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1.  INTRODUCTION 

Trophic interactions between marine mammals and 
seabirds have been documented extensively. Many 
are defined as facultative commensalisms in which 
seabirds benefit from incidental feeding opportun-
ities created by marine mammals without benefiting 
or harming the mammals (Leung & Poulin 2008). 
However, commensalism can occasionally transform 
into parasitism or predation (Aurioles & Llinas 1987, 
Leung & Poulin 2008, Pavés et al. 2008, Gallagher et 
al. 2015), given the foraging plasticity of seabirds 
(Paiva et al. 2010, Cherel et al. 2014, Seguel et al. 
2017). Micropredation occurs when an organism 
attacks and feeds on multiple victims (like a predator) 
but takes only small amounts of tissue (like a para-
site). Micropredators open and/or extend wounds on 
their victims and increase their energy expenditure 
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ABSTRACT: Reports of seabirds attacking marine 
mammals have become frequent in the 2000s. South-
ern right whales Eubalaena australis off Península 
Valdés (PV), Argentina, have suffered the effects of 
micropredation by kelp gulls Larus dominicanus since 
at least the 1970s. During 2003–2013, this population 
experienced 9 yr of unprecedented high calf mortal-
ity. Using a 25 yr dataset (1995–2019) of focal follows 
of gull–whale interactions, we studied long-term 
changes in gull attack intensity (attacks h–1) and fre-
quency, and explored whether they influenced calf 
mortality. We also asked whether calf mortality was 
affected by prey density at maternal feeding grounds 
during gestation. Applying Bayesian models, we found 
that the intensity and frequency of attacks increased 
significantly from 1995 to the 2000s, and that in 2004–
2019, calves received 2.85 times as many attacks as 
did mothers. Moreover, attacks significantly con-
tributed to increase the probability of calves dying, 
such that a year with average overall harassment had 
2.26 times the mortality of a hypothetical year with no 
attacks. In years of high intensity and frequency of 
attacks, many older calves died near the end of the 
season, probably reflecting the cumulative effect of 
gull harassment on calf health. However, calf mortal-
ity was not affected by prey density, and extremely 
high mortality was not related to extremely high fre-
quency or intensity of attacks, indicating that deaths 
are also influenced by other unidentified factors. 
These findings imply that chronic micropredation 
contributed to the unprecedented high calf mortality 
observed in PV and that other marine mammal popu-
lations ex periencing seabird attacks could be 
threatened.  
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A southern right whale calf with gull wounding on its back 
being harassed by a native kelp gull at Península Valdés, 
Argentina.  

Photo: Nicolás Lewin
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and stress levels as a consequence of persistent har-
assment (Rowntree et al. 1998, Poulin 2011, Marón et 
al. 2015, Fernández Ajó et al. 2020, Azizeh et al. 2021). 
Prolonged intense micropredation can decrease the 
growth of prey or host organisms (Jones 2007) and 
even lead to death, particularly if the victims are 
young (Aurioles & Llinas 1987, Gallagher et al. 2015, 
Agrelo et al. 2023). Reports of seabirds attacking mar-
ine mammals in coastal and oceanic habitats have 
become more frequent in recent decades, with many 
cases involving gulls attacking cetaceans (Groch 
2001, Pavés et al. 2008, Gallagher et al. 2015, Seguel et 
al. 2017, Towers & Gasco 2020, Harkness & Sprogis 
2020, Carroll et al. 2022). 

Southern right whales (SRWs) Eubalaena australis 
at Península Valdés (PV), Argentina, have been 
harassed by kelp gulls Larus dominicanus since at 
least the 1970s (Fig. 1A–C) (Thomas 1988, Marón et 
al. 2015). PV is the largest calving ground for SRWs in 
the southwest Atlantic Ocean, where mothers give 
birth to their calves and remain for about 3 mo in 
winter and/or spring (June–December) (Rowntree et 
al. 2001). In the decades following the first reported 
attacks, gulls have undergone behavioural shifts in 
their interactions with whales at PV. In the 1980s, 
gulls predominantly attacked mothers and other 
adults in the northern gulf (Golfo San José; Fig. 1D) 
(Thomas 1988, Marón et al. 2015). By 1995, attacks 
were evenly distributed among mothers and calves 
and were also frequently recorded in the southern 
gulf (Golfo Nuevo; Fig. 1D) (Rowntree et al. 1998, 
Marón et al. 2015, Sironi & Rowntree 2019). During 
the 2000s, calves exhibited 3 times as many gull-
inflicted lesions or wounds as their mothers. Today, 
calves remain the preferred targets of gulls (Marón et 
al. 2015, Sironi & Rowntree 2019). 

Gull attacks harm the well-being of mother–calf 
pairs during the vulnerable stage of lactation. Gull 
attacks cause lesions on the whales’ backs (Fig. 1A–
C), which may provide entry points for pathogens 
(Fiorito et al. 2016) and facilitate the development of 
infections (McAloose et al. 2016). Gull harassment 
also increases the energy expenditure of mother–calf 
pairs, tripling the frequency of high-energy-consuming 
behaviours (e.g. medium and fast travel) and reducing 
the time dedicated to nursing and resting (Rowntree 
et al. 1998, Azizeh et al. 2021). This elevated energy 
consumption occurs at a time when mother–calf pairs 
depend mostly on maternal stored energy gained 
in the previous feeding season (Lockyer 2007, Chris-
tiansen et al. 2018, Nielsen et al. 2019). Persistent gull 
harassment also leads to physiological stress in calves, 
as their adrenal glucocorticoid levels correlate with 
their degree of wounding (Fernández Ajó et al. 2018, 
2020). The energetical and physiological effects of 
gull micropredation and the gull-inflicted lesions 
accumulate throughout the calving season (Marón et 
al. 2015, Fernández Ajó et al. 2018, 2020), slowly 
degrading mother–calf health. 

The SRW population at PV experienced 9 yr with 
unusually large numbers of dead calves between 2003 
and 2013, compared to the previous 3 decades (1971–
2002; Rowntree et al. 2013, Sironi et al. 2014, Marón 
2015). The number of dead calves was markedly 
higher than expected relative to the population’s 
growth rate in 2003, 2005 and 2007–2013, and calf 
mortality in 2012 showed the highest rate ever pre-
viously recorded for the species (Rowntree et al. 2013, 
Marón 2015). Many potential factors of mortality 
have been considered, including malnourishment, 
biotoxins, trauma and disease (Thomas et al. 2013, 
McAloose et al. 2016, Wilson et al. 2016,  Fernández 

Fig. 1. (A) Southern right whale calf with an extended gull lesion on its back, being attacked by a kelp gull. (B) Kelp gull attack-
ing a calf with several small lesions. (C) Cross-section through skin and blubber of a dead calf showing the depth of 2 gull 
lesions. The length of the ruler is 15 cm. (D) Península Valdés, Argentina, showing study sites (blue circles). Photo credits:  

(A) Nicolás Lewin, (B) María Piotto and (C) Mariano Sironi (ICB/SRWHMP)
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Ajó et al. 2020, Marón et al. 2021); alone, none of them 
explain this unusual mortality. However, 2 factors 
remain to be evaluated: prey density in feeding 
grounds and gull attacks. Prey density is known to 
affect female reproductive success, as SRWs off PV 
and Brazil have fewer calves when the abundance of 
Antarctic krill Euphausia superba decreases in their 
feeding grounds such as Islas Georgias del Sur/South 
Georgia (Leaper et al. 2006, Seyboth et al. 2016). Even 
though signs of malnutrition were not evident in 
stranded calves at PV (Fernández Ajó et al. 2020, 
Marón et al. 2020, 2021), prey density should be con-
sidered as a relevant variable potentially af fecting 
female reproduction and calf mortality at PV. Kelp 
gull micropredation is another variable that should be 
assessed, as it is consistently found to affect the 
whales’ behaviour, physiology and overall well-being 
throughout the study period (Rowntree et al. 1998, 
Thomas et al. 2013, Marón et al. 2015, Fiorito et al. 
2016, Fernández Ajó et al. 2020, Azizeh et al. 2021). 
Although previous studies have suggested that gull 
attacks might explain the un precedented high calf 
mortality recorded, the difficulty involved with test-
ing this hypothesis has also been emphasised (IWC 
2013, 2016). 

Here, we present an analysis of long-term temporal 
and spatial changes in kelp gull attacks on mothers 
and calves and explore potential causes of the un -
usually high calf mortality at PV. Using multi-decade 
data sets on SRW necropsies, gull–whale interactions 
and prey density in feeding grounds, we inquire 
whether (1) the intensity (attacks h–1) and frequency 
of attacks changed for mothers and calves, gulfs and 
years in 1995–2019; (2) gull harassment and prey 
density may have increased calf mortality; and (3) the 
attacks may have specifically contributed to late-
season calf deaths by degrading calf health through 
the calving season. 

2.  MATERIALS AND METHODS 

2.1.   Data set 

2.1.1.  Gull-attack observations 

We used the 25 yr Gull Attack Monitoring Program 
data set gathered at PV by the Instituto de Conser-
vación de Ballenas (ICB). Data were collected in 
Golfo San José (Campamento 39; 42° 34’ 38.4” S, 
64° 18’ 25.2” W) in 1995–2019, and in Golfo Nu- 
evo (Punta Pirámides-La Adela; 42° 22’ 52.9” S, 
64° 03’ 19.0” W) in 1995 and 2005–2019 (Fig. 1D). 

Observations were made in September, a month with 
high abundance of whales and high frequency of kelp 
gull attacks (Payne 1986, Sironi et al. 2009, Fazio et al. 
2012, Crespo et al. 2019). As described by Rowntree et 
al. (1998), we made our observations from cliffs, using 
20× wide-angle spotting scopes to visually follow 
mother–calf pairs and record whether they were 
attacked by gulls. Focal pairs were selected by their 
proximity to the observation site and were abandoned 
when they were too far away to detect whether gulls 
were attacking them. We identified focal individuals 
by their callosity patterns (Payne & Dorsey 1983), pig-
mentation patterns (Eroh et al. 2017) and/or by the 
overall severity of gull-inflicted lesions (less, moder-
ate or extremely injured) on their backs. This short-
term identification protocol allowed us to distinguish 
whales from their immediate neighbours of the day 
but not between different days or years. We defined a 
‘gull attack’ as any event in which the bill of a kelp 
gull reached the body of a whale (Thomas 1988, 
Rowntree et al. 1998, Sironi et al. 2009). During each 
focal follow, we recorded the occurrence and the 
number of attacks on mother–calf pairs during 5 min 
intervals (Table S1 in the Supplement at www.int-
res.com/articles/suppl/m746p001_supp.pdf). 

2.1.2.  Gull attack indexes 

Three gull attack indexes were defined to charac-
terise the intensity and frequency of kelp gull attacks 
on mother–calf pairs: gull attack pressure on calves 
(GAPC), gull attack pressure on mothers (GAPM) and 
gull attack frequency (GAF). GAPC and GAPM are 
the daily average number of attacks per hour on 
calves and mothers, respectively, and represent the 
intensity of attacks. We calculated GAPC and GAPM 
as the quotient of the total number of attacks in one 
day over the number of observation hours on that day. 
GAF is the daily proportion of observation intervals 
with at least one attack on either the mother or the 
calf, considered together, and represents the fre-
quency with which attacks occurred at any intensity 
(also the proportion of daylight time during which a 
mother–calf pair experienced an attack). GAF on the 
pair was calculated as the fraction of 5 min intervals 
with at least one attack on either mother or calf using 
the attack-occurrence data. Annual means of the gull 
attack indexes were calculated as the averages of 
their daily values for September. Data from 1996 to 
2003 in Golfo San José and from 1996 to 2004 in Golfo 
Nuevo were excluded because sample sizes were too 
small to adequately support the analyses. 
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2.1.3.  Dead calf data 

Necropsies of SRW calves were conducted an -
nually by the Southern Right Whale Health Monitor-
ing Program (SRWHMP). From June to December, 
the SRWHMP field team located dead calves follow-
ing reports of sightings from the community and by 
land-based and aerial surveys along the PV coastline 
(495 km). Along with the apparent date of death and 
location of each calf, the SRWHMP provided calf 
length (straight length from snout to fluke notch, in 
m) and the condition of its umbilicus (open or healed, 
when available) for all dead calves reported in 2003–
2019. We studied calf age considering their length 
and the condition of the umbilicus (proxies of calf 
age; McAloose et al. 2016, Christiansen et al. 2022). 
Although the present study does not work with calves’ 
age classes, hereafter we will refer to calves with an 
open umbilicus and <5 m in length as newborns or 
neonates (<2 wk old) and calves with a healed umbili-
cus and >5 m in length as older calves (2 wk–3 mo; 
McAloose et al. 2016, Christiansen et al. 2022). 

2.1.4.  Annual calf counts 

A photo-identification survey was conducted by the 
ICB and Ocean Alliance every year near the time of 
peak whale abundance in early September (Payne 
1986, Crespo et al. 2019). Mother–calf pairs along the 
coast were counted during each survey. Since many 
mothers and calves stay for around 3 mo in the gulf 
where the calf is born (Rowntree et al. 2001), we 
approximated the number of calves born each season 
in each gulf as the sum of the number of living calves 
counted during surveys and the number of calves that 
died before the surveys were conducted. 

2.1.5.  Prey density: sea surface temperature  
as a proxy for krill density 

Islas Georgias del Sur/South Georgia is one of the 
feeding grounds for SRWs in the South Atlantic (Best 
et al. 1993, Zerbini et al. 2016, Valenzuela et al. 2018, 
Derville et al. 2023), where euphausiids are their pri-
mary prey (Tormosov et al. 1998, Valenzuela et al. 
2018). The density of krill on its coast is negatively 
correlated with sea surface temperature (SST) anom -
alies (Trathan et al. 2003, Fielding et al. 2014). Conse-
quently, the SST anomalies can serve as a proxy for 
krill densities and thereby indicate the likely effects 
of prey availability for pregnant females on calf mor-

tality. We derived SST anomalies at Islas Georgias del 
Sur/South Georgia from the database of Reynolds et 
al. (2008) using Google Earth Engine (Gorelick et al. 
2017) and computed the average anomaly between 
August and October in each year (see Text S1 in the 
Supplement). We chose the SST anomalies in this 
monthly range because they are correlated with krill 
density on this feeding ground during summer (i.e. 
winter temperature relates to the foraging condition 
in summer; Fielding et al. 2014), when pregnant 
females would have fed prior to the calf mortality 
detected on the PV calving ground. 

To our knowledge, there are no consistent and long-
term data on the abundance of calanoid copepods 
or  euphausiids during 1995–2019 in other feeding 
grounds in the South Atlantic. Consequently, we did 
not include information on prey densities in other 
feeding grounds in our models. 

2.2.  Statistical analysis 

2.2.1.  Describing gull attack pressure and frequency 

To describe differences in GAPC, GAPM and GAF 
between gulfs and years, we fitted a joint generalised 
linear mixed model using a Bayesian approach. For 
gull attack pressures, we assumed a negative bi -
nomial distribution of the daily number of attacks to 
account for overdispersion, and modelled its mean 
using a log-link function. Gulf, mother vs. calf and 
their interaction were considered as fixed factors, and 
the interactions year × gulf and year × gulf × mother 
vs. calf were included as random effects. For GAF, we 
assumed a binomial distribution of the daily number 
of intervals with attacks and modelled the attack pro-
bability with a logit-link function. As GAF data did 
not distinguish among mothers or calves, the only 
fixed factor included was gulf. We fitted the model 
using Stan (Stan Development Team 2020a) through 
its R interface, rstan (Stan Development Team 2020b), 
and defined weakly informative priors based on simu-
lations. We ran 10 chains for 2000 iterations, leaving 
1000 for warm-up. The minimum effective sample size 
was 1260 and maximum R ˆ was 1.0087, indicating con-
vergence (Fig. S1) (Vehtari et al. 2021). Based on pos-
terior predictive checks, the models showed a good fit 
to the data (Fig. S2). We calculated the estimated 
values of GAPC, GAPM and GAF for each year and 
gulf. Furthermore, to compare the attack indexes 
between mothers and calves, gulfs and periods, we 
reported the quotient between the estimated means 
of the categories of interest, using the higher mean 
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category in the numerator. These predictions were 
computed averaging over all years. 

2.2.2.  Modelling probability of calves dying 

To evaluate whether gull attacks increased the pro-
bability that a calf would die (i.e. calf mortality) 
before leaving PV, we fitted 3 Bayesian generalised 
linear models to the data on yearly calf mortality and 
gull attack indexes. We modelled the number of dead 
calves by year and gulf following a beta-binomial dis-
tribution to account for overdispersion. Using a logit-
link function, the probability of calves dying was 
modelled as a linear function of any of the 3 annual 
gull attack indexes, the gulf and their interaction. We 
also included the SST anomalies in Islas Georgias del 
Sur/South Georgia as a covariate and allowed the dis-
persion parameter to vary between gulfs. The models 
were fitted using JAGS through its R interface, jagsUI 
(Plummer 2003). Weakly informative priors were 
specified for all parameters based on prior predictive 
checks (see Text S1). Two chains of 20 000 iterations 
were run for each model, leaving 5000 for the warm-
up, yielding a total of 30 000 posterior samples for 
inference. The mean effective sample sizes were 
21 620 for the GAPC model, 21 669 for GAPM and 
20 659 for GAF, with a minimum of 2005 in the GAF 
model. All R ˆ values were equal to 1.00, indicating 
convergence (Tables S2–S4; Vehtari et al. 2021). Pos-
terior predictive checks showed that the models fit 
the data well (Fig. S3). We reported the estimated calf 
mortality in both gulfs at different values of the 
covariates of interest, and the magnitude of change of 
calf mortality between those values. 

2.2.3.  Relationship between temporal distribution  
of calf deaths and gull attacks 

Gull attacks are hypothesised to have cumulative 
effects on calf health, causing degradation over the 
calving season. If these cumulative effects do not con-
tribute to calf mortality, then the time course of ob -
served calf deaths would be expected to follow the 
time course of births (perinatal calf death), peaking 
around the time of maximum calf abundance at 
PV (August–September). Consequently, most of the 
calves that die should be newborns or neonates, and 
their dates of death should not vary in a systematic 
way with the frequency or intensity of attacks. How-
ever, if gull attacks do contribute to mortality, then 
the peak of calf deaths would be expected to occur 

later in the season, after many calves have accumu-
lated significant numbers of lesions and suffered the 
effects of the resulting stress (Marón et al. 2015, Fer-
nández Ajó et al. 2018, 2020). In this scenario, most 
dead calves would tend to be older, and their aver-
age dates of death would be expected to vary yearly 
with the average frequencies and intensities of gull 
attacks. 

Two Pearson correlations were computed to assess 
whether calf age at death varied over the calving sea-
son. The monthly average length of dead calves and 
the relative frequency of open and healed umbilici 
were used as proxies of calf age (McAloose et al. 2016, 
Christiansen et al. 2022) and were associated with the 
month of calf death. In both cases, the sample size was 
equal to 6, as data from all years and calves were 
aggregated by month. We reported Pearson correla-
tion coefficients (r) and their p-values. 

Moreover, to test whether calf death throughout 
the season could be explained by gull attack indexes, 
we modelled the month when calves died as a func-
tion of the gulf and each of the 3 gull attack indexes. 
We included the interaction term between the gulf 
and the corresponding gull attack index as covariates 
and also a random effect for the year. The month of 
death was assumed to follow an ordered categorical 
distribution, coded with integers between 6 and 
12  from June to December. Using the 3 gull attack 
indexes as predictors separately, we fitted 3 cumu-
lative logistic models (Bürkner & Vuorre 2019) using 
‘brms’ (Stan Development Team 2020a, Bürkner 
2017). Weakly regularising priors were set for the 
intercept parameters and for the among-years stan-
dard deviation (Student’s t ; μ  = 0, σ = 2.5, df = 3), 
which was zero-truncated for standard deviation par-
ameters, and flat improper priors on the remaining 
regression coefficients. The minimum sample size of 
the 3 models was 2669 and the maximum R ˆ value was 
lower than 1.01. Based on these diagnostics, all 
models showed a good fit to the data (Fig. S4). 

2.2.4.  Model estimates and posterior probabilities 

We summarised the estimates of all models by 
their posterior distribution means and their 95% 
equal-tailed credible intervals. From the posterior 
distributions, we computed the posterior probabilities 
(Pr) of some relevant statements. For example, the 
probability of the quotient (q) between 2 predicted 
means being larger than one (Pr[q > 1]) (Section 
2.2.1), or the probability of a slope parameter (β) 
being larger or smaller than zero (Pr[β > 0] and Pr[β < 

5



Mar Ecol Prog Ser 746: 1–16, 2024

0], respectively) (Sections 2.2.2 and 2.2.3). These pro-
babilities are 1 if there is complete certainty about the 
statement being true, or 0 if there is complete cer-
tainty about the statement being false. Hence, Pr(q > 
1) = 1 indicates that the numerator in the quotient is 
larger than the denominator with complete cer-
tainty; similarly Pr(β > 0) = 1 indicates that β is posi-
tive with complete certainty; i.e. that the covariate 
has a positive effect on the response variable. 
Accordingly, Pr(β > 0) = 0 indicates that β is negative 
with complete certainty (which is equivalent to Pr[β < 
0] = 1), and Pr = 0.5 indicates complete uncertainty 
about the veracity of the statement. 

All statistical analyses were performed using R soft-
ware version 4.2.0.1 (R Core Team 2021). For details 
on the models see Text S1. 

3.  RESULTS 

3.1.  Spatial and temporal variation in gull attacks 

A total of 17 060 intervals of 5 min observations 
were conducted in Golfo Nuevo during 1995 and 
2005–2019, and 11 814 intervals in Golfo San José 
during 1995 and 2004–2019 (Table S1). In total, 2767 
mother–calf pairs were observed in both gulfs. The 
years with the least sampling effort were 2006 in 
Golfo Nuevo (532 intervals) and 2005 in Golfo San 
José (316 intervals; Table S1). 

Averaging all years and both gulfs, the estimated 
GAPC (posterior mean [95% CI]) was 4.77 [3.74, 6.29], 
the estimated GAPM was 1.70 [1.32, 2.34] and the 
estimated GAF was 0.22 [0.19, 0.24]. Comparing 
GAPC versus GAPM, the estimated mean of GAPC 
was 2.85 [2.17, 3.71] times as high as the estimated 
mean of GAPM (Pr[q > 1] = 1). Considering the gulfs 
separately, GAPC was 2.94 [2.08, 3.8] and 2.75 [1.72, 
4.3] times higher than GAPM in Golfo Nuevo and 
Golfo San José, respectively (Pr[q > 1] = 1 for both 
gulfs) (Table 1). Comparing both gulfs, 
GAPC and GAPM were higher in Golfo 
Nuevo than in Golfo San José by a fac-
tor of 1.55 [0.9, 2.46] (Pr[q > 1] = 0.94) 
and 1.44 [0.79, 2.38] (Pr[q > 1] = 0.89), 
respectively (Table 1). Similarly, GAF 
was higher in Golfo Nuevo than in 
Golfo San José by a factor of 1.22 [0.99, 
1.5] (Pr[q > 1] = 0.97) (Table 1). 

The inter-annual trends of GAPC, 
GAPM and GAF were similar for both 
gulfs (Fig. 2A–C). In general, all 3 
indexes tended to increase from 1995 

to 2011–2013 (Pr[2011–2013 > 1995]GAPC = 1, 
Pr[2011–2013 > 1995]GAPM = 0.97, Pr[2011–2013 > 
1995]GAF = 1). Furthermore, 3 periods could be dis-
cerned between 2004 and 2019: a first period with 
increasing or high and stable values extending from 
2004 to 2010 in Golfo San José and from 2005 to 2010 
in Golfo Nuevo; a short second period between 2011 
and 2013 during which the trends fluctuate and some 
indexes peaked; and a third period of low and stable 
or decreasing values from 2014 to 2019 at both sites 
(Fig. 2A–C). In Golfo Nuevo, GAPC and GAF 
remained higher than in 1995 from 2004 onwards 
(Pr[2004 onwards > 1995] = 0.99 for both GAPC and 
GAF), whereas GAPM values from 2014 to 2019 
tended to be lower than in 1995 and in 2004–2010 
(Pr[2014–2019 < 1995] = 0.79 and Pr[2014–2019 < 
2004–2010] = 1). 

GAPC varied more among years than did GAPM, 
and both GAPC and GAPM were more variable in 
Golfo Nuevo than in Golfo San José (Fig. 2A,B, Table 1). 
Like GAPC and GAPM, GAF showed more annual 
variation in Golfo Nuevo than in Golfo San José 
(Table 1). The variation among sampling days (i.e. 
unexplained variation) was considerable for the 3 gull 
attack indexes (Fig. S2). This is reflected in the low 
Bayesian R2 values (Gelman et al. 2019) for the gull 
attack models (GAPC = 0.18 [0.14, 0.24]; GAPM = 
0.15 [0.1, 0.22]; GAF = 0.19 [0.11, 0.27]). 

3.2.  Gull attacks and the probability of calves dying 

Between 2003 and 2019, at least 790 SRW calves 
died, out of at least 3801 that were born in Golfo 
Nuevo and Golfo San José. We found that their proba-
bility of dying increased with GAPC, GAPM and GAF 
in both gulfs, with the most significant effect ob -
served in Golfo Nuevo (Fig. 3). Notably, no effect of 
SST anomalies around Islas Georgias del Sur/South 
Georgia was found on calf mortality (Fig. S5). 
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Variable            Gulf                             Mean                         Inter-annual variation 
 
GAPC             Nuevo                 5.71 [4.32, 8.13]                      2.11 [1.42, 2.98] 
                       San José               3.83 [2.64, 5.84]                      1.59 [1.18, 2.09] 
GAPM            Nuevo                  1.9 [1.40, 2.97]                      0.86 [0.60, 1.22] 
                       San José               1.43 [1.01, 2.20]                      0.63 [0.39, 1.04] 
GAF                 Nuevo                 0.24 [0.20, 0.27]                      0.06 [0.04, 0.08] 
                       San José                 0.20 [017, 0.22]                       0.04 [0.02, 0.06]

Table 1. Estimated means of gull attack pressure on calves (GAPC) and 
mothers (GAPM), gull attack frequency (GAF) and inter-annual variability 
(standard deviation) across years by gulf and mother vs. calf. Point estimates 
are posterior means; 95% equal-tailed credible intervals are shown in brackets
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In Golfo Nuevo, the probability of calves dying 
exhibited increases of 0.16 [–0.1, 0.42], 0.32 [0.03, 0.59] 
and 0.3 [0.03, 0.57] units, when GAPC, GAPM and GAF 
increased from their minimum to their maximum an -
nual values observed in the gulf (Fig. 3; Pr[β > 0]GAPC = 
0.89, Pr[β > 0]GAPM = 0.98, Pr[β > 0]GAF = 0.99). Specifi-

cally, calf mortality rose from 0.19 [0.1, 0.3] when 
annual GAPC was 2.95 attacks h–1, to 0.35 [0.16, 0.57] 
when annual GAPC was 9.48 attacks h–1. Regarding 
GAPM and GAF, calf mortality increased from 0.14 
[0.07, 0.24] to 0.46 [0.23, 0.69] as annual GAPM esca-
lated from 0.42 to 3.99 attacks h–1, and from 0.15 
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[0.08, 0.25] to 0.45 [0.23, 0.67] when annual GAF in -
creased from 0.16 to 0.39. In Golfo San José, the pro-
bability of calves dying increased by 0.05 [–0.09, 0.20], 
0.17 [–0.01, 0.37] and 0.1 [–0.04, 0.26] units when 
GAPC, GAPM and GAF rose from their minimum to 
their maximum observed values (Fig. 3; Pr[β > 0]GAPC = 
0.78, Pr[β > 0]GAPM = 0.97, Pr[β > 0]GAF = 0.92). The 
GAPC model estimated an increase in calf mortality 
from 0.10 [0.03, 0.2] to 0.15 [0.8, 0.25] as the annual 
attack pressure climbed from 0.16 to 5.53 attacks h–1. 
In the case of the GAPM and GAF models, calf mor-
tality increased from 0.08 [0.05, 0.14] to 0.25 [0.11, 
0.44] as annual GAPM increased from 0.34 to 3.47 
attacks h–1, and from 0.08 [0.03, 0.16] to 0.18 [0.09, 
0.30] as annual GAF increased from 0.11 to 0.27 
attacks h–1. 

GAPM increased the probability of calves dying 
approximately 8 times more than did GAPC when 
considering both gulfs together. Calf mortality in -
creased by 0.03 [–0.04, 0.08] units when GAPC 

increased from 0.34 to 3.99 attacks h–1 (minimum and 
maximum observed values of GAPM). However, the 
same increment in GAPM increased mortality by 0.24 
[0.08, 0.41] units. Predictions for each gulf separately 
are shown in Table S5. 

Calf mortality in a year of average attack intensity 
and frequency was 2.26 [1.22, 4.35] times as high as 
in  a hypothetical year without attacks (indicating a 
126% increase; Pr[q > 1]), averaging predictions of the 
3 models. Based on the GAPM model, calf mortality 
in a year of average GAPM was 1.84 [1.22, 2.70] times 
as high as in a hypothetical year without attacks 
(Pr[q > 1] = 1). Fixing the 3 attack indexes at their 
means, calf mortality in an average year was 0.21 
[0.17, 0.25] in Golfo Nuevo and 0.13 [0.10, 0.16] in 
Golfo San José. In contrast, in a hypothetical year 
without attacks, calf mortality in Golfo Nuevo would 
have been 0.11 [0.06, 0.19] and 0.07 [0.04, 0.13] in 
Golfo San José. In both scenarios, calf mortality was 
higher in Golfo Nuevo than in Golfo San José, with a 
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posterior probability of 1 in the average attack scen-
ario and 0.9 in the zero-attack scenario. Single model 
predictions and estimates of probabilities of calves 
dying per year and gulf are available in Tables S2–S4, 
S6 & S7. 

SST anomalies in Islas Georgias del Sur/South 
Georgia had no effect on the probability of calves 
dying in any of the 3 models (Pr[β < 0]GAPC = 0.75, 
Pr[β < 0]GAPM = 0.73 and Pr[β < 0]GAF = 0.86 in the 
GAPC, GAPM and GAF models, respectively). For 
Golfo Nuevo, the GAPM model estimated a decrease 
in calf mortality from 0.25 [0.13, 0.39] to 0.20 [0.11, 
0.29] with increasing SST anomalies from –0.72 to 0.65 
(minimum and maximum values observed; Fig. S5). 
Mortality also decreased from 0.26 [0.13, 0.42] to 0.2 
[0.1, 0.3] in the GAPC model and from 0.27 [0.14, 0.41] 
to 0.17 [0.09, 0.27] in GAF models with the same SST 
anomaly values (Fig. S5). The results for Golfo San 
José were similar and are shown in Fig. S5. The 
credible intervals associated with all the predictions 
were wide enough to consider a zero effect of SST 
anomalies on calf mortality (Fig. S5). 

Extreme mortality was not explained by GAPC, 
GAPM, GAF or SST anomalies. The extremely low 
calf mortality did not necessarily occur during years 
of extremely low values of GAPC, GAPM, GAF or SST 
anomalies (Fig. 3; Fig. S5). Likewise, the extremely 
high calf mortality registered in 2007, 2008 and 2012 
in Golfo Nuevo did not occur during years of ex -
tremely high values of GAPC, GAPM, GAF or SST 
anomalies (Fig. 3; Fig. S5). Consequently, the proba-
bility of dying exhibited unexplained inter-annual 
variability, particularly in Golfo Nuevo. This is indi-
cated by the width of the prediction intervals (wider 
bands in Fig. 3 & Fig. S3) and the dispersion of the 
data (Fig. 3). Correspondingly, Bayesian R2 values for 
the 3 models were low or moderate: 0.30 [0.18, 0.67] 
for the GAPC model, 0.43 [0.09, 0.54] for GAPM and 
0.40 [0.15, 0.64] for GAF, indicating that the covari-
ates included in this study only explained between 
30 and 43% of the variation in mortality. 

3.3.  Gull attacks and late-season calf deaths 

Calves found dead at PV in 2003–2019 ranged from 
newborns to older calves (2.18–9.83 m in length; 
Uhart et al. 2009, Sironi et al. 2014). Half of the calves 
presented an open umbilicus (n = 416), and half had a 
healed um bilicus (n = 414). The average length of 
dead calves in each month was positively correlated 
with their month of death (r = 0.98, p < 0.0001; Fig. 4A). 
Also, the relative frequency of dead calves with healed 

umbilici increased over the months (r = 0.95, p < 
0.0001), while the frequency of calves with open umbi-
lici decreased (r = –0.95, p < 0.0001; Fig. 4B). Both 
patterns were more evident in high mortality years. 

Calves died later in the calving season — closer to 
October than to August — in years with higher attack 
index values. In Golfo Nuevo, the average month of 
death was later in the season when GAF, GAPC and 
especially GAPM were high (Fig. 4C; Pr[β > 0]GAPC = 
0.81, Pr[β > 0]GAPM = 0.98, Pr[β > 0]GAF = 0.95). Con-
versely, most calf deaths occurred during the months 
of maximum calf abundance — closer to August and 
September — in years of low values of GAPC, GAPM 
and GAF in Golfo Nuevo. As for Golfo San José, a 
weak and uncertain relationship was found between 
the month of death and GAPM (Pr[β > 0] = 0.77), and 
no relationship was detected for the other 2 attack 
indexes (Pr[β > 0]GAPC = 0.3 and Pr[β > 0]GAF = 0.4). 
Unexplained inter-annual variation in the average 
month of death was higher (wider ribbon in Fig. 4C) in 
years when calf mortality was extremely high (de -
noted by lighter points in Fig. 4C). This was reflected 
in relatively low Bayesian R2 values: 0.19 for the 
GAPC model, 0.28 for the GAPM model and 0.24 for 
the GAF model (posterior means; 95% credible inter-
vals were [0.02, 0.46], [0.06, 0.54] and [0.03, 0.5], 
respectively). 

4.  DISCUSSION 

Our results suggest that kelp gull attacks increased 
SRW calf mortality at PV during 1995 and 2005–2019, 
contributing to the high calf mortality observed on 
this calving ground in the 2000s. Our analyses relate 
long-term temporal and spatial changes in the 
dynamics of attacks to the probability of calves dying 
during their time at PV. Specifically, mortality ap -
pears to have doubled as a consequence of attacks, 
and attacks on mothers explain most of this increased 
mortality. We also found evidence that such attacks 
may have contributed to late-season deaths of older 
calves, as gull micropredation degrades the health of 
the calves through the calving season. 

The intensity and frequency of attacks changed 
throughout the study period. Overall, the attacks 
showed a sharp increase from 1995 to the 2000s, and 
3  main periods of change from 2004 to 2019 were 
detected. The 2 increases observed from 1995 to 2010 
overlapped with 2 periods of population growth in the 
kelp gull colonies of northern Patagonia (Lisnizer et 
al. 2011), while the third period from 2014 to 2019, 
when gull attack indexes decreased or remained stable 
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at lower values, partially coincides with the implemen-
tation of a pilot kelp gull culling program by the prov-
incial government of Chubut (Bertellotti et al. 2015). 
The program was restricted to a small area in Golfo 
Nuevo, near our study site. However, no specific ana-

lyses could be carried out to test whether the control 
effort caused a reduction in gull attacks, as few details 
about the results of the culling program are available. 

Gull attack intensity and frequency differed be -
tween gulfs, with most of the attacks occurring in 
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Golfo Nuevo. Golfo Nuevo has 2 human settlements 
on its coast: the city of Puerto Madryn with a port for 
large ships, and the tourist town of Puerto Pirámides. 
Golfo San José, by contrast, is a protected marine 
reserve with relatively little human activity. Gulls 
congregate in large numbers in Golfo Nuevo (P. Yorio 
pers. comm) and are mainly attracted by fishery dis-
cards (Yorio et al. 2016) and anthropogenic food sub-
sidies (Giaccardi & Yorio 2004). For instance, more 
than 4669 kelp gulls were counted at waste disposal 
sites in 1996 and 1997 (Giaccardi & Yorio 2004). Con-
sequently, if gull abundance were higher in Golfo 
Nuevo, then a higher likelihood of attacks on whales 
could be expected relative to Golfo San José. 

GAPC was notably higher in the 2000s than in 1995, 
and almost 3 times higher than GAPM in 2004–2019. 
GAPM increased less from 1995 to the 2000s and was 
even lower in 2014–2019 than in 1995. This is consist-
ent with results on the severity of kelp gull lesions on 
mothers and calves (Marón et al. 2015). The area of 
lesions on calves in the 2000s was twice as high as in 
the 1990s and 3 times the area than that on mothers 
(Marón et al. 2015). On the mothers, the area of 
lesions increased by 40% from the 1990s to the 2000s 
(Marón et al. 2015). Thus, our findings confirm an 
apparent shift in the dynamics of attacks during the 
1990s, when calves were becoming preferred targets 
of the gulls. This change in gulls’ preference might be 
explained by the increasing number of gulls in north-
ern Chubut (Lisnizer et al. 2011) and the mothers 
learning avoidance behaviours to reduce attacks dur-
ing the 2000s (Rowntree et al. 1998, Fazio et al. 2015, 
Azizeh et al. 2021). Attack-evasive behaviour patterns 
such as the ‘galleon’ posture — with the back strongly 
arched, hiding it from the gulls (Thomas 1988, Sironi 
et al. 2009) — and oblique respiration — with only 
blow holes exposed — became frequent in mothers in 
the 2000s and widespread in the late 2010s (Fazio et 
al. 2015, Azizeh et al. 2021), reducing the opportunity 
for attacks on the mother’s back. However, calves 
have never been observed in the galleon posture, and 
until 2013, oblique respiration was not as frequently 
observed as it was in adults (Fazio et al. 2015). Conse-
quently, calves may have become more frequent tar-
gets of attacks that had previously been aimed at their 
mothers, as the mothers became more adept at evad-
ing such attacks. This is concerning, given the conse-
quences of micropredation on calf health and well-
being (Marón et al. 2015, Fiorito et al. 2016, McAloose 
et al. 2016, Fernández Ajó et al. 2018). Long-term ana-
lyses of the effects of gull attacks on mother and calf 
behaviour are underway and may reveal how behav-
iour has changed since the 1990s and how these 

changes may have affected gull attack dynamics and 
calf mortality. 

Gull micropredation increases the probability of 
calves dying during their first months of life at PV. The 
first and second periods of increasing and fluctuating 
attack index values coincided with high calf mortality 
years, and the period of reduced attack index values 
with reduced mortality (Fig. 2). Hence, changes in the 
attack dynamics may explain changes in calf mortal-
ity. As a consequence, a year with an average rate 
of  attacks had more than twice the calf mortality —
126% more — than a hypothetical year without attacks. 
However, the considerable uncertainty associated 
with our models’ predictions and the complexity of 
the natural system indicate that gull harassment may 
be a factor contributing to calf mortality, but not the 
only and maybe not even the main cause (Thomas 
et  al. 2013, IWC 2016, Fernández Ajó et al. 2020). 
Mothers and calves are exposed to gull attacks from 
the beginning of the calving season in June (Fazio et 
al. 2012). By October, they have accumulated a maxi-
mum number of gull lesions (Marón et al. 2015), as the 
highest attack rates are recorded during August and 
September (Sironi et al. 2009, Fazio et al. 2012). The 
attacks open and enlarge pre-existing gull lesions on 
the whales’ backs (Thomas 1988, Rowntree et al. 
1998) and cause chronic stress (Fernández Ajó et al. 
2018, 2020, Azizeh et al. 2021). Wounds can provide 
an entry for pathogens and facilitate systemic infec-
tions (Fiorito et al. 2016, McAloose et al. 2016), while 
elevated glucocorticoids for prolonged periods can 
inhibit immune function (Dhabhar 2014, McAloose 
et  al. 2016, Romero & Wingfield 2016). In severely 
wounded calves that were found dead, glucocorticoids 
dropped near the time of death, suggesting adrenal 
failure in these cases (Fernández Ajó et al. 2018). 
Thus, repeated attacks could chronically stress calves, 
such that they become more vulnerable to other fac-
tors that could trigger their deaths. 

Our analysis indicates that gull attacks contribute 
to calf death towards the end of the calving season, 
around October. The length of dead calves and the 
frequency of dead calves with healed umbilici in -
creased over time, especially during years of high calf 
mortality. Therefore, most of the calves that died 
towards the end of the season in those years were not 
newborns or neonates (Fig. 4A). We also found a posi-
tive relationship between gull attack pressure and fre-
quency and the month of the year when most dead 
calves were recorded. This implies that calves tended 
to die later in the season following high values of 
GAPC, GAPM or GAF in September (see Section 2.1.1). 
A previous study reported that the area of lesions 
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increases with calf length (Marón et al. 2015). Older 
wounded calves that died in October might have been 
born between July and September and exposed to the 
peak attack months (Fazio et al. 2012). They might 
have accumulated lesions through the season, suf-
fered chronic physiological stress and eventually died 
months after their birth. Our results thus provide evi-
dence supporting the hypothesis that attacks have 
cumulative effects, aligning with findings from other 
recent studies. For instance, a capture–recapture 
analysis of individually identified calves found that 
more and larger gull-inflicted lesions reduced the 
probability of their first-year survival. The initial 
sightings used in those models were made in Septem-
ber, before any late-season deaths. If calves died at 
any time after they were recorded alive with gull-
inflicted lesions, they would not be re-sighted in sub-
sequent years, and the estimated first-year survival 
would be reduced. Our findings on local and late-
season deaths complement those of Agrelo et al. 
(2023), and when considered together, these findings 
strengthen the evidence that gull attacks contribute 
to calf mortality. 

Gull attacks on the mothers have effects on the 
calves. GAPM increased calf mortality 8 times more 
than did GAPC. Consequently, calf mortality would 
be expected to be 84% higher in a year of average 
GAPM when compared to a hypothetical year with no 
attacks. GAPM was also the variable that was better 
related to calf deaths towards the end of the calving 
season. The early lactation period is considered the 
most energetically costly period of the reproductive 
cycle in baleen whales (Lockyer 1981, Christiansen et 
al. 2018). SRW mothers lose at least 25% of their body 
volume in the first months of lactation when they are 
mostly relying on energy reserves stored in the 
blubber (Christiansen et al. 2018). Gull attacks inter-
rupt resting and nursing, cause stress and increase 
the energy expenditure of mothers and calves (Rown-
tree et al. 1998, Azizeh et al. 2021). These added im -
pacts could potentially drive calf survival to a critical 
point at the end of the season, when the detrimental 
effect of the attacks has accumulated on both mother 
and calf and when the energy demands of calves in -
crease as they grow and prepare for migration (Thomas 
& Taber 1984, Nielsen et al. 2019). SRW mothers off 
Australia decrease respiration rates during this period, 
suggesting that mothers may reduce their metabolism 
to support lactation (Nielsen et al. 2019). But mothers 
and calves at PV have on average ~50 and ~25% 
higher respiration rates, respectively, as a conse-
quence of attacks compared to undisturbed pairs off 
Australia (Azizeh et al. 2021). Although mothers and 

calves at PV are neither thin nor malnourished (Marón 
et al. 2015, Christiansen et al. 2020, Fernández Ajó et al. 
2020), stressed mothers might plausibly reduce their 
levels of energy transfer near the end of the season, 
increasing the already chronic stress of calves and 
their likelihood of death. 

We found that calf mortality at PV would have been 
similar to the calf mortality observed for other right 
whale populations if no attacks had occurred. In a 
hypothetical year without attacks, calf mortality 
would have been equal to 0.11 in Golfo Nuevo and 
0.07 in Golfo San José. These estimated mortalities 
might be equivalent to calf mortality of SRWs calving 
off South Africa, where the average first-year calf sur-
vival was reported to be 0.852–0.988 (Brandão et al. 
2018). Similarly, the average calf mortality observed 
for the northern right whale Eubalaena glacialis from 
1989 to 2003 was ~0.118 (Browning et al. 2010). How-
ever, average calf mortality at PV was 0.21 in Golfo 
Nuevo and 0.13 in Golfo San José, and it was in -
fluenced by gull attacks. Therefore, our results sug-
gest that gull attacks increase calf mortality to rates 
that exceed those reported for other right whale 
populations that do not experience gull micropreda-
tion at calving grounds. 

However, kelp gull attacks should not be con-
sidered the only cause of the unusually high calf mor-
tality at PV. Extremely high calf mortality did not 
occur during years of extremely high intensity and 
frequency of attacks. Also, the average month of calf 
death in years with extremely high calf mortality did 
not always relate to gull attack pressure and fre-
quency. This means that mortality is probably af -
fected by one or more still unknown local or regional 
environmental factors, with which gull attacks may 
interact. Likewise, SRW calf mortality at PV was not 
explained by SST anomalies at Islas Georgias del 
Sur/South Georgia, which could be due to the small 
proportion of the PV whales feeding in that area in 
recent years. Recent studies have shown that many 
whales migrate from PV to feeding areas in the South 
Atlantic other than Islas Georgias del Sur/South 
Georgia (Zerbini et al. 2016, Valenzuela et al. 2018, 
Derville et al. 2023). However, the locations of such 
feeding areas and their relative quality are still being 
studied (Vilches et al. 2023). In contrast, the probabil-
ity of calves dying and the associated unexplained 
variability are higher in Golfo Nuevo than in Golfo 
San José, suggesting that some of the unknown mor-
tality factors may be local rather than regional. Addi-
tional studies are needed to address the relationship 
between food density in the South Atlantic feeding 
grounds and reproductive success of SRWs at PV, and 
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to search for other local factors that might be con-
tributing to calf mortality. 

Baleen whale populations are currently threatened 
by anthropogenic stressors at the local, regional and 
global scales. Even though some populations have 
recovered from whaling, climate change, entangle-
ments, pollution and maritime traffic are major threats 
to their conservation (Nelms et al. 2021). Other popu-
lations and species have already started to experience 
opportunistic seabird attacks (Groch 2001, Harkness 
& Sprogis 2020, Carroll et al. 2022), similar to the few 
cases recorded on SRWs at PV in the 1970s. As in PV, 
these populations may face adversity if seabird attacks 
progress over time or intensify. Seabird attacks on 
whales’ calving grounds could be especially harmful 
to the recovery of the species, as they would occur 
during a sensitive stage of the life cycle of calves and 
mothers. Moreover, seabird micropredation could 
become a critical threat if it occurs on vulnerable 
populations such as the northern right whales, as our 
results suggest that frequent and intensive micro -
predation may have contributed to calf mortality 
in a SRW population. These findings highlight the 
need for comprehensive and long-term management 
actions to reduce kelp gull attacks at PV and empha-
sise the value of monitoring to evaluate how interac-
tions evolve through time. Likewise, they strongly 
suggest that seabird and cetacean interactions should 
be monitored elsewhere, as chronic micropredation 
can undermine the health of other marine mammal 
populations and challenge their conservation. 
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