomenclature used by the United Nations 
(UN) for statistical processing is Falkland Islands (Malvi-
nas), which acknowledges the dispute that exists concern-
ing the sovereignty of the islands (UN Directive ST/CS/
SER.A/42, 16 Dec 1965)
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ing their use of the FIWG regarding spatial extent, 
habitat use and behaviour; and (2) investigating con-
nectivity between the FI and other geographic regions 
and identifying foraging grounds and migration routes. 
The relevance of the results to SRW conservation and 
management both within the FI and the wider region 
is described. 

2.  MATERIALS AND METHODS 

2.1.  Ethics statement 

The study was carried out under research licences 
(R17/2011 and R14/2020) issued by the Falkland 
Islands Government; Licence R14/2020 specifically 
covered satellite tagging and biopsy sampling. Best 
practice cetacean tagging procedures (Andrews et 
al. 2019) were adhered to throughout the study, with 
the methods used being consistent with those ap -
proved by the Marine Mammal Laboratory, Alaska 
Fisheries Science Center, and the NOAA Institutional 
Animal Care and Use Committee (assurance letter 
NWAK-21-3). 

2.2.  Study area 

The FI (~52° S, 59° W) are located in the south-west 
Atlantic, approximately 500 km east of the South 
American coast on an easterly projection of the Pata-
gonian Shelf (Fig. 1). They are situated in the subant-
arctic zone that extends between the Antarctic Con-
vergence and the Subtropical Front, and the average 
monthly sea surface temperature ranges from 10–
12°C in January (peak austral summer) to 4–6°C in 
July (peak austral winter). 

The tag deployment area comprised the nearshore 
waters (<5 km from land) located between Volunteer 
Point and MacBride Head on the north-east coast 
(Fig. 1). That area consists of sandy beaches inter-
spersed by rocky coastline with numerous kelp beds 
and is exposed to the open Atlantic Ocean. 

2.3.  Tag deployment 

Ten fully integrated consolidated Argos satellite 
tags manufactured by Wildlife Computers were de -
ployed on SRWs, comprising 5 SPOT-303F location-
only tags and 5 archival SPLASH10-373A tags. The 
electronic components of the tags were cast in a 
290  mm long and 24 mm diameter surgical-quality 

stainless steel housing. All tags were sterilised prior 
to use with ethylene oxide in a commercial gas steril-
isation unit (SPOT tags) or 10% sodium hypochlorite 
and ethanol (SPLASH tags). 

Tags were programmed to transmit daily from 
08:00 to 16:00 and 19:00 to 06:00 h UTC (SPOT tags) 
and from 08:00 to 16:00 and 18:00 to 06:00 h UTC 
(SPLASH10 tags). Those transmission periods were 
selected to coincide with Argos satellite passes. The 
maximum number of transmissions was set to 20 h–1 
(SPOT tags) and 400 d–1 (all tags). 

Tagging occurred during July 2022 alongside SRW 
surveys carried out by Falklands Conservation using 
a 7.5 rigid-hulled inflatable boat. Boat surveys were 
limited to weather conditions comprising ≤12 knots 
of wind and ≥5 km visibility. An experienced whale 
tagger was situated on a raised bowsprit tagging plat-
form providing approximately 1.5 m height above the 
water. During tagging attempts, animals were care-
fully approached to sufficient proximity (≤3 m) to 
place a tag dorsally behind the blowholes to optimise 
transmission time during surfacing events. Tags were 
deployed using a modified pneumatic line thrower 
(ARTS, Restech) set to a pressure of 17 to 20 bars. 
Whenever possible, the tagged whales were biop-
sied for genetics and sex determination using a Bar-
nett BCR Recurve crossbow (150 lb draw weight) 
fitted with bolts and sterile stainless-steel biopsy tips 
from CETA-DART, and photo-identification images 
of tagged animals were taken pre- and post-tagging 
using a Canon 5D camera and a 100 to 400 mm lens. 
Short video clips of tag deployments were taken with 
a GoPro camera. 

2.4.  Data analysis 

Throughout this paper, the locations of tagged 
SRWs are described as broad habitat types according 
to water depth (Fig. S1 in the Supplement at www.int-
res.com/articles/suppl/n055p229_supp.pdf): (1) shelf 
(<200 m depth), (2) slope (200–1999 m depth) and (3) 
oceanic (≥2000 m depth). Since SRWs primarily use 
nearshore temperate habitats for winter reproductive 
behaviour, shelf habitats in South America and the FI 
were further subdivided into (1) nearshore (<30 km 
from the coast) and (2) outer shelf (≥30 km from the 
coast). We follow the terminology of Wilding Brown 
&  Sironi (2023) in defining the areas where calves 
are born as calving grounds, areas where mothers 
provide neonatal care as nursery grounds and areas 
where courtship and copulation occur as breeding 
grounds. 
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Fig. 1. Study area, showing the locations (crosses) where satellite tags were deployed on 10 southern right whales Eubalaena  
australis in 2022. The location of the Patagonian Shelf Large Marine Ecosystem (Spalding et al. 2007) is shown in blue
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DNA was extracted from skin tissue using a Qiagen 
DNEasy Blood and Tissue Kit. Genomic DNA was 
visualised on a 2% agarose gel to assess DNA quality, 
and DNA was quantified using a Nanodrop. Sex de -
termination was carried out through multiplex PCR 
amplification of the ZFX/ZFY sex-linked gene (Bérubé 
& Palsbøll 1996). 

Location data were provided by the Argos system 
(www.argos-system.org). A location quality class (LC) 
is automatically allocated to each Argos location and 
has 4 levels of reported accuracy: LC-3, with a stated 
error of <150 m; LC-2, with an error of 150 to 350 m; 
LC-1, with an error of 350 to 1000 m; and LC-0, with an 
error of >1000 m. Additionally, locations derived from 
2 or 3 messages have unknown error estimates and 
are assigned LC values of B and A, respectively, while 
locations deemed invalid by Argos are assigned LC-Z. 
It is common for most locations in animal tracking 
studies to comprise lower LCs of 0, A, B or Z. It is also 
apparent from combined satellite and GPS tagging 
that the error levels stated by Argos are often ex -
ceeded in animal tracking studies; for example, LC-A 
and LC-B locations produced mean errors of 3.5 and 
14.3 km, respectively, during sea turtle tracking (Witt 
et al. 2010) and 31.5 and 36.1 km, respectively, during 
pinniped tracking (Costa et al. 2010). 

To analyse movements and behaviour, implausible 
locations were removed while retaining as much posi-
tional information as possible. Initial manual cleaning 
of the Argos data was carried out to remove LC-Z 
positions (n = 18). Additionally, positions with latitudes 
or longitudes greater than 4 SDs from the mean lati-
tude or longitude calculated based on the 2 d before 
and after the date/time of that location were removed 
(n = 58). The remaining tag locations (n = 36 694, all 
tags combined) comprised the unfiltered dataset. 

Further preprocessing included the removal of lo -
cations that plotted on land using the st_intersects 
function from the ‘sf’ package in R. A speed filter 
was  applied to remove locations that would have 
required unrealistically high swim speeds (defined 
as  >6 m s–1). Sections of data separated by gaps 
exceeding 24 h (i.e. due to pauses in tag transmission) 
were treated as independent, and sections comprising 
fewer than 10 locations were removed. The remaining 
tag locations (n = 26 747, all tags combined) com-
prised the filtered dataset. 

The filtered dataset was fitted with a continuous-
time correlated random walk (CTCRW) model to pre-
dict lo cations at a variety of time intervals using the 
crawlWrap function from the ‘crawl’ package version 
2.3.0 (Johnson et al. 2008) in R (version 4.3.3; R Devel-
opment Core Team 2024). The selected model pre-

dicted locations at 6 h intervals, with the modelled 
dataset containing 5188 predicted locations for all 
tags combined. 

Data were modelled with 2- and 3-behavioural state 
(BS) discrete-time hidden Markov models (HMMs) 
using the ‘momentuHMM’ package (version 1.5.5; 
McClintock & Michelot 2018) in R. The model with 
the lowest negative logarithmic probability and dis-
tribution of pseudo-residuals was selected. The best 
model in cluded 3 BSs comprising BS1 (slow and non-
directional movement indicative of high-use habitats), 
BS2 (intermediate speed of movement and rate of 
directional change) and BS3 (faster and directed move-
ment, consistent with transitory habitats). 

The step length was modelled based on a gamma 
distribution with initial values of (mean ± SD) 5.73 
± 4.07, 13.41 ± 8.27 and 28.79 ± 9.17 km for BS1, BS2 
and BS3, respectively. The turning angle was mod-
elled as a wrapped Cauchy distribution with an initial 
concentration parameter of 0.03 for BS1, 0.24 for BS2 
and 0.76  for BS3. The Viterbi algorithm was used to 
compute the most likely sequence of those 3 underly-
ing BSs in the track (Zucchini et al. 2017, McClintock 
& Michelot 2018). 

Both the unfiltered and modelled datasets were 
mapped using the Quantum Geographic Information 
System (QGIS version 3.28). Water depth was ex -
tracted for each location using QGIS and a gridded 
bathymetric file obtained from the General Bathymet-
ric Chart of the Oceans 2023 (GEBCO Bathymetric 
Compilation Group 2023). In both datasets, water 
depths and distances from shore were assigned stand-
ard default values of 5 m and 0.5 km, respectively, for 
locations that plotted on land. The distance travelled 
by individual SRWs was calculated using QGIS for 
the modelled dataset only. Statistical analysis was 
carried out in JASP (JASP Team 2024). Pairwise com-
parisons following Kruskal-Wallis tests were carried 
out with Dunn’s post hoc tests. 

3.  RESULTS 

Ten satellite tags were deployed in the FIWG over 
6 d between 6 and 24 July 2022 (Table 1, Fig. 1). Most 
(n = 8) whales were tagged within surface-active 
groups. The sex of 8 individuals was determined geneti-
cally, comprising 5 males and 3 females (Table 1). 

The transmission duration of SPOT tags (mean = 
159.0 d, median = 163 d, range = 27–261, n = 5) was 
greater than that of SPLASH10 tags (mean = 116.6 d, 
median = 114 d, range = 101–136, n = 5). The short-
est duration tag (27 d) was deployed on an adult 
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female who was the focus of a mating group. All other 
tag durations exceeded 100 d (Table 1), during which 
animals moved up to 15 375 km (Table S1). The 
number of daily locations provided by SPOT tags 
(median = 30.0) was significantly higher than the 
number from SPLASH tags (median = 25.0; Mann-
Whitney test, W = 142 715.0, p < 0.001). Daily posi-
tions were received continuously from each tag over 
its transmission period, with the exception of (1) Dora 
on 31 July 2022, from 29 January to 12 March 2023 
and on 19 March 2023; (2) Elizabeth, from 25 July to 
3 August; and (3) Kelpie, from 25 July to 30 July and 
on 2 August. Mean swim speeds of the 10 SRWs over 
continuous tag transmission periods ranged from 1.53 
to 3.18 km h–1 (Table S1). 

The model-predicted tracks of the 10 whales are 
shown in Fig. 2 and those of each individual whale 
according to season and BS in Fig. S2. Combined 
plots of BS by season and by month are provided in 
Fig. 3 and Fig. S3, respectively. 

3.1.  Behavioural state 

As expected from the criteria used to define the 
BSs, whales swam greater distances between loca-
tions and consequently at higher speeds as they pro-
gressed from BS1 to BS2 to BS3 (Fig. S4). 

The modelled locations for BS1, BS2 and BS3 oc -
curred at significantly different water depths (Kruskal-
Wallis test, H = 1363.1, df = 2, p < 0.001) and distances 
from shore (Kruskal-Wallis test, H = 1963.6, df = 2, 
p < 0.001), with all pairwise comparisons being statis-
tically significant (p < 0.001). Locations associated 
with BS1 occurred at shallower depth and closer to 
shore than those associated with BS2 and BS3, while 
those for BS2 occurred at shallower depths and closer 
to shore than those for BS3 (Table 2, Fig. 3). The same 
results were obtained using only modelled locations 
≤150 km from the FI during winter (Table 2); loca-
tions for BS1, BS2 and BS3 occurred at significantly 
different water depths (Kruskal-Wallis test, H = 407.0, 
df = 2, p < 0.001) and distances from shore (Kruskal-
Wallis test, H = 413.2, df = 2, p < 0.001), and all pairwise 
comparisons were statistically significant (p < 0.001). 
Seventy percent (n = 865) of modelled locations 
occurring ≤150 km from the FI comprised BS1, and 
99% of those were in nearshore habitat <30 km from 
the FI coast (70% ≤2 km, 91% ≤5 km, 95% ≤10 km: 
Fig. 4). 

Based on these results and knowledge of SRW 
behaviour and habitats, in the remainder of this paper 
we interpret BS3 locations as representing travel, 
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while BS1 and BS2 locations represent occupancy of 
high- and intermediate-use habitats, respectively. The 
latter categories include the area-restricted move-
ment (ARM) inferred by other marine predator studies 
(e.g. Silva et al. 2013, Patterson et al. 2016) to repre-
sent foraging behaviour as well as behaviours exhib-
ited on the coastal wintering grounds. 

3.2.  Use of the FIWG 

Following tagging, the 10 SRWs continued to use FI 
nearshore waters for between 1 and 57 d (mean = 30.1 d, 
median = 34.0 d) before commencing directed move-
ments (BS3) away. Use of the FIWG by confirmed 
females (mean = 20 d, SD = 13.5, n = 3) was shorter 
than that by males (mean = 38 d, SD = 19.8, n = 5). 

Four whales (Beatrice, Elizabeth, Frosty and Dora) 
remained in nearshore habitats for ≤16 d following 
tagging; 3 of those animals moved slowly westwards 
(BS2) along the north coast of the FI before departing 
from the west coast of the islands, while Frosty moved 

45 km north-east of the coast within 24 h of tagging 
and then departed (Fig. S2). 

The remaining 6 SRWs spent prolonged periods of 
33 to 57 d using nearshore habitats after tagging, par-
ticularly the exposed north coast between Volunteer 
Point and Foul Bay and the relatively sheltered inlet 
of Berkeley Sound (Fig. S2, Fig. 4). Shared similarities 
in their use of the FIWG included the following: (1) 
the majority of both unfiltered and modelled loca-
tions were located <10 km from the coast and in water 
depths of <50 m; (2) most animals moved back and 
forth along this stretch of coast, rather than progres-
sing in 1 direction along it; and (3) BS1 comprised the 
vast majority of modelled locations <10 km from the 
shoreline, with lower amounts of BS2 and almost no 
BS3 (Fig. 4). Exploratory movements (BS2) were ex -
hibited by 5 of these 6 SRWs while using the FIWG, 
including offshore loops to ~45 km from the north coast 
by 3 whales, an extensive offshore loop to ~100 km 
north of Pebble Island by Byron and a southerly move-
ment through Falkland Sound by Sandy (Fig. S2). In 
all cases, the whales subsequently returned to the 
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Fig. 2. Model-predicted locations of 10 individual southern right whales Eubalaena australis satellite-tagged in 2022. Black box:  
Falkland Islands (Malvinas) 
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Fig. 3. Model-predicted locations of 10 southern right whales Eubalaena australis satellite tagged in the Falkland Islands (Malvi-
nas) according to 3 behavioural states (BSs) generated with discrete-time hidden Markov models (BS1: slow and non-directional 
movements, indicative of high-use habitats; BS2: intermediate use areas, likely including foraging; and BS3: directed and fast 
movements, indicative of transitory habitats) in (a) winter (Jun–Aug), (b) spring (Sep–Nov), (c) summer (Dec–Feb) and (d) autumn  

(Mar–May). Bathymetry is defined in Fig. 2
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Fig. 3 (continued)
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coast and resumed BS1. Pebble was the final animal to 
move away from the FI, on 13 September 2022. 

3.3.  Links with Peninsula Valdés 

Six of the whales tagged in the FIWG subsequently 
moved to PV. Five whales (Beatrice, Elizabeth, Elmo, 
Sandy and Walter) travelled north-westwards after 
leaving the FIWG (Fig. 2, Fig. S2), moving directly 
across the Patagonian Shelf at speeds of 4.2 to 
5.5  km  h–1 (Table S2). In contrast, Dora proceeded 
south-westwards directly towards Tierra del Fuego 
and spent 2 wk close to the coast between San Sebas-
tián and the mouth of the Magellan Strait (BS1 and 
BS2) before commencing a northwards coastal move-
ment towards PV. Characteristics of whale move-
ments from the FIWG to PV included the following 
(Fig. 2, Fig. S2): (1) most swam across the mouth of 
Golfo San Jorge rather than around its coast, (2) they 
slowed down and transitioned from BS3 to BS2 
between Golfo San Jorge and the entrance to Golfo 
Nuevo and (3) they changed from BS2 to BS1 after 
entering Golfo Nuevo. The 6 whales took a mean of 
19.7 d (SD = 8.9, range = 12–36 d, median = 18.0 d) 
to reach the Golfo Nuevo entrance after commencing 
their movements away from the FI, arriving in late 
July (Beatrice), August (Elizabeth and Walter) or mid-
September (Elmo, Dora and Sandy). 

The tags of 2 animals (Sandy and Elizabeth) stopped 
transmitting while the whales were still at PV. After 
residencies of 35 to 84 d exhibiting BS1 and BS2, the 
remaining 4 individuals (Beatrice, Walter, Elmo and 
Dora) departed PV during October. 

3.4.  Oceanic movements 

Three whales (Frosty, Byron and Pebble) travelled 
south-east (BS3, at mean speeds of 4.6–5.2 km h–1: 
Table S2) after departing the FIWG, moving across 
oceanic habitats towards the South Orkney Islands 
(Fig. 2, Fig. S2). 

Pebble travelled to an area north of South Orkney, 
where it remained for 2 wk before commencing a 
long north-westerly movement (BS3, mean speed of 
5.4 km h–1: Table S2) back through oceanic habitat 
to the Patagonian Shelf in early October (Fig. 2). 

Frosty changed direction ~175 km north-west of 
South Orkney and proceeded to Elephant Island, the 
South Shetland Islands and then to an area of conti-
nental slope (~50–1500 m depth) located in the Brans-
field Strait (Antarctica), where it switched to BS1 and 
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Fig. 4. Locations of 10 satellite-tagged southern right whales Eubalaena australis in the waters around the Falkland Islands 
(Malvinas) in 2022 using (a) the unfiltered dataset and (b) the model-predicted positions according to 3 behavioural states (BSs) 
generated with discrete-time hidden Markov models (BS1: slow and non-directional movements, indicative of high-use hab-
itats; BS2: intermediate use areas, likely including foraging; and BS3: directed and fast movements, indicative of transitory hab-
itats). The spatial extents of the 30 km buffer from the coast and the north-east Falklands (Malvinas) right whale wintering area  

Important Marine Mammal Area (IMMA) are shown
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remained for 3 wk. Frosty then commenced a lengthy 
and directed movement to the Patagonian Shelf, via the 
Wollaston Islands at the southern tip of Chile (Fig. 2). 

Byron’s movements were extensive between the 
FIWG, the South Orkney Islands, the Scotia Sea and 
the Argentine Basin (Fig. S2). The whale remained con-
tinuously in the latter area in BS2 from late October 
2022 until January 2023, after which it returned to the 
Scotia Sea, where the tag ceased transmitting. Byron 
was the only SRW that did not use the Patagonian 
Shelf during spring (Fig. S2). 

3.5.  Use of the Patagonian Shelf 

Of the 8 whales whose tags transmitted beyond 17 
October, 7 spent time in BS1 and BS2 on the outer Pat-
agonian Shelf (Fig. 3). This included all 4 of the 
whales (Beatrice, Walter, Elmo and Dora) that de -
parted PV and 1 whale (Kelpie) that travelled to the 
Patagonian Shelf directly after departing the FIWG 
and remained there almost continuously in BS2 until 
its tag stopped transmitting in late November (Fig. 3). 

Two of the whales that initially moved south-east 
after departing the FIWG also used the Patagonian 
Shelf during spring, arriving there in early October 
(Frosty) and late October (Pebble). 

The Patagonian Shelf areas used in BS1 and BS2 by 
the 7 whales spanned latitudes from 37 to 55°S and 
had water depths of ~70 to 140 m (Fig. 3). All 7 animals 
were still using that habitat when their tags ceased 
transmitting. Dora exhibited BS2 almost continuously 
on the shelf east and south-west of PV for 6 mo be -
tween October 2022 and April 2023 (Fig. 3). 

4.  DISCUSSION 

Satellite telemetry demonstrated that (1) the 
nearshore waters along the north coast of the FI are 
a high-use habitat for SRWs during winter; (2) the 
movements of tagged SRWs after departing the 
FIWG were both diverse and extensive; and (3) 
there was high connectivity between the FIWG, the 
PV calving ground and presumed foraging areas on 
the Patagonian Shelf (with connectivity also indi-
cated with Chile, Scotia Sea, South Shetland Islands 
and Antarctica). 

The duration of 9 of the 10 tags deployed in the FI 
exceeded 100 d, with a maximum of 261 d. These 
durations are consistent with other SRW telemetry 
studies using recent tag technology (e.g. Zerbini et al. 
2023, Kennedy et al. 2024, Vermeulen et al. 2024). The 

transmission longevity of the SPOT tags exceeded 
that of the SPLASH tags, but this was expected before-
hand since the programming of the SPLASH tags 
included the collection and transmission of dive pro-
file data, which reduced battery life. 

Similar to other marine megafauna telemetry studies 
(Costa et al. 2010, Witt et al. 2010), the majority (72.8% 
for combined tags, 77.7% for SPLASH tags, 69.6% for 
SPOT tags) of Argos locations received from SRWs 
tagged on the FIWG were LC-A and LC-B, and the 
dataset therefore likely contained mean location errors 
in the low 10s of km, particularly with regard to longi-
tudinal accuracy, which is often lower than latitudinal 
accuracy (Witt et al. 2010). This level of accuracy was 
considered acceptable in the context of the spatial 
scales considered in our re search goals. 

The longest distance moved by an individual SRW 
tagged in the FIWG was 15 375 km (Table S1). Since 
distances were derived from straight lines between 
modelled 6 h locations, they are underestimated com-
pared with the more convoluted routes taken by 
whales in real time. For example, a comparison of the 
distances and speeds between locations modelled as 
BS3 (continuous directed movements) and locations 
for the equivalent time/date periods using the unfil-
tered dataset showed the latter to be ~40% higher 
(Table S2) but with unknown location accuracy. The 
distance of 15 375 km swum by Byron over a 239 d 
period greatly exceeds SRW movements documented 
in most studies (Table S1) and is similar to one South 
African whale (15 288 km over 369 d; Vermeulen et al. 
2024) but was achieved over a much shorter time-
frame. The average swim speeds recorded over the 
tag deployments were within the range of other SRW 
studies (Table S1). The average swim speeds achieved 
during migrations to calving/nursery areas and di -
rected movements to, and between, foraging areas 
were much higher than the average swim speeds over 
the total tag deployments, since the latter included 
time spent in nearshore wintering habitats when spa-
tial movements are limited. Telemetry data from the 
FIWG and other studies indicate that SRWs can 
achieve sustained speeds in the region of 4.5 to 6 km 
h–1 during directed movements (Table S2), allowing 
them to cover well over 100 km in a day. These speeds 
are comparable to those of some migrating balae-
nopterid species (e.g. blue whales Balaenoptera mus-
culus, averaging 5.6 km h–1: Lesage et al. 2017), despite 
their less streamlined shape, and other robust species 
such as humpback whales Megaptera novaeangliae 
(averaging 3.9 km h–1: Zerbini et al. 2011) and bow-
head whales Balaena mysticetus (up to 5.8 km h–1: 
Mate et al. 2000). 
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4.1.  Use of the FIWG 

Weir & Stanworth (2020) noted that potential uses 
of the FIWG by SRWs could comprise (1) a short-term 
resting and socialising stop-off for animals migrating 
from foraging grounds located further east or south 
towards the South American calving areas; (2) a breed-
ing destination used for courtship and mating; (3) a 
winter gathering area for subadult and non-breeding 
adults, primarily for social interaction; and (4) recoloni-
sation of a historical winter calving ground. Since then, 
extensive targeted work on SRWs has occurred on 
the FIWG, including annual boat surveys and photo-
identification (Weir 2022), genetic an alysis (Jackson et 
al. 2022a), year-round acoustic monitoring (Cerchio 
et al. 2022) and the satellite telemetry reported here. 

SRW aggregations form in the FIWG primarily 
between May and September, with numbers peaking 
during July (Weir 2022). In some years, whale aggre-
gations begin to form earlier, during March and April 
(Weir 2022). Satellite tags were deployed in July to 
optimise the success of this novel study; however, 
doing so omitted the early part of the SRW season 
and likely underestimated the duration of FIWG 
occupancy. Nevertheless, some individuals remained 
for 2 mo following tagging, confirming that the FIWG 
represents a high-use habitat and is not solely tran-
sited through by migrating animals. Additionally, 
photo-identification analysis in the FIWG during 
2019 and 2020 documented 7 whales seen in both 
years (Weir 2022), suggesting that some individual 
SRWs exhibit longer-term fidelity to the ground. In 
combination, the available evidence indicates that the 
FIWG comprises a winter destination for a compo-
nent of the south-west Atlantic SRW population, and 
according to the International Whaling Commission 
habitat categorisation (IWC 2001), it may be consid-
ered a breeding habitat in which courtship and mat-
ing predominate. However, the FIWG also has (cur-
rently unclear) significance for subadult whales, and 
telemetry results support some use on a more tempo-
rary basis, both by whales that subsequently migrate 
to other geographic areas (including both calving and 
feeding areas: this study) and by non-breeding whales 
that might be feeding nearby and are briefly attracted 
to the inshore surface-active groups (e.g. Vermeulen 
et al. 2024). 

The telemetry work provided valuable insights into 
the spatial and temporal extent of SRW high-use 
areas during winter and therefore the definition of the 
FIWG. Due to logistical constraints associated with 
the remoteness of the FI, SRW-targeted boat work 
between 2017 and 2023 was mostly confined to areas 

<50 km from Stanley. Consequently, uncertainty per-
sisted regarding their use of other regions of the FI 
(Weir 2021). Apart from the initial tagging locations, 
that bias is removed from the telemetry dataset which 
indicated very high use (i.e. BS1) during winter of the 
entirety of the exposed north coast of East Falkland, 
predominantly within 10 km of the coast. None of the 
tagged whales exhibited movements to the southern 
parts of the FI, except for one brief exploratory excur-
sion (BS2) through Falkland Sound, and there was 
only sporadic exploration of the waters west of Pebble 
Island by 2 whales. Consequently, the north coast of 
East Falkland seems to represent a genuinely higher 
use area for SRWs within the FI, although targeted 
winter survey work in southern regions of the FI is 
required for confirmation. 

The purpose of the short movements (BS2) up to 
~100 km north of the FI undertaken by several indi -
viduals before returning to the coast is unclear. These 
movements could represent foraging excursions, re-
late to surface-active groups forming further from the 
coast or have some other driver. At PV, SRWs are some-
times observed foraging during the calving and mating 
season (D’Agostino et al. 2018, 2023). Dora and Walter 
exhibited BS1 and BS2 in an area ~20 to 45 km north-
east of MacBride Head before returning to the coast, 
and that same area was used by a non-breeding adult 
from the South African calving ground on a foraging 
trip during winter 2022 (Vermeulen et al. 2024). Con-
sequently, opportunistic foraging trips to adjacent 
habitats might be undertaken by whales using the 
FIWG. However, recent aerial surveys of the FIWG 
recorded surface-active groups forming >25 km from 
shore during June (Falklands Conservation unpubl. 
data), indicating that offshore trips may not solely 
reflect foraging excursions. 

Both boat surveys (Weir 2022) and acoustic mon-
itoring (Cerchio et al. 2022) indicate that most SRWs 
move away from the FIWG during early September. 
The telemetry data further confirmed this seasonality; 
departure from the FIWG by tagged whales was com-
pleted in the first half of September. 

4.2.  Movements beyond the FI 

Genetic data demonstrate that SRWs using the 
FIWG belong to the wider south-west Atlantic pop-
ulation (Jackson et al. 2022a). Weir & Stanworth 
(2020) noted that the seasonal peak (July and August) 
in SRW numbers on the FIWG occurs earlier in the 
year than at the PV calving ground (late August to 
mid-September: Crespo et al. 2019), suggesting that 
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some individuals may move to PV after departing the 
FIWG. The 2022 satellite telemetry provided confir-
mation, with 6 of the SRWs tagged on the FIWG sub-
sequently moving to Golfo Nuevo and remaining at 
PV for up to 12 wk. 

The FI–PV movements revealed direct links be -
tween the FIWG and the PV calving area, and almost 
all whales undertaking those movements crossed the 
Patagonian Shelf (<200 m depth) to arrive in the 
vicinity of Golfo San Jorge rather than taking a 
shorter direct route to PV. There was no evidence that 
whales formed surface-active groups in the pelagic 
waters between the FI and Argentina, supporting the 
notion that coastal habitats are critical for SRW 
breeding behaviour as well as for calving and nursing. 
These movements indicate that some individuals use 
2 wintering areas within the same breeding season 
and thus potentially extend their reproductive poten-
tial across multiple sites and months. The 6 FI–PV 
movements included all 3 of the whales genetically 
sexed as females (plus an additional suspected 
female: Beatrice) but only 2 of the 5 confirmed males. 
One female also visited the nearshore waters between 
San Sebastián and the mouth of the Magellan Strait 
(Chile) on the Atlantic coast of Tierra del Fuego (also 
a likely wintering ground for south-west Atlantic 
SRWs: Gibbons et al. 2006) and therefore potentially 
visited wintering grounds across 3 countries within 
one breeding season. In contrast, the animals exhibit-
ing the most extensive spatial movements during this 
study (Frosty, Byron and Pebble) were all males that 
did not visit PV. While our sample size is small, the 
results suggested that even though they all mix on 
the same wintering ground, differences occur in the 
FIWG residency duration, and in the subsequent 
movements and habitat use, of SRWs according to 
their sex. 

Previous satellite tagging work at PV during spring 
has shown that Patagonian Shelf waters are used ex -
tensively by foraging SRWs (Zerbini et al. 2018). The 
Patagonian Shelf Large Marine Ecosystem (PSLME, 
Fig. 1) is one of the most productive ecosystems in the 
world and encompasses year-round tidal mixing 
fronts and seasonal fronts that support important fish-
eries (Arkhipkin et al. 2013). Most of the whales 
tagged on the FIWG exhibited lengthy periods of BS2 
in the PSLME. However, in contrast to Zerbini et al. 
(2018), who found that ARM predominantly occurred 
over the outer continental shelf and slope within the 
PSLME, the animals tagged on the FIWG used the 
central shelf (70–140 m depth) and exhibited very lit-
tle use of Patagonian Slope waters. Further, Zerbini et 
al. (2018) noted a gap in ARM between 40 and 44° S in 

the PSLME across 4 tagging years and suggested that 
area may have lower habitat suitability, whereas the 
whales tagged in the FI exhibited ARM throughout 
those latitudes with the exception of 41.5 to 42.8°S. 
These differences likely reflect both inter-individual 
and inter-annual variation in the use of foraging 
areas, reflecting oceanographic shifts affecting prey 
availability and changes in preference according to 
whale age, sex and reproductive status. Nevertheless, 
the PSLME clearly comprises a very important forag-
ing ground for SRWs, being used by whales tagged at 
wintering grounds in Argentina (Zerbini et al. 2016, 
2018), the FI (this study) and South Africa (Vermeulen 
et al. 2024). Two animals tagged on the FIWG also 
undertook long journeys south (to the South Orkney 
Islands and Antarctic Peninsula) before returning to 
the Patagonian Shelf within the same feeding season, 
further highlighting the region-wide importance of 
the PSLME for foraging. In particular, Pebble trav-
elled almost continuously >1400 km to an area north 
of the South Orkney Islands; exhibited relatively little 
ARM behaviour over a 2 wk period in that area; and 
then undertook a 2000 km movement back to the Pat-
agonian Shelf west of Golfo San Jorge, where it then 
remained likely foraging for 2 mo. That animal spent 
considerable energy on 2 extensive latitudinal move-
ments for apparently low reward before finding a pro-
ductive feeding area on the shelf. SRWs may exhibit 
maternally transmitted fidelity to certain feeding areas 
(Valenzuela et al. 2009, Carroll et al. 2015), and it is 
possible that animals are predisposed to investigate 
those locations for food before searching elsewhere. 

Frosty visited the western end of the Bransfield 
Strait in the Antarctic Peninsula, close to the known 
southern limits of the species range (64–66°S: Savenko 
& Friedlaender 2022, Kennedy et al. 2024). Remark-
ably, while other records of SRWs at the southern 
limits of their range have occurred during summer 
and autumn (Hamner et al. 1988, Savenko & Fried-
laender 2022, Kennedy et al. 2024), Frosty moved to 
Antarctica in late winter (mid-August) and remained 
in a high-use (BS1) area for 3 wk, apparently foraging. 

Weir & Stanworth (2020) proposed that the FIWG 
may be located on the northwards migration route of 
a component of the south-west Atlantic population 
that feeds in areas located further south or east of the 
islands during the summer, such as in the Scotia Sea, 
the South Sandwich Islands or Antarctica. The satel-
lite telemetry work presented here has confirmed 
links between SRWs on the FIWG and all of those 
feeding grounds. However, isotope analysis indicates 
that SRWs sampled in the FIWG span at least 2 
trophic levels (Jackson et al. 2022b), likely represent-
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ing separate foraging areas located south of the Polar 
Front and on the Patagonian Shelf (Valenzuela et al. 
2009). This suggests that SRWs arrive in the FIWG 
from both low- and high-latitude feeding areas rather 
than the FIWG comprising a preferred destination for 
a single feeding group (Jackson et al. 2022b). Con-
sequently, the FIWG may provide relatively unique 
opportunities to study SRWs from different feeding 
areas while they are still in optimal body condition 
prior to migrating to the calving grounds. 

4.3.  Conservation and management conclusions 

Although the FIWG has been highlighted as an 
important habitat for SRWs for several years (Weir & 
Stanworth 2020, Weir 2021, 2022), and its location is 
strategic in providing links between calving grounds 
and foraging areas (a species research priority: Carroll 
et al. 2020), the region is still not well-acknowledged 
as an important SRW habitat. The growing evidence 
of the importance of the FIWG as a high-use habitat 
for SRWs in the SWA should be incorporated into 
future region-wide conservation efforts, including 
the International Whaling Commission Conservation 
Management Plan for the south-west Atlantic popula-
tion, which does not currently include recognition of 
the FIWG. 

Recent studies have referred to the FI as a socialis-
ing area (Carroll et al. 2022, Kennedy et al. 2024), a 
migratory habitat (Carroll et al. 2022) or an area 
where SRW numbers peak during summer (Savenko 
& Friedlaender 2022). However, the occurrence of 
song and mating observations demonstrates that the 
FI supports regionally important winter breeding 
aggregations (Weir 2021, 2022). In terms of identify-
ing and managing potential anthropogenic disturb-
ance to the species, recognition that breeding behav-
iour occurs on the FIWG is important. For example, 
significant shipping noise in Berkeley Sound during 
July 2019 coincided with a reduction in detected 
SRW vocalisations (Cerchio et al. 2022). Whales call 
to maintain contact when aggregating to feed or 
locate potential mates, and acoustic masking or 
reduction in call rate in response to noise can there-
fore potentially affect critical life history events with 
unknown long-term population consequences (Now-
acek et al. 2007). 

The FIWG telemetry data have already in -
formed the delineation of an IUCN Important Marine 
Mammal Area for wintering SRWs (https://www.
marinemammalhabitat.org/portfolio-item/north-east-
falklands-malvinas-right-whale-wintering-area-imma/). 

Additionally, they have been used to plan a winter 
aerial abundance survey for SRWs, aimed at estab-
lishing local population size to support an IUCN Key 
Biodiversity Area application. These spatial conser-
vation tools will be available to guide future manage-
ment and mitigation of potentially adverse human 
activities on SRWs in the FI, such as hydrocarbon 
exploration, shipping and marine aquaculture. 
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