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1.  INTRODUCTION 

Examining trophic relationships within marine eco-
systems is crucial to understanding marine commu-
nity dynamics. Sharks are highly diverse marine pred-
ators that often occupy high trophic levels and play 
important ecological roles essential for ecosystem 
functioning (Cortés 1999, Heithaus et al. 2010). Sev-
eral species are considered keystone species because 
they disproportionately influence the ecosystems they 
inhabit, often by regulating prey populations (Heupel 
et al. 2014, Roff et al. 2016). Those that exhibit mi gra -

tory movements or occupy broad home ranges con-
nect spatially separated food webs, influencing prey 
populations at varying trophic levels (Williams et al. 
2018). Predator effects can reach further than con-
trolling prey abundance, to the extent of initiating 
trophic cascades through predation (i.e. removal of 
prey through feeding) and risk effects (i.e. reducing 
foraging by prey in response to predation risk; Baum 
& Worm 2009, Matassa & Trussell 2011). Therefore, 
understanding the complexities of predator resource 
use is critical for gaining an overview of ecosystem 
structure and function. 
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The isotopic niche of white sharks is substantially smaller (0.5 ‰2), suggesting these sharks are less 
of a generalist predator than dusky and tiger sharks. Most white shark niches overlapped with 
dusky and tiger sharks (84 and 72%, respectively), indicating white sharks use resources with simi-
lar isotopic values. Sex did not influence isotopic values, and weak significant relationships existed 
between TL and δ15N values in tiger sharks. Given the smaller isotopic niche and associated spe-
cialised role of white sharks <400 cm TL, this species may be more vulnerable to food web pertur-
bations than generalist tiger and dusky sharks. This study gives new insight into the trophic inter-
actions of these co-occurring shark species in eastern Australia and is crucial for understanding the 
ecological role of these predators required for sound ecosystem management.  
 
KEY WORDS:  Foraging ecology · Resource sharing · Marine predators · Isotopic niche 

OPENPEN
 ACCESSCCESS

https://crossmark.crossref.org/dialog/?doi=10.3354/esr01368&amp;domain=pdf&amp;date_stamp=2024-12-12


Endang Species Res 55: 247–259, 2024

Consumer foraging behaviours are dynamic, shift-
ing in response to prey availability, competition, and 
intrinsic physiological processes (Schoener 1974, 
Heithaus & Vaudo 2004, Rangel et al. 2021a). Varia-
tion in foraging occurs among species due to different 
energy requirements, trophic level occupied, and 
morphological traits inherent to a specific species 
(Lucifora et al. 2009, Páez-Rosas et al. 2018, Rangel et 
al. 2021b). Tooth size can infer a shark’s foraging ecol-
ogy, with large broad crowns and serrated cutting 
edges associated with larger prey items, such as fish 
(Cooper et al. 2023). Therefore, interspecific variation 
in tooth morphology is a mechanistic facilitator of 
shark diet, and species exhibiting unique tooth mor-
phologies are likely to exploit different prey (Cullen 
& Marshall 2019), reducing competition and limiting 
resource sharing among species. Gape size is also a 
limiting factor that affects a predator’s food acqui-
sition and determines the upper limits to its trophic 
level (Arim et al. 2007). As a result, we would expect 
morphologically distinct species to show disparity in 
dietary preferences when foraging in similar habitats. 
Conversely, when tooth morphologies of sympatric 
species are similar, we would expect competition to 
increase. How behaviour might mediate these effects, 
however, is poorly understood. 

Trophic interactions among large sympatric shark 
species are highly variable (Hussey et al. 2011, Kin-
ney et al. 2011, Speed et al. 2011). Generally, interspe-
cific competition can lead to reductions in niche 
spaces and increase plasticity in diet within a trophic 
guild, with larger species having an advantage in 
being able to consume a wider variety of prey (Heupel 
et al. 2014). High levels of competition or limited 
resources can directly influence the survival of indi-
viduals or populations, and for these species to co -
exist, reducing niche overlap through resource par-
titioning may be a crucial component for survival 
(Matich et al. 2017, Heupel et al. 2019). Interspecific 
competition occurs throughout marine communities 
where multiple shark species coexist, suggesting 
adaptations to reduce competition have been devel-
oped (Speed et al. 2011, Heithaus et al. 2013, Heupel 
et al. 2019). Therefore, increasing our understanding 
of community dynamics in shark assemblages can 
assist in fisheries and conservation planning by iden-
tifying populations with smaller niches or in competi-
tion with other species, which would make them more 
susceptible to ecosystem perturbations. For example, 
ecosystem changes may alter community composi-
tion and reduce resource availability, impacting spe-
cialist species with narrow niches (Clavel et al. 2011, 
Cloyed et al. 2021). Conversely, ecological disturb-

ances can influence population dynamics within a 
community, mediating competitor abundance (Cas-
torani & Baskett 2020). 

Stable isotope analysis is widely applied to eluci-
date resource use and trophic interactions among 
shark species (Hussey et al. 2011, Speed et al. 2011, 
Matich & Heithaus 2014). The ability to collect sam-
ples using minimally invasive sampling techniques 
allows the application of tracing naturally occurring 
isotopes of carbon (δ13C values) and nitrogen (δ15N 
values) through marine ecosystems, which provides 
insight into the resource use, trophic niche and over-
lap of a species over temporal and spatial scales (Hus-
sey et al. 2012). Stable isotopes are a robust indi-
cator  of resource use compared to more traditional 
methods, such as stomach content analysis, which 
provides only a snapshot of recently consumed prey. 
Although less taxonomic resolution is gained, dietary 
information and patterns in resource use can be esti-
mated over a longer timescale, and limitations such as 
differing digestion rates of prey are non-existent. 
Stable isotopes also reflect incorporation of ingested 
nutrients and would thus better identify key re -
sources in animal diet. δ13C values are typically used 
to infer the carbon pathway from the base of the food 
web (i.e. primary productivity; Post 2002, Hussey et 
al. 2012). Increases in δ15N values in consumer tissues 
occur in predictable increments, which are then used 
to infer trophic position (Post 2002). 

Coastal regions in eastern Australia are highly pro-
ductive areas and dynamic habitats that support mul-
tiple shark species. Dusky Carcharhinus obscurus, tiger 
Galeocerdo cuvier and white sharks Carcharodon car-
charias move throughout the coastal waters of New 
South Wales (NSW), with seasonal movements asso-
ciated with water temperatures evident in tiger and 
white sharks (Lipscombe et al. 2020, Lee et al. 2021), 
whereas dusky sharks are known to use sub-tropical 
and warm temperate waters year-round (Taylor & Ben-
nett 2013). Dusky sharks are targeted by commercial 
fishers (Macbeth et al. 2009, Barnes et al. 2016) and 
are captured in the NSW shark control program (Lips -
combe et al. 2023). Tiger and white sharks are inci-
dentally captured in commercial fisheries and are tar-
get species in the NSW shark control program, where 
white sharks are most frequent species caught (Tate 
et al. 2019). In this region, overlaps in the presence of 
these sharks have been documented through catch 
data and acoustic and satellite telemetry (Lipscombe 
et al. 2020, 2023, Spaet et al. 2020, Tate et al. 2021), yet 
the resource use of these sympatric species is yet to 
be defined. All 3 species are characterised as general-
ist predators, with stomach contents and stable iso-
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tope analysis suggesting that teleosts, cephalopods and 
elasmobranchs contribute to their diet (Simpfendorfer 
et al. 2001, Ferreira et al. 2017, Clark et al. 2023), yet 
understanding the re source use in these 3 shark spe-
cies that facilitates their coexistence is limited in this 
region. These 3 species have overlapping size ranges, 
but while dusky and white sharks have similar tooth 
morphologies, tiger sharks have distinct primary and 
secondary tooth serrations (Moyer & Bemis 2017). 

This study uses stable isotopes of carbon and 
nitrogen to characterise the trophic ecology of dusky, 
tiger and white sharks in eastern Australia. We quantify 
the isotopic niche and overlap of these co-occurring 
species to provide new information on resource use 
and sharing to illuminate their interactions and eco-
logical roles within this region. We hypothesise that, 
across overlapping size ranges, white 
and dusky sharks will have similar iso-
topic niche sizes, since their teeth mor-
phologies are comparable, while tiger 
sharks of similar sizes will have a larger 
niche size, owing to their more differen-
tiated and unique tooth morphologies. 

2.  MATERIALS AND METHODS 

2.1.  Sample collection 

Dusky, tiger and white sharks were 
caught between Ballina and Lake Mac-
quarie, NSW, Australia (Fig. 1), from 
January 2021 to November 2022 using 
Shark Management Alert in Real-Time 
(SMART) drumlines (see Tate et al. 2021 
for gear configuration) deployed by 
NSW Department of Primary Indus-
tries as part of the Shark Management 
Program. Upon capture, sharks were 
secured to the vessel with a cross-
pectoral fin and tail rope. Sex and size 
(total length [TL] to the nearest cm) was 
recorded. Dusky sharks ranged in size 
from 127 to 355 cm (adult: >260 cm TL 
female, >270 cm male; Simpfendorfer 
et al. 2002). Tiger sharks ranged from 
148 to 365 cm (adult: >330 cm TL fe -
male, >290 cm male; Werry et al. 2014). 
White sharks ranged from 163 to 388 cm 
TL (adult: >480 cm TL female, >360 cm 
male; Bruce & Bradford 2012). Most 
sharks were classified as juveniles ac -
cording to life history characteristics 

defined for each species (Simpfendorfer et al. 2002, 
Bruce & Bradford 2012, Werry et al. 2014). 

Muscle tissue was collected adjacent to the dorsal 
fin from the epaxial musculature using a hand-held 
stainless steel biopsy probe (4 cm in length, 1 cm dia -
meter). Samples were stored on ice and transferred 
to –18°C upon return to shore. 

Due to logistic constraints, sampling across all loca-
tions and seasons for each species was not feasible. 
White sharks were primarily sampled in winter and 
spring at Ballina, Evans Head and Forster, tiger sharks 
across all seasons at Ballina, and dusky sharks in 
spring and autumn at Lake Macquarie, with fewer 
samples at Ballina and Coffs Harbour (Table S1 in the 
Supplement at www.int-res.com/articles/suppl/n055
p247_supp.pdf). However, while spatial and tempo-
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Fig. 1. Locations in New South Wales, Australia, where muscle of dusky, tiger 
and white sharks were collected. Map generated using the marmap package in  

R (Pante & Simon-Bouhet 2013)

https://www.int-res.com/articles/suppl/n055p247_supp.pdf
https://www.int-res.com/articles/suppl/n055p247_supp.pdf
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ral overlap of sampling efforts did not align for all 
species, data suggests that the sampled populations 
of all species are sympatric throughout the year. 
Recent catch reports from the NSW Department of 
Primary Industries SMART drumline data show all 3 
species are regularly caught across all locations rep-
resented here (https://www.sharksmart.nsw.gov.au/
technology-trials-and-research/smart-drumlines/nsw-
north-coast-smart-drumline-data), indicating a strong 
degree of spatial and seasonal overlap for the focal 
species of this study. Differences in sampling loca-
tions or seasons are unlikely to bias niche assess-
ments in a meaningful way. 

2.2.  Lipid and urea extraction 

Muscle (0.1 ± 0.01 g) samples were freeze-dried for 
48 h (Alpha LD14 plus freeze dryer) and homogenised 
in a TissueLyser LT (Qiagen) for 2 min to optimise tis-
sue exposure during lipid extraction. Lipids were 
extracted from muscle using a modified Bligh & Dyer 
(1959) method. Briefly, muscle was left in a solution of 
dichloromethane:methanol:Milli-Q H2O (1:2:0.8 ml) 
for 18–24 h. The following morning, the muscle was 
transferred to a clean glass tube and dried for 48 h to 
allow residual solvent to evaporate. 

Elasmobranch tissue retains nitrogenous waste com-
pounds, urea and trimethylamine N-oxide, used for 
osmoregulation. To avoid bias in stable isotope values, 
both compounds require removal from tissue before 
stable isotope analysis (Hussey et al. 2012, Kim & 
Koch 2012). The muscle was soaked in 2 ml of de -
ionised water for 10 min, vortexed for 1 min and then 
centrifuged for 2 min, and water was extracted using a 
syringe. This washing method was performed 3 times 
and samples were dried in the oven at 60°C for 48 h 
before grinding to a fine powder using a mortar and 
pestle. 

2.3.  Stable isotope analysis 

Dried tissue samples were weighed (10–20 mg) 
into tin capsules for stable isotope analysis using an 
automated microbalance (Carvalho 2021). Samples 
were analysed for δ13C and δ15N values using an iso-
tope ratio mass spectrometer (Thermo Delta V Plus) 
coupled to an elemental analyser (Thermo Fisher 
Flash EA) via an interface (Thermo Fisher Conflo 
IV). The isotopic ratios are expressed in delta (δ) 
values as the deviations from conventional standards 
in parts per thousand (‰) using the following for-

mula: δ13C or δ15N = [(Rsample/Rstandard – 1)] × 1000 
(‰), where Rsample is the ratio of heavy to light iso-
tope and Rstandard is the ratio of heavy to light isotope 
in the reference standard. Internal working stan-
dards (glycine: δ13C = 41.8, δ15N = 2.0; glucose: 
δ13C  = –10.5; collagen: δ13C = –21.5, δ15N = 4.8) 
were standardised against international reference 
materials (USGS64: δ13C = –40.8, δ15N = 1.8; 
USGS65: δ13C = –20.3, δ15N = 20.7; USGS64: 
δ13C  = –0.7, δ15N = 40.8; Schimmelmann et al. 
2016). δ13C and δ15N values are reported relative 
to  the standards Vienna PeeDee Belemnite (VPDB) 
and atmospheric nitrogen (N2) with a precision of 
0.15‰ (δ13C) and 0.3‰ (δ15N). 

2.4.  Quantification of isotopic niche and overlap 

We compared the isotopic niche and niche overlap 
of dusky, tiger and white sharks using Bayesian eco-
logical niche models implemented in R v.4.3.1 (R 
Core Team 2023). Specifically, we quantified the iso-
topic niche of individual species using Stable Isotope 
Bayesian Ellipses in R (SIBER; Jackson et al. 2019). 
SIBER uses a Bayesian inference framework and mul-
tivariate ellipse-based metrics to estimate core isoto-
pic niches using the standard ellipse area correction 
(SEAc), which is a more robust alternative to the con-
vex hull area that encompasses all isotopic data. This 
ellipse also accounts for underestimating the ellipse 
due to small sample size or extreme values (Jackson 
et al. 2011) and represents isotopic niche size (New -
some et al. 2007). Niche overlap was calculated using 
the nicheROVER package (Lysy et al. 2023), where 
the probability of overlap among species was calcu-
lated using 1000 Monte Carlo draws with an α-level of 
0.95 specified. This α-level was appropriate given the 
large (>30) sample sizes for each species, making it 
more likely that we have captured the full ranges of 
isotope values in a population. However, often the 
40% probability region is used for niche analysis to 
have higher degrees of certainty with smaller sample 
sizes (Syväranta et al. 2013), and so niche analyses 
were also calculated with the α-level at 0.4. We 
visually assessed the isotopic values of dusky, tiger 
and white sharks relative to several potential prey 
values reported by Lipscombe et al. (2024). Although 
multiple size classes were sampled (i.e. young of the 
year, juvenile, mature), few (<10) young-of-the-year 
and mature sharks were sampled from each species. 
Grouping by size class would not meet the minimum 
sample size required for isotopic niche analysis (Jack-
son et al. 2011). 
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2.5.  Relationship with sex, TL and mouth width 

A series of univariate linear models were used to 
describe isotope values in response to the factors of 
season, sex and TL for dusky and tiger sharks (see 
Lipscombe et al. 2024 for white shark isotope seasonal 
variation and TL relationship). The effect of sex (2 
levels; fixed) and TL (continuous) on isotopic signa-
tures in muscle tissue was assessed by ANOVA 
derived from each linear model (Table S2). All models 
were tested for normality and homogeneity in the 
residuals. Due to a lack of coverage across factors 
(season and location), for tiger and dusky sharks, 
these factors were excluded from the model. Linear 
models were used to examine the relationship be -
tween mouth width (cm) and TL (cm) for each species. 
Two outliers, deemed as incorrect measurements, 
were excluded from the analysis. 

3.  RESULTS 

We collected muscle tissue from 30 dusky (16 
female, 14 male, 128–355 cm TL), 30 tiger (17 female, 
13 male, 148–365 cm TL), and 103 white (60 female, 
43 male; 163–388 cm TL) sharks. The size ranges of 
sharks sampled suggest individuals were mostly juve-
niles, with few adults for all species (Table 1, Fig. 2). 
Mean values of δ13C were lowest in dusky sharks (–16.4 
± 0.5‰), followed by white (–16.2 ± 0.5‰) and tiger 
sharks (–16.1 ± 0.4‰). Dusky and white sharks had 
the highest mean δ15N value at 15.5‰ (±SD 0.8 and 
0.3), with tiger sharks lower at 14.2‰ (±0.3). 

Tiger sharks had the broadest isotopic niche with 
the largest isotopic niche area (SEAc 1.06‰2), fol-
lowed by dusky and white sharks with narrower isoto-
pic niches (SEAc 0.89‰2 and 0.50‰2; Fig. 3). Bay-
esian niche overlap modelling showed minimal 
overlap of the core niche areas (40%) among the 3 
species (Fig. 3a), which increased when the full range 
of isotope values (95%) representing the population 
were included (Fig. 3b). Niche overlap was greatest 
for white sharks, where the mean posterior probabil-
ity that white sharks would be found in the niche of 

dusky sharks was 84%, and for tigers, 72% (Table 2, 
Fig. 4). Slightly lower values were found for dusky 
sharks, with an overlap of the tiger shark niche at 55% 
and white sharks at 61% (Table 2, Fig. 4). Tiger sharks 
overlapped the least, 31% with dusky sharks and 23% 
with white sharks, reflecting their overall larger isoto-
pic niche (Table 2, Fig. 4). In relation to sampled prey 
species, the majority of individuals fell within the 
isospace (Fig. 5). 

Linear models showed no effect of sex or TL on 
dusky shark isotopic values (p > 0.05). No effect of sex 
was found on tiger shark isotopic values. However, 
there was a weak but significant relationship for TL in 
δ13C and δ15N values in tiger shark muscle (δ13C: p = 
0.046, R2 = 0.16; δ15N: p = 0.008, R2 = 0.22; Fig. 6, 
Table S2). Significant relationships between mouth 
width and TL were present for all species (dusky, 
p ≤ 0.001, R2 = 0.87; tiger, p ≤ 0.001, R2 = 0.83; white, 
p ≤ 0.001, R2 = 0.86; Fig. 7). 

4.  DISCUSSION 

Our results provide new insight into the trophic ecol-
ogy of dusky, tiger and white sharks in sub-tropical 
eastern Australian waters and this is the first study 
to  examine the isotopic niches of these 3 sympatric 
shark species. White sharks’ isotopic niche was con-
siderably smaller than tiger and dusky sharks, with 
this species using a narrower range of resources with 
similar isotopic ratios. We found a high degree of 
overlap between white and dusky sharks and white 
and tiger sharks, suggesting that although white 
sharks are the ‘default’ top predator, with the excep-
tion of young-of-the-year sharks, other large pred-
ators with similar size ranges can likely compete with 
them for resources. The smaller niche occupied by 
white sharks may force other species to expand and 
use alternative resources. However, little information 
on the diet of dusky sharks is available for this region. 
Overall, tiger shark muscle had lower δ15N values, 
below those of the sampled prey, indicating these 
sharks were feeding on prey at lower trophic levels. 
Variation in δ13C values for all 3 species indicates for-
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Species         n              δ13C (‰)                                   δ15N (‰)                             Total length (cm) 
                                  Mean ± SD          Min.            Max.           Mean ± SD           Min.           Max.            Mean ± SD             Range 
 
Dusky          30       –16.4 ± 0.5         –15.7          –18.3            15.5 ± 0.8             12.9             16.5              196 ± 69.0            128–355 
Tiger            30       –16.1 ± 0.4         –15.4          –17.1            14.2 ± 1.0             11.7             15.5              232 ± 50.7            148–365 
White         103      –16.2 ± 0.5         –14.6          –17.5            15.5 ± 0.3             14.6             16.4              245 ± 42.5            163–388 

Table 1. Carbon and nitrogen stable isotope values for dusky, tiger and white sharks captured in eastern Australia
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aging in coastal habitats dominated by coastal macro-
phytes (–14‰) and pelagic phytoplankton (–18‰; 
Hobson 1999) and is supported by earlier studies for 
tiger (Heithaus et al. 2013) and white sharks (Lips -
combe et al. 2024). 

4.1.  Isotopic niche size 

Generally, large predators are assumed to be dietary 
generalists (Matich et al. 2011), which is reflected by 
a larger isotopic niche size due to their broad diet 
(Vander Zanden et al. 2010, Thomson et al. 2012, 
Sanders et al. 2015). White sharks are broadly charac-
terised as generalist predators throughout their distri-
bution globally, feeding on prey from low to high 
trophic levels from coastal and offshore regions (Kim 
et al. 2012, Tamburin et al. 2020, Clark et al. 2023). In 
Baja California, Mexico, Tamburin et al. (2019) report 
the isotopic niche of young-of-the-year white sharks 
to be 1.5‰2. In comparison, French et al. (2018) de -
scribes a slightly larger niche of 2.0‰2 for juvenile 
white sharks <3 m TL. Although a direct comparison 
of isotope values cannot be made with those of white 
sharks in this study due to different underlying food 

webs, relative comparisons of the small isotopic niche 
reported here indicate either using a narrower range 
of resources or consuming numerous resources with 
similar isotopic values. Within generalist populations, 
individuals can act as specialists and have a much 
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Fig. 2. Length–frequency histogram of dusky (n = 30), tiger  
(n = 30) and white (n = 103) sharks

Fig. 3. Bivariate stable isotope plots for δ13C and δ15N values 
obtained from the muscle of dusky (n = 30), tiger (n = 30) 
and white (n = 103) sharks. Points represent values for indi-
vidual sharks, and standard ellipse areas contain (a) 40% and  

(b) 95% of the data

                           Dusky                    Tiger                       White 
 
Dusky                  NA                   55.1 (3.5)               61.5 (20.0) 
Tiger               31.5 (6.5)                    NA                        23.5 (6.2) 
White            84.1 (40.8)            71.6 (3.7)                      NA 

Table 2. Relative isotopic niche overlap values based on 95% 
(40%) of the niche regions calculated in nicheROVER, repre-
senting the probability of species A (rows) being found in 
the same region as species B (columns). Values >60% repre-
sent a  high likelihood of resource competition (bold). NA:  

not applicable
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 narrower niche relative to the entire population 
(Vander Zanden et al. 2010, Grainger et al. 2023). 
Grainger et al. (2023) recently reported on tooth col-
lagen stable isotopes of juvenile white sharks in east-
ern Australia, finding a high level of individual 
 specialisation within a broader population niche. 
Although tooth collagen isotopes reflect diet over a 
shorter time scale when full tooth rows are used, the 
total timespan integrated by these tissues (~200 d) is 
not very dissimilar to the annual turnover of muscles, 
and so results suggest these white sharks are of simi-
lar size and occupy the same region. The narrow iso-
topic niche seen here may reflect higher individual 
specialisation, where these sharks consume a limited 
range of resources compared to the entire population. 
Seasonal availability in prey may also be driving this 
specialisation in this region, with seasonal changes 
detected in the isotopic signatures of these white 
sharks (Lipscombe et al. 2024). Further multi-tissue 
analysis studies may elucidate temporal variation in 
white shark isotopic niche size. 

The isotopic niche size of tiger and dusky sharks 
was considerably larger than white sharks, indicating 
they use a larger variety of resources from high and 
low trophic levels, indicated by the broad range of 
δ15N values. Dietary studies corroborate this finding, 
reporting a highly varied diet for tiger (Heithaus 2001, 
Simpfendorfer et al. 2001) and dusky sharks (Dudley 

et al. 2005, Rogers et al. 2012), where a wide range of 
prey from various taxonomic groups and trophic 
levels are consumed. Both species are characterised 
as generalist consumers, with tiger sharks labelled a 
‘true’ generalist (i.e. individual tiger sharks consis-
tently follow a generalist diet) (Matich et al. 2011). 
However, the isotopic niche sizes of tiger sharks 
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Fig. 4. Estimated niche overlap probability of dusky, tiger and white sharks based on posterior distributions calculated in  
nicheROVER based on 95% niche region size (Lysy et al. 2023) 

Fig. 5. Bivariate stable isotope plot for δ13C and δ15N values 
obtained from the muscle of dusky, tiger and white sharks 
corrected for trophic enrichment using values from Hussey 
et al. (2010) with average stable isotope ratios (±SD) of po-
tential prey species sampled from northern New South Wales,  

Australia
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reported here are smaller than larger sharks sampled 
in the same region (1.2 ‰2, Ferreira et al. 2017). Con-
siderable differences in niche sizes may be attributed 
to shark size, as the TL of sharks sampled in this study 
were smaller individuals, which may preferentially 
feed on fewer prey species than their larger con -
specifics due to morphological limitations. This study 
is the first to report the stable isotope niche of dusky 
sharks in eastern Australia, with few studies on this 
species, globally. Although we acknowledge that a 
direct comparison cannot be made to other regions, 
Petta et al. (2020) report a much broader isotopic 
niche across all life stages of dusky sharks in South 
Africa (0.7–1.6‰2). The differences in niche sizes 
seen in both tiger and dusky sharks, compared to ear-
lier studies, suggest a less diverse range of resources 
is being used, which may be attributed to intrinsic 
(e.g. energy requirements, migration) or extrinsic 
(e.g. environmental variables, prey availability) fac-
tors (Vidal et al. 2023). 

White and dusky sharks had the highest mean δ15N 
values, suggesting these species occupy higher trophic 
positions and consume prey from higher trophic levels, 
similar to another marine predator in eastern Aus-

tralia (15.2‰, Tursiops aduncus; Ansmann et al. 2015). 
Based on stomach contents and environmental DNA 
(eDNA), juvenile white sharks of similar sizes in this 
region primarily prey on coastal and pelagic teleosts, 
elasmobranchs, including whaler shark Carcharhinus 
spp. and tiger sharks (Grainger et al. 2020, Clark et al. 
2023). There is limited information on dusky shark 
diet in eastern Australia, with South and Western Aus-
tralian studies reporting this species preys on large 
pelagic teleosts, cephalopods and elasmobranchs 
(Simpfendorfer et al. 2001, Rogers et al. 2012), sup-
porting our findings. Conversely, tiger sharks in this 
study had a larger range of δ15N values and the lowest 
δ15N mean of the 3 species, suggesting the diet of 
some individuals consists of lower trophic-level prey, 
or used and fed from a food web in the preceding year 
with low baseline δ15N values. These results align with 
those from South Africa, where tiger sharks occupy a 
low trophic position compared to other large sharks 
(Hussey et al. 2015). The broad-scale movements of 
tiger sharks along the east coast include the waters of 
southern Queensland, north to the Great Barrier Reef 
(Holmes et al. 2014, Lipscombe et al. 2020). These 
regions are characterised by coastal-associated food 
webs that originate with seagrass, supporting herbi-
vorous turtles and dugongs, known prey species for 
tiger sharks that typically have low δ15N values (Burk-
holder et al. 2011). Interpretation of isotopic values of 
highly mobile marine predators requires considera-
tion. All 3 species included in this study are highly 
migratory, moving seasonally north/south along the 
coastline throughout tropical, sub-tropical and tem-
perate waters (Barnes et al. 2016, Lipscombe et al. 
2020, Spaet et al. 2020); therefore δ15N and δ13C 
values are reflective of prey species from different 
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Fig. 6. (a) δ13C and (b) δ15N values for tiger shark muscle in rela-
tion to total length. Shaded area represents 95% confidence  

interval. Only significant relationships are shown

Fig. 7. Relationship between mouth width and total length of  
dusky, tiger and white sharks (outliers removed)
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ecosystems that have distinct isotopic baseline values 
and food chain lengths (Young et al. 2010, Shiffman et 
al. 2019, Shipley et al. 2019). 

4.2.  Isotopic niche overlaps and competition 

Isotopic niche comparisons between white and dusky 
sharks exhibited a high degree of overlap (84%), as 
did those between white and tiger sharks (72%). In 
this study, species with larger trophic niches, such as 
dusky and tiger sharks, demonstrate a greater likeli-
hood of overlapping with co-occurring species (Bolnick 
et al. 2010). However, increased niche overlap does 
not necessarily lead to heightened competition among 
populations (Gallagher et al. 2017), as the diverse re -
source use of generalist species restricts the number 
of individuals affected by niche overlap to a minimum 
(Bolnick et al. 2010). Similarities in diet and overlap 
are regularly observed in co-existing shark species 
(Gallagher et al. 2017, Shiffman et al. 2019), more spe-
cifically between young-of-the-year white and juve-
nile mako sharks Isurus oxyrinchus in Baja California 
(Tamburin et al. 2019). Although this overlap was sub-
stantially smaller (30%) than reported here, partial 
similarities in diet and habitat use were evident in 
these morphologically similar sharks. High similar-
ities in diet often occur in other coexisting elasmo-
branchs when morphology and size are comparable 
between species (Tilley 2011, Kiszka et al. 2015). We 
expected minimal overlap between dusky and white 
sharks, reflecting the lack of overlap in the smaller 
size ranges of our samples and the morphological lim-
itations, such as mouth gape, that would be associ-
ated with this. Similarly, the mouth gape of tiger 
sharks is slightly larger than white sharks throughout 
all size classes, which may provide access to a broader 
range of prey and thus larger isotopic niches. Although 
some degree of competition for resources may be oc -
curring between these species, further research using 
eDNA or stomach contents is required to adequately 
describe the prey species of dusky and tiger sharks in 
this region. We suggest the isotopic niche overlap of 
dusky and white sharks reported here may result from 
these sharks’ sharing habitats with similar primary pro-
ductivity pathways and consuming prey items with 
comparable isotopic signatures. 

Alleviating competition between co-occurring spe-
cies is achieved through various strategies, including 
shifting foraging habitat or resource preferences 
(Hawlena & Pérez-Mellado 2009, Kinney et al. 2011). 
The minimal isotopic niche overlap observed here 
between dusky and tiger sharks indicates that they 

share few resources and may vary their trophic inter-
actions to reduce competition. Trophic plasticity is 
well documented in marine and terrestrial environ-
ments (Terraube et al. 2011, Shiffman et al. 2019) and 
benefits predators through a greater resilience to de -
clines in the availability of prey (Munroe et al. 2014). 
The large trophic niches, combined with the lack of 
overlap between these sharks, suggest plasticity in 
resource use during broad-scale movement through 
various habitats. Both species are reported to under-
take broad-scale migrations (Holmes et al. 2014, Brac-
cini et al. 2018), yet tiger sharks utilise a wider range 
of horizontal and vertical habitats (Holmes et al. 2014, 
Barnes et al. 2016, Lipscombe et al. 2020), therefore 
increasing foraging area potential and enabling a 
higher degree of trophic plasticity. 

4.3.  Relationships between size and δ13C and  
δ15N values 

This study found minimal significant effects of TL 
on δ13C and δ15N values for the 3 species. The negative 
relationship observed between δ13C and δ15N values 
in tiger sharks likely results from larger individuals 
having a greater physical capacity to predate upon 
large marine herbivores that have low δ15N values 
(e.g. turtles and dugongs) compared to smaller sharks. 
This finding is consistent with previous stable isotope 
analysis of tiger sharks in this region by Ferreira et al. 
(2017) that reported lower δ13C values with increasing 
size in the dermis, red blood cells and plasma. This is 
further supported by stomach content analysis 
revealing a shift in diet to larger prey with increasing 
size (Lowe et al. 1996). Ontogenetic diet shifts are 
well documented in this species (Carlisle et al. 2012, 
Tamburin et al. 2020), with decreasing δ15N values 
with size reported by Carlisle et al. (2012), and smaller 
sharks (2.6–3.4 m TL) had the highest δ15N values, 
similar to those seen here. 

4.4.  Study limitations 

Valuable insight into the trophic ecology of a spe-
cies can be gained using stable isotopes (Post 2002, 
Newsome et al. 2007, Hobson 2023). We acknowledge 
that while the data presented here provides a com -
prehensive overview of the isotopic niches and over-
laps of these species, there are limitations (Hussey et 
al. 2012, Layman et al. 2012, Shiffman et al. 2012). 
Interpretation of stable isotopes requires caution, as 
spatial and temporal variation of isotopes exists in 
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marine environments, influenced by environmental 
and anthropogenic factors (Pethybridge et al. 2018a,b, 
Matich et al. 2021). Spatial variation of study species 
and prey taxa impact isotopic niche dynamics, and 
migratory species, such as those reported here, in -
tegrate isotopic variability of multiple baselines 
within their tissues (Pethybridge et al. 2018b). While 
these samples were collected within a relatively small 
geographical area and latitudinal range (28.6°S and 
33.0°S), foraging patterns may vary over time and 
space (Nielsen et al. 2018), and the movement of these 
sharks in the year before sampling is unknown. Ad -
ditionally, by comparing isotopic signatures be tween 
2 tissues (e.g. muscle and plasma), temporal variation 
in resource use of these sharks could be illuminated. 

Although some prey sources used here have been 
identified in white shark diets (Grainger et al. 2020, 
Clark et al. 2023), specific resources used by dusky 
and tiger sharks could be determined using a multi-
disciplinary approach (e.g. eDNA, stomach content 
analysis), which would provide greater insight into 
their trophic ecology and resource partitioning among 
these species. Stable isotope Bayesian mixing models 
could further elucidate foraging areas and diet com-
position. Additionally, including sulphur stable iso-
topes and fatty acids would enable the differentiation 
between benthic nutrient pathways from pelagic pri-
mary production (Peterson & Fry 1987). 

5.  CONCLUSION 

Understanding the trophic relationships among large 
predators benefits the management of coastal ecosys-
tems. Here, we used stable isotope analysis to examine 
the isotopic niches and overlaps of dusky, tiger and 
white sharks in eastern Australia using δ13C and δ15N 
isotopes. Specifically, the smaller isotopic niche of 
white sharks indicates this species may use a nar-
rower range of resources, resulting from a higher 
degree of individual specialisation or seasonal changes 
in prey availability limiting the number of resources 
used. Larger isotopic niches in dusky and tiger sharks 
were driven by a broader range of δ15N values, sug-
gesting they feed on prey from a wider range of 
trophic levels. The white shark isotopic niche had a 
high overlap with co-occurring species, suggesting 
potential resource sharing, which may be alleviated 
by the more generalist species using a broader range 
of prey. This study highlights the importance of coas-
tal habitats in this region. To better understand the 
foraging patterns and diet of these species, combin-
ing diet analysis, such as eDNA with satellite teleme-

try, will provide more comprehensive information of 
habitat use patterns that can be matched with the ani-
mal’s trophic ecology. 
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