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ABSTRACT: Clarke & Ainsworth's (1993; Mar Ecol Prog Ser 
92:205-219) method of linking multivanate community struc- 
ture to environmental variables possesses a n  heuristic and 
conceptual interest. However, we  believe that there are  other 
strategies which require less computational effort and also 
p e r m ~ t  a n  accurate statistical test of the relationship between 
multivariate community structure and environmental vari- 
ables. The objective of this communication is to discuss some 
of these many strategies, emphasizing the flexib~lity of Man- 
tel test design for this task. 
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Multivariate analysis has been widely used in the 
last 30 yr in ecology and systematics to solve a very dis- 
tinct array of problems (Legendre & Legendre 1983, 
Krebs 1989, James & McCulloch 1990). Among these, 
the most common approaches involve (1) the analysis 
of association between (pairs of) species, reflecting 
niche or trophic patterns and ecological interactions 
such as competition, mutualism and predation, and (2) 
the analysis of similarity between samples, based on 
overall community analysed, which must be explained 
through distribution of environmental variables or 
intrinsic factors, such as larger migration rates be- 
tween neighbouring samples. 

There are many possible strategies for evaluating 
the relationship between multivariate conlmunity 
structure and environmental variables, and the choice 
of one of these relies on the presence of some analyti- 
cal (mathematical) constraints in data, available com- 
puter software and,  of course, knowledge about them. 

In a recent paper, Clarke & Ainsworth (1993) pro- 
posed a new method for investigating this relationship, 
based on matrix comparison and multidimensional 
scaling. They expected to answer'the fdlowing 2 ques- 
tions: (1) How well is the community structure ex- 

plained by the full set of environmental variables mea- 
sured? and (2) Which variables are redundant in the 
sense of failing to strengthen the 'explanation' of biotic 
patterns once certain other variables are taken into 
account? The method they proposed consists of the fol- 
lowing: (1) biotic and abiotic data matrices a re  handled 
separately, initially transforming each according to the 
needs of the differing similarity measures; (2)  the 
among-sample similarity matrix for the biota is con- 
structed only once but the equivalent triangular matrix 
for the abiotic data is computed many times, in fact for 
all possible combinations of environmental variables at  
each 'level of complexity' of explanation (variables 
taken singly, 2 at  a time, 3 at  a time, etc.); (3) the rank 
correlation (e.g. p,,, weighted Spearman coefficient) 
between the biotic and abiotic triangular matrices is 
calculated in every case. The highest few coefficients 
at each level of complexity are tabulated, allowing the 
extent of improvement or deterioration in the match 
to be traced as further variables are  added; and  (4) the 
final step is to display the biotic MDS (non-metric 
multidimensional scaling) in conjunction with ordina- 
tions of the most important environmental variable 
combinations. 

Although Clarke & Ainsworth's (1993) method pos- 
sesses heuristic and conceptual interest, we believe 
that there are other strategies which require less conl- 
putational effort and also permit a n  accurate statistical 
test of the relationship. The objective of this communi- 
cation is to discuss some of these many strategies, 
emphasizing the flexibility of Mantel test design to 
solve these problems. 

Basic concepts. First, it is necessary to understand 
the basic nature of both multivariate methods and data 
in ecology. Multivanate data consist of a matrix of p 
variables measured in n samples. These p variables 
can be partitioned into 'community' variables (relative 

O Inter-Research 1996 
Resale of full article not permitted 



304 Mar Ecol Prog Ser 143: 303-306, 1996 

abundances of species) and environmental variables, 
which can also be subsequently subdivided into other 
groups, as will be discussed later On the other hand, 
multivariate methods include a large complex of tech- 
niques, used for distinct purposes. It is important to 
note, however, that methods based on similarity 
between pairs of samples (or species; Q- and R-mode 
analyses), including both ordination and clustering, 
are used only to permit the visualization of the rela- 
tionships that are mathematically defined in a p- 
dimensional space, in a low dimensional space (usually 
no more than 3 axes). This dimensional reduction, of 
course, involves some distortions in the relationships 
between samples, which can be measured by stress 
and/or CO-phenetic or matrix correlation between orig- 
inal similarity and similarity in the reduced space of 
dendrograms and ordinations (Sneath & Sokal 1973). 
As a logical consequence, evaluation of the relation- 
ship between multivariate community structure and 
environmental variables, based on the original similar- 
ity matrix, is by definition better than evaluations 
based on clustering and ordination results, such as Pro- 
crustes methods (Gower 1971) or estimating consensus 
trees between dendrograms (Rohlf 1974, 1982), both of 
which could be used to compare outputs of 2 multivari- 
ate analyses of the same samples (using community 
and environmental variables). 

There are some multivariate methods that are not 
based on similarity matrices and are specifically 
designed to assess the relationship between 2 sets of 
data. The well known Canonical Correlation Analysis 
and its derivative, the Redundancy Analysis, are 
designed to find linear combinations in the 2 data sets, 
in such a way that the Pearson product-moment corre- 
lation between derived canonical scores reaches the 
maximum (Harris 1975, Johnson & Wichern 1992). 
Although largely applied to ecology and systematics, 
they have some limitations related to assumptions of 
linearity and multivariate normal distribution in data. 
More importantly, there must be a large number of 
observations in relation to the number of variables in 
the 2 sets, which is usually difficult in community 
analysis, when a large number of species (variables) IS 

collected. bfultivariate ~lorrnai distribution and Iinear- 
ity may be overcome by using Canonical Correspon- 
dence Analysis (ter Braak 1986, 1987) which in turn 
assumes that a species' abundance is a unimodal func- 
tion of position along environmental gradients (ter 
Braak & Prentice 1988, Palmer 1993). Both of these 
techniques are in some situations very difficult to inter- 
pret due to their mathematical constraints (Legendre & 

Legendre 1983). The more serious problem with a 
small number of observations in relation to variables 
available can be eliminated by using the recently 
developed CO-inertia Analysis (Doledec & Chessel 

1994), but this technique is too new to provide a defin- 
itive solution to this problem. 

The most commonly used evaluation of multivariate 
community structure in ecology, using a single data 
matrix of relative abundances, starts with constructing 
similarity or dissimilarity matrices, using many algo- 
rithms, such as Morisita-Horn, Bray-Curtis, Canberra, 
etc. (Lamont & Grant 1979, Wolda 1981, Legendre & 

Legendre 1983, Washington 1984, Gower & Legendre 
1986). The next step is usually to perform hierarchical 
clustering, such as UPGMA (Sneath & Sokal 1973), or 
ordination techniques, such as Principal Coordinate 
(PCOORD) (Gower 1966, Sneath & Sokal1973) or Non- 
Metric Multidimensional Scaling (NMDS) (Kruskal 
1964a, b), on the similarity matrix. A similar solution is 
to perform the well known Principal Component 
Analysis (PCA) directly on the data matrix, although 
scores will be distributed under a Euclidean metric in 
dimensionally reduced space. In all cases, the purpose 
is to observe relationships in a lower number of dimen- 
sions, since it is impossible to evaluate the original 
similarity matrix, which is defined in a p-dimensional 
space. Criticisms of these linear techniques have been 
made, and non-linear alternatives, such as detrended 
correspondence analysis, have been suggested as bet- 
ter solutions for ecological ordination, even better than 
NMDS (Gauch 1987). These criticisms, and specially 
the advantage of detrended correspondence analysis 
in relation to NMDS, however, cannot be considered 
concrete resolutions (Wartenberg et al. 1987, Peet et al. 
1988, Palmer 1993). An important next step is to inter- 
pret the distribution of samples as a function of other 
ecological factors, usually the spatial arrangements of 
samples (in a spatial context, a useful null hypothesis is 
that similarity is proportional to geographic distance 
among samples; Sokal & Wartenberg 1981) or the cor- 
respondence with the distribution of some environ- 
mental variables. This step, however, is usually per- 
formed in a subjective way. When there are some 
environmental variables measured, a common strategy 
is to apply the canonical analyses already discussed, or 
simply to use principal component/coordinate scores 
as a response variable in a multiple regression in 
which environmental variables are used as predictor 
variables (Sokal & Unnasch 1988). 

A general approach. We believe, however, that the 
best strategy to investigate the relationship between 
multivariate community structure and environmental 
variables is to apply the Mantel test (Mantel 1967, Man- 
tel & Valand 1970), under many possible designs. The 
Mantel statistic (Z) for matrix correspondence is given as: 

z = L, L, E,, M,  

where E, and M,  are the ith and jth elements of the 
symmetric matrices M and E to be compared, i.e. a 
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matrix of Morisita-Horn similarity between samples 
(M), based on relative abundances of p species and a 
Euclidean distance (E)  between the same samples but 
using environmenal variables. Although Mantel (1967) 
and Mantel & Valand (1970) tested the statistical sig- 
nificance of Z based on a normal distribution of coeffi- 
cients, this approach is biased (Mielke 1978). The most 
common approach today is to test its significance by 
randomization (Sokal 1979, Dietz 1983, Manly 1986a. 
b, 1991, Crowley 1992), in which rows and lines of one 
the matrices (e.g. E)  are randomly permuted many 
times, and for each of them a new Z is estimated. After 
a large number of randomizations, the observed Z is 
then compared with an empirical distribution under 
the null hypothesis of no relationship between matri- 
ces. The number of permutations must be chosen 
according to the number of rows in the similarity 
matrix and the significance level desired for testing, 
and most applications use around 1000 permutations. 
However, a recent study shows that stability is only 
achieved with a much larger number, no less than 
10 000 (up to 100 000) (Jackson & Somers 1989). In 
computational terms, the Mantel test is available in 
the NTSYS-PC ('Numerical Taxonomy and Multivari- 
ate Analysis System') package (Rohlf 1989), in 'Ran- 
domization Test' programs (Manly 1991) and in the R-  
Package (Legendre & Fortin 1989). 

The Z-statistic, however, is not a coefficient, and only 
tells if matrices are associated or not. The magnitude of 
Z is highly dependent on the number of elements in 
the matrix and on their magnitudes (Smouse et al. 
1986). However, it is easy to see that Z has a monotonic 
relationship (simultaneous increase or decrease) with 
Pearson correlation between matrices (matrix correla- 
tion), because in fact if M and E are standardized prior 
to the analysis, Z is the covariance between them (the 
numerator of Pearson correlation). S ~ n c e  all other ele- 
ments in the formula of Pearson correlation (variances 
and means of M and E) are invariant with permuta- 
tions, the monotonic relationship permits testing of the 
significance of Pearson correlation between matrices 
using Z-statistics. So, correlation between matrices, in 
which a Pearson's r is calculated, can be understood as 
a standardized Z-statistic (Smouse et al. 1986). Extend- 
ing the argument, an obvious conclusion is that r2 gives 
the proportion of M which is explained by E, analogous 
to the first question proposed by Clarke & Ainsworth 
(1993), which is then easily answered. 

The Mantel test for matrix correspondence can also 
be easily extended to more than 2 matrices, using 
multiple regression (Manly 1986131, partial correlation 
(Smouse et  al. 198613, Fromentin et al. 1993) and path 
analysis (Taylor & Gottelli 1994) approaches (see Oden 
& Sokal 1992 for a recent review of multiple matrix 
Mantel tests). This way, the second question proposed 

by Clarke & Ainsworth (1993) can be answered, for 
example, with a multiple regression design, in which 
partial regression coefficients and the squared multi- 
ple correlation coefficient (R2) are estimated using 
conlmunity matrix as a response variable and groups of 
environmental variables as predictor variable in a 
matrix randomization design. The remaining question 
is how to perform the partition of environmental vari- 
ables to be used to define the predictor matrices. We 
suggest at least 4 alternatives: (1) divide the environ- 
mental variables into 'natural' groups, such as geo- 
graphic variables (latitude, longitude), macroclimatic 
data, etc.; (2)  perform a PCA or Multiple Factor Analy- 
sis with the environmental variables, creating linear 
combinations of highly correlated variables and then 
using scores to compute distance matrices between 
samples to be used as predictors (note that in this case 
predictors will be uncorrelated, in such a way that a 
bivariate Mantel test comparing community matrix 
with each predictor matrix will be satisfactory); (3) 
choose many groups of environmental variables ran- 
domly and perform many analyses, as suggested in the 
method of Clarke & Ainsworth (1993); and (4) construct 
a distance matrix for each environmental variable, and 
then define a minimum model using standard regres- 
sion approaches, such as stepwise, to explain commu- 
nity structure. Of course, the last 2 alternatives involve 
a very large computational effort, especially alterna- 
tive 3. 

There is also another advantage in using the Mantel 
test as described above, related to the presence of 
qualitative environmental data, such as, for example, 
soil type. In a strict sense, canonical analyses do not 
work well with this kind of variable (making alterna- 
tive 2 difficult). However, a specific environmental 
'similarity' matrix for this variable (in alternative 4) 
would be constructed as a 'model matrix', in which the 
value 1.0 indicates that the 2 samples compared have 
the same type, or state, for the variable, and 0.0 indi- 
cates distinct states (Manly 1985). Used in this manner, 
the Mantel test works as a non-parametric multivariate 
analysis of variance with a randomization design. This 
type of qualitative environmental variable would also 
be combined with other environmental variables, after 
some standardization and choice of an adequate simi- 
larity coefficient (alternatives 1, 3 and 4). 

So, we believe that the Mantel test is the best alter- 
native for comparing environmental variables with 
multivariate community structure, due to its flexibility 
and multiple design possibilities, objectivity, powerful 
statistical basis and capacity for handling community 
structure in the original p-dimensional space without 
the need of clustering and ordination techniques and 
a posteriori (and sometimes ad hoc) interpretations 
based on them. 
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