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INTRODUCTION

Pseudo-nitzschia H. Peragallo in H. & M. Peragallo
is a cosmopolitan genus of marine planktonic diatoms
comprising approximately 20 species (Hasle 1994, Hasle
& Fryxell 1995, Hasle & Syvertsen 1996). Although
sometimes ranked as a subgeneric section of Nitzschia
Hassall, the recent trend has been to recognize these
taxa at the generic level on the basis of ultrastructural
and ecological features (Hasle 1994, Hasle et al. 1996).

The systematics and ecology of Pseudo-nitzschia spp.
are of special interest, since several species produce
the neurotoxin domoic acid (reviewed by Bates et al.
1998, Bates 2001). Filter-feeding shellfish and finfish
(e.g. anchovies) retain the toxin, which is then passed
along the food chain and can result in amnesic shell-
fish poisoning (ASP) or domoic acid poisoning (DAP) of
humans, sea birds and marine mammals (Bates et al.
1998, Scholin et al. 2000). In addition to its impact on
the ecosystem, ASP has resulted in both human
death and permanent neurological impairment (Bates
et al. 1989, Bird & Wright 1989). Therefore, since
some Pseudo-nitzschia species can cause harmful algal
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blooms (HABs), there is particular interest in under-
standing the population dynamics of both the genus as
a whole, and of its individual species.

In order to develop numerical models which forecast
blooms of Pseudo-nitzschia spp., and predict their
toxicity, risk to public health, as well as economic
and ecosystem impacts, we need to understand the
factors that control species-specific distributions of
phytoplankton in space and time. To date, numerous
autecological studies have been conducted on Pseudo-
nitzschia spp., summarizing specific responses to nu-
trients, temperature and salinity. However, very few
studies have investigated the effects of light levels on
growth dynamics (reviewed by Bates 1998 and Bates et
al. 1998). Field studies have attempted to correlate the
presence of blooms to regional conditions (e.g. pro-
longed dry sunny periods followed by rain), upwelling
events, and global climatic patterns (e.g. El Niño
Southern Oscillation). Many plausible scenarios have
been proposed, yet despite this large body of informa-
tion, there seems to have been little real progress in
establishing clear patterns of the environmental condi-
tions that will lead to a bloom, or in consistently identi-
fying the source, or seed population which initiates a
bloom.

Additionally, there have been numerous domoic acid
events for which the source of the toxin could not be
found. Horner et al. (1997) and Bates et al. (1998)
reviewed reports of contaminated razor clams and
Dungeness crabs from Pacific Northwest waters, sea
scallops from Georges/Browns Bank in the North
Atlantic, and cultured mussels from Newfoundland. In
each case, the source of domoic acid was not deter-
mined. Since Pseudo-nitzschia spp. form needle-like
cells approximately 50 to 150 µm in length, with col-
onies sometimes exceeding 1 cm, they are an obvious
member of the net phytoplankton, unlikely to be over-
looked. Blooms must reach substantial concentrations
(>105 cells l–1) before shellfish accumulate enough toxin
to result in closure of a fishery. Therefore, a Pseudo-
nitzschia spp. bloom should be easy to detect by micro-
scopic examination of the net-plankton flora. That it
was not observed in the above cases implies that other
kinds of organisms can produce domoic acid, that the
ecology of Pseudo-nitzschia species may be more com-
plex than predicted by autecological studies, or that
the sampling strategy failed to locate the cells within
the water column.

In addition to factors which regulate cell numbers or
density of a bloom (in growth and loss terms), several
other kinds of information may be important in under-
standing phytoplankton ecology and the dynamics of
HABs at the species-specific level. Examples include
behavior of the organism, the role of life-history stages,
large and small-scale biological-physical interactions,

and the relative location of the population of toxic
algae and the ‘target’ organism (e.g. filter-feeding
fishes and shellfish) within the water column (Don-
aghay & Osborn 1997). Formation of thin layers of
harmful algae—structures only centimeters to a few
meters in vertical extent, with horizontal scales on the
order of kilometers (Bjørnsen & Nielsen 1991, Don-
aghay et al. 1992, Cowles & Donaghay 1998, Dekshe-
nieks et al. 2001)—may also be important, because
the dynamics and impacts of a HAB population con-
centrated into a thin layer may be very different from
that of a population spread throughout the water
column.

We had the opportunity to make observations on thin
layers of Pseudo-nitzschia fraudulenta (Cleve) Hasle
and on behavioral/life history aspects of P. pseudo-
delicatissima (Hasle) Hasle during an ongoing oceano-
graphic investigation on the coupling of physical, opti-
cal and biological processes in coastal waters. This
study took place in East Sound, a small fjord in the San
Juan Islands, in the southern part of the Strait of Geor-
gia on the US-Canadian border. The genus Pseudo-
nitzschia is common in East Sound, as it is throughout
the Pacific Northwest region (Gran & Angst 1931,
Forbes & Denman 1991, Taylor et al. 1994, Taylor &
Haigh 1996, Horner et al. 1997, Trainer et al. 1998a).

MATERIALS AND METHODS

Field site. East Sound is a fjord on the coast of Orcas
Island, Washington, USA (Fig. 1). It is oriented NW to
SE, and is ~12 km long and 1 to 2.5 km wide. For most
of its extent, it is ~30 m deep, with a tidal range from
0.3 to 3.5 m. Circulation with contiguous waters is par-
tially obstructed by a sill, which extends approximately
half way across the western side at the mouth. Circula-
tion within East Sound is driven by local winds, tides
and bathymetry (Rattray 1964). It is also strongly influ-
enced by regional-scale physical forcing events in the
southern part of the Strait of Georgia, which affect the
distribution of water mass types throughout the San
Juan archipelago (Thomson 1981). Since Orcas Island
has no major rivers, the primary source of freshwater to
East Sound is the Fraser River, located ~23 km to the
north, on the Canadian mainland. In early summer,
after the mountain snows have melted, river outflow is
at its maximum (Thomson 1981). During periods of
strong winds from the north, the Fraser River plume is
advected southward and can reach the mouth of East
Sound. The warmer, fresher water from the Strait of
Georgia is less dense and overrides the higher salinity
water already present in East Sound, displacing it to
depth (Twardowski & Donaghay 2001). This sequence
of events is a common occurrence in this system.
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The first field study took place from May 21 to
June 1, 1996; additional observations were made in
May and June 1998.

Phytoplankton sampling. The phytoplankton was
sampled in 2 years.

May and June 1996: On May 21 and 23, dense con-
centrations of phytoplankton were visible at the sur-
face near the mouth of the sound, and were collected
by bucket. On May 25, 26 and 27, samples integrating
the upper 10 m of the water column were collected via
vertical net tows (64 µm mesh). On May 28 and 30 and
June 1, samples were collected from discrete depths
between 0 and 30 m utilizing a siphon tube attached
to the high-resolution profiling system, as detailed by
Donaghay et al. (1992). All samples were immediately
examined live, aboard ship, with phase-contrast micro-
scopy. Archival images of each live sample were
recorded on videotape. Whole water samples from
May 28 and 30 and June 1 were preserved with forma-
lin for subsequent enumeration of Pseudo-nitzschia
spp. cells from inside and outside optical thin layers
(described below). One ml aliquots were counted in a
Sedgwick-Rafter chamber.

May and June 1998: Observations on the association
between Chaetoceros socialis and Pseudo-nitzschia
pseudodelicatissima were made in the field over the
course of several weeks, using exclusively live material
collected by surface bucket or subsurface siphon.
Upon collection, all samples were immediately exam-
ined live, aboard ship, using phase contrast micro-
scopy. Archival images of each live sample were
recorded on 35 mm film and videotape, documenting

the association in live material throughout the period
of study. Additionally, whole-water samples were
preserved with formalin and returned to the lab-
oratory. C. socialis and P. pseudodelicatissima cells
were subsequently enumerated in a Sedgwick-Rafter
chamber.

Permanent slides and electron microscopy. Net tows
from May 25, 1996, and June 24, 1998, were prepared
for species-level identification of Pseudo-nitzschia. Mat-
erial for permanent slides was desalinated by dialysis
through 15 µm Nitex, dried on coverslips, heat-oxidized
and mounted in Hyrax. Material for electron micro-
scopy was desalinated, oxidized in KMnO4, cleared
with HCl (Simonsen 1974), rinsed in sterile, filtered,
deionized water, and mounted on Formvar-coated
grids. They were examined on a JEOL 1200EX STEM.
Identifications were based on morphometric data and
taxonomic descriptions in Hasle & Syvertsen (1996)
and Hasle et al. (1996).

Winds and tides. Wind velocity and tidal height in
East Sound were recorded for the duration of the study
(Fig. 2). Wind speed and direction were recorded at a
weather station (Davis Instruments) located on Thistle
Point (Fig. 1). Tides were measured near Rosario Point
with an Endeco Model 1029 tide gauge.

Fine-scale physical, chemical and optical structure.
The physical, chemical and optical structure of the
water column were simultaneously profiled at centi-
meter scales. Physical and chemical structure were
measured by a Seabird SBE 911-plus CTD equipped
with a ducted flow conductivity cell, a fast-response
thermistor, a combination pH/eH sensor, an oxygen
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Fig. 1. Map of the San Juan
Islands, with detail of East
Sound. (d) Stn 2 in the Spei-
den Channel (from Gran & 

Thompson 1930)
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sensor, and a Digiquartz pressure sensor capable of
measuring depth changes of 1 cm. The optical struc-
ture was measured with WET Labs (Philomath, OR)
absorption and attenuation meters (an ac-9 and aa-9).
An ac-9 measures spectral absorption and attenuation
at 9 wavelengths between 412 and 750 nm. The aa-9
was a modified ac-9, with the normal attenuation chan-
nel replaced by a second absorption channel. Using
the methods described by Twardowski et al. (1999) and
Twardowski & Donaghay (2001), the spectral absorp-
tion by dissolved substances was measured with an
aa-9 equipped with a 0.2 µm filter. At the same time,
total spectral absorption and attenuation by dissolved
and particulate material was measured with the ac-9.
Spectral absorption by particulate material was then
calculated as the difference between the two. Particu-
late absorption at 440 nm (ap 440), a primary wave-
length of absorption by chlorophyll a, was used as an
indicator of phytoplankton biomass. Vertical profiles
of photosynthetically available radiation (PAR) were
obtained with a Biospherical Instruments (San Diego,
CA) PUV-500. Current magnitude and direction were
continuously measured at 50 cm resolution with a
downward-looking RDI 1200 kHz Acoustic Doppler
Current Profiler (ADCP). Reported current velocities
are based on 10 min averages of the ADCP data, which
were taken at the same time as each of the profiles.

OBSERVATIONS

Taxonomy

In 1996, 3 species of Pseudo-nitzschia were identi-
fied from East Sound. Two occurred as planktonic
colonies living freely within the water column (Fig. 3a),

and the third upon/within the spherical colonies of
Chaetoceros socialis Lauder (Fig. 3b). In 1998, the
C. socialis–Pseudo-nitzschia sp. association was ob-
served again, this time in greater abundance, and per-
sisting over the course of several weeks. Both single
cells and colonies were seen within the C. socialis
matrix. Using electron microscopy, the dominant taxon
in 1996 material was identified as P. fraudulenta
(Cleve) Hasle (Fig. 4a); small amounts of P. pungens
(Grunow ex Cleve) Hasle were also present (Fig. 4b).
The taxon living in association with C. socialis was
identified as P. pseudodelicatissima (Hasle) Hasle
(Fig. 4c,d).

Thin layers of Pseudo-nitzschia fraudulenta

The 1996 Pseudo-nitzschia fraudulenta bloom was
observed over a period of 12 d in conjunction with
physically-forced hydrographic events in East Sound.
At the start of the field study on May 21, weather con-
ditions were sunny and very calm. Dense concentra-
tions of phytoplankton were present at the sea surface
near the sill. Ship-board microscopic examination of
live material showed the sample to be dominated by
needle-like colonies of Pseudo-nitzschia spp., Rhizoso-
lenia hebetata forma semispina (Hensen) Gran and
R. pungens Cleve-Euler. Also present were various
Chaetoceros species, Odontella longicruris (Greville)
Hoban, Eucampia zodiacus Ehrenberg, Asterionel-
lopsis glacialis (Castracane) Round, Alexandrium
catenella (Whedon & Kofoid) Balech and Protoperi-
dinium spp. The weather pattern continued, and on
May 23 the bloom was still present near the sill. Mas-
sive numbers of Pseudo-nitzschia spp. colonies >1 cm
in length were visible directly at the surface.
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Fig. 2. Wind speed and di-
rection and tidal height in
East Sound for study pe-
riod. (–S–) Average wind
speed (5 min averages);
stippling: periods of north
winds; line: tidal height



Rines et al.: Pseudo-nitzschia in East Sound, Washington

Profiles of physical and optical structure (Fig. 5)
(which start about 1 m below the surface) showed that
concentrations of phytoplankton (inferred from ap440
measurements) were not only high near the surface
(1 to 4 m), but increased by a factor of 4 in a thin layer
located near the bottom of the primary pycnocline at
about 5 m depth (Fig. 5j). Physical and optical profiles
at 4 additional stations along the longitudinal axis of
the sound (Fig. 5k) indicated that a similar thin layer
was located near the base of the primary pycnocline
throughout the sound (Fig. 5f,i). Although ap440 at the
surface declined by a factor of 2 along the axis of the
sound (compare Fig. 5j,f), the maximum ap440 in-
creased by more than 50% within the thin layer, reach-
ing peak values of 6.5 m–1 (Fig. 5f) in the upper sound.
This was more than 12 times the surface absorption at
this northern sound station, and 6 times greater than
near-surface absorption at the mouth of the sound.

These values were some of the highest we have ever
observed in coastal waters, and they suggest that
intense concentrations of phytoplankton were present.

On May 25, physical-optical profiles were taken at
9 stations, transecting north to south along the axis of
the sound, and ending outside the sill in the channel
between Orcas, Blakely, Lopez and Shaw Islands
(Fig. 6). Temperature and salinity data indicated that
stratification extended almost to the surface at all sta-
tions south of Rosario Point (mid-sound), with a grad-
ual warming and freshening of surface waters along
this segment of the transect (Fig. 6d–i). However,
north of Rosario Point, surface waters were relatively
cooler and saltier, and the surface mixed layer thick-
ened to nearly 12 m at the northernmost station in the
sound. Optical profiles at each station showed a low
(ap440 ~0.5 m–1), broad peak in particulate absorption
outside the sound (Fig. 6r) that became thinner and
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Fig. 3. Light micrographs
(phase-contrast) of live di-
atom material. (a) Pseudo-
nitzschia fraudulenta, show-
ing stepped mode of colony
formation. (b) P. pseudodeli-
catissima, showing single
cells and short chains living
within and upon a colony of
Chaetoceros socialis, photo-
graphed in the field; this is a
relatively small colony of C.
socialis, collected early in the
bloom; all cells of both spe-
cies are highly pigmented
and the assemblage is free
of debris and other detritus
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more concentrated progressing northward along the
axis of the sound, reaching maximum values 20-fold
higher at mid-sound (ap440 ~4.0 m–1: Fig. 6m). At the
northern end, peak absorption values decreased, and
the peak broadened (Fig. 6j–l). Collectively, this data
suggests that a strong bloom was still in progress along
the entire axis of the sound.

Vertical net tows integrating the top 10 m of the
water column at each station (encompassing most sub-
surface layers) showed that a similar flora was present
in the upper 10 m throughout the sound, comprising
Pseudo-nitzschia spp., Rhizosolenia hebetata forma

semispina, R. pungens, Odontella longicruris and Tha-
lassionema nitzschioides (Grunow) Grunow ex Hu-
stedt. By cell number, Pseudo-nitzschia spp. accounted
for ~50 to 55% of the net phytoplankton at the north-
ern stations, ~40% in the mid-sound, declining to
~25% near the sill. This pattern of dominance of
Pseudo-nitzschia spp. in the integrated tows strongly
supports the hypothesis that the thin layer at the base
of the pycnocline was a subsurface bloom dominated
by this taxon.

On May 26, a 5 m s–1 wind developed from the north,
with gusts reaching 9 to 12 m s–1. Winds were sus-
tained for approximately 16 h (Fig. 2), and triggered
the advection of the Fraser River buoyant plume into
East Sound. On May 27, salinity at the mouth of the
sound had dropped from 29.2 to 27.0 psu. A thick lens
of lower-salinity water extended from the mouth to
Rosario Point. It thinned considerably toward the more
northern part of the sound, indicating that a new, low-
salinity water mass was flowing inward at the surface.
Velocity profiles confirmed this, showing that surface
waters were moving into the sound at 35 cm s–1, and
deep waters (15 to 25 m) were moving out of the sound
at 15 to 20 cm s–1. Optical profiles showed a dramatic
drop in particulate absorption at the surface, with most
ap440 values being less than 1 m–1. Although thin lay-
ers were still evident at some stations near mid-sound
(Fig. 7c,d), their absorption signals were reduced, with
peak values only 1.5 to 2.9 times greater than the par-
ticulate absorption of the surrounding water. The pat-
terns of large-scale spatial coherence seen on May 23
(Fig. 5) and May 25 (Fig. 6) had clearly disappeared on
May 27 (Fig. 7).

Representative profiles from each day of sampling
were used to evaluate the sequential changes in salin-
ity and optical structure from May 23 to 31 (Fig. 8). On
May 28, profiles from the northern part of the sound
(Fig. 8e) revealed the presence of a broad ap440 maxi-
mum at mid-depths, and a thin layer of ap440 at 24 to
24.5 m, near the base of the primary pycnocline
(Fig. 8e). Prior to this date, near-bottom thin layers had
not been observed. Water siphoned from within the
deep layer (24 to 24.5 m) was immediately examined
live, under the microscope. The >20 µm phytoplankton
was dominated by long, needle-like colonies of Pseudo-
nitzschia fraudulenta, which appeared both healthy
and free of surface bacteria. There were very few
empty frustules, and many colonies were motile. They
were not aggregated into flocs of marine snow. Subse-
quent enumeration of a preserved sample yielded a
density of 2 × 106 Pseudo-nitzschia spp. cells l–1, com-
prising 86% of the >20 µm phytoplankton by number.
Other taxa present at this depth included Rhizosolenia
hebetata forma semispina, Thalassionema nitzschioides,
Odontella longicruris and Asterionellopsis glacialis,
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Fig. 4. Transmission electron micrographs. (a) Pseudo-nitzschia
fraudulenta; characteristics: central interspace present (arrow),
transapical axis 6 µm, apical axis ~110 µm, 21 striae and 19 fibu-
lae within 10 µm, 2 rows of pores. (b) P. pungens; characteristics:
central interspace absent, transapical axis 3.5 µm, 11 striae and
12 fibulae within 10 µm, 2 rows of pores. (c,d) P. pseudodeli-
catissima; characteristics: central interspace present (arrow),
transapical axis ~3 µm, apical axis ~80 µm, 34 to 40 striae and
14 to 16 fibulae in 10 µm, single row of pores. Not revealed by
Electron microscopy: overlap of cells in chains 1/9 to 1/10 of cell 

length. Scale bars in (a) (b) (c) = 5 µm, (d) = 1 µm
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but unlike the Pseudo-nitzschia spp., these appeared
to be in poor health. At a depth of 20.5 to 21 m, just
above the layer, concentrations dropped to 2 × 105 cells
l–1 and the relative dominance of Pseudo-nitzschia spp.
declined to 63% of the cell count.

A time series of physical and optical profiles col-
lected on May 29 revealed a similar near bottom phyto-
plankton layer at a mid-sound station (represented by
Fig. 8f). Particulate absorption (ap440) in this layer
was lower than at the upper-sound station on May 28
(0.75 vs 1.5 m–1), but was also reduced proportionally
at shallower depths (ap440 values just above the thin
layer dropped from 0.5 to 0.2 m–1). Therefore, this layer
remained the dominant fine-scale feature of the water
column. It was detected in all 7 profiles collected at this
station over a 6 h period, and was always located near
the base of the primary pycnocline.

The near-bottom thin layer was still present 2 d later
(May 31), with only a slight decline in ap440, from
0.78 to 0.68 m–1 (Fig. 8g). Siphon samples taken from
within the layer indicated that it was still dominated by
Pseudo-nitzschia spp., with concentrations at 26.9 m
reaching 8 × 105 cells l–1 (94% of >20 µm phytoplank-
ton). Colonies were very long (30+ cells) and appeared
free of surface bacteria or other detritus. Colonies were
separate from each other, and were not tangled into
aggregates. There were very few dead (empty) cells.

On May 31, a second thin layer was detected at 3 to
4 m at the mid-sound station (Fig. 8g). It persisted
throughout the 24 h sampling period. Phytoplankton
siphoned from within this layer was dominated by
Odontella longicruris, Thalassiosira spp., Thalassio-
nema nitzschioides and Asterionellopsis glacialis.
Pseudo-nitzschia spp. concentrations in samples from
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Fig. 5. Initial physical and optical structure in East Sound on May 23, 1996. (a–e) Temperature (red) and salinity (blue) profiles;
(f–j) particulate absorption, ap440 (green) and sigma theta (black) profiles. Inset map shows stations where samples were collected
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the upper water column (2.5, 4.3, 5.2 and 7.5 m) ranged
from 0 to 5 × 104 cells l–1, comprising only 0 to 7% of the
>20 µm phytoplankton population. Thus, the thin layer
situated at 3 to 4 m had a very different composition
and history from the near-bottom layer (see Twar-
dowski & Donaghay 2001 for discussion of the evolu-
tion of the 3 to 4 m layer).

Biological-physical interactions

The effect of regional-scale physical forcing events
on the vertical distribution of Pseudo-nitzschia spp. in
East Sound was examined by comparing the salinity
structure of the water column to the location of thin

layers of high particulate absorption on each of the 7 d
of profiles (Fig. 8). From May 23 to 25, before the buoy-
ant plume reached East Sound, thin layers were
observed in the upper water column in a water mass
with a salinity of ~29.8 psu (Fig. 8a–c). This relation-
ship was consistent along the axis of the sound, sug-
gesting that a single, coherent layer was present
throughout the area. No near-bottom layers were ob-
served during this period (Fig. 8a–c).

When the Fraser River plume first began to flow
across the surface of the sound on May 27, it displaced
the ~29.8 salinity surface (with the entrained phyto-
plankton) downward to ~13 m (Fig. 8d). Near-bottom
layers were found only after a thick lens of plume
water covered much of East Sound. Like the thin layer
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Fig. 6. Physical and optical structure in East Sound on May 25, 1996, prior to arrival of Fraser River plume. (a–i) temperature (red) 
and salinity (blue) profiles; (j–r) ap440 nm (green) and sigma theta (black) profiles. (Stns q and r were outside the sound)
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of the upper water column, the near-bottom, Pseudo-
nitzschia-dominated thin layer observed on May 28,
29 and 31 was also located in water with a salinity of
~29.8 psu (Fig. 8e–g). In contrast, the upper water-col-
umn layer observed on May 31 was located in Fraser
River plume water, identified by its different salinity
signature of 27.4 psu (Fig. 8g).

Chaetoceros socialis–Pseudo-nitzschia 
pseudodelicatissima association

In 1996, spherical colonies of Chaetoceros socialis
were first observed with Pseudo-nitzschia pseudodeli-

catissima living upon/within them. In May and June of
1998, C. socialis bloomed in East Sound, reaching den-
sities of ~8 × 106 cells l–1. Careful examination of live,
gently collected material showed that in many sam-
ples, virtually 100% of the C. socialis colonies were
colonized by P. pseudodelicatissima, (Fig. 3b), occur-
ring both as single cells, and as short chains of up to
about 5 cells. The C. socialis–P. pseudodelicatissima
associations were generally free of entrained debris,
other phytoplankton and heterotrophic flagellates
(Fig. 3b), and were not aggregated into flocs of marine
snow. Different sizes of P. pseudodelicatissima cells
were noted (apical length of 48 to 102 µm). The asso-
ciation persisted throughout the 3 wk we spent in the
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Fig. 7. Physical and optical structure in East
Sound on May 27, 1996, during influx of
Fraser River water. (a–g) ap440 nm (green)
and sigma theta (black) profiles. OP: Ob-
struction Pass, which connects Rosario Strait
to the northeast with Upright Channel to the 

southwest



Mar Ecol Prog Ser 225: 123–137, 2002

field. Only near the end of our study (mid-June) was P.
pseudodelicatissima occasionally observed living freely
in the water column, independent of C. socialis.
Concentrations of P. pseudodelicatissima reached ~6 ×
104 cells l–1.

DISCUSSION

A major characteristic of both the Pseudo-nitzschia
fraudulenta and P. pseudodelicatissima blooms in East
Sound is that each had highly non-homogeneous pat-
terns of distribution which resulted in ‘hidden’ (P.
fraudulenta), or ‘camouflaged’ (P. pseudodelicatissima)
populations that could easily have been missed by rou-
tine monitoring techniques. In the first case their loca-

tion within the water column was closely tied to physi-
cal oceanographic processes, and in the second to the
distribution of Chaetoceros socialis colonies. Further
consideration of these issues can contribute to an in-
creased understanding of the ecology of Pseudo-
nitzschia spp.

Critical-scale sampling

In order to conduct field studies on the dynamics of a
taxon, one has to be able to effectively locate the pop-
ulation of interest within the water column. To do so,
samples must be collected at a critical scale, where
sampling resolution is matched to the scale of the
structure. If the vertical distribution of a taxon spans
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Fig. 8. Salinity structure associated with thin optical layers in East Sound, May 23 to 31, 1996. (a–g) Individual profiles of salinity (blue)
and ap440 (green); each panel is labeled with date (mo/d/yr) and time of profile. Vertical dashed line traces 29.8 psu across all graphs
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many meters, it can be detected by sampling at a fairly
coarse resolution (e.g. every 5 or 10 m). However,
when the majority of cells are concentrated into a thin
layer, they are likely to escape detection because they
are distributed at a finer scale than that of most tradi-
tional sampling grids (Donaghay et al. 1992). The thin
layers of Pseudo-nitzschia fraudulenta observed in
East Sound had half-heights of ≤0.7 m. Had we relied
on bottle samples to detect this structure and to resolve
the maximum concentration of cells at its peak, it
would have required sampling at 0.2 m intervals, for a
total of 600 samples for a single 30 m profile! We were
able to detect the upper water column and near-bot-
tom thin layers of P. fraudulenta in East Sound, and
estimate their horizontal extent using a combination
of high-resolution physical-optical profiles and micro-
scopic examination of discrete samples collected from
within the optically detected thin layers. If Pseudo-
nitzschia spp. form similar thin layers in other coastal
systems, it is not surprising that conventional bottle
sampling does not reliably result in a correlation be-
tween the observed distribution of Pseudo-nitzschia
spp. and the toxicity of fishes and shellfish.

Physical forcing

The near-surface bloom of Pseudo-nitzschia fraudu-
lenta observed from May 21 to 25, 1996, abruptly dis-
appeared from the upper water column following a
north wind event. Our sampling protocol allowed us to
determine that the population was still in East Sound,
and was now concentrated in a live, and apparently
healthy near-bottom thin layer. Our observations are
consistent with the hypothesis that less dense, low-
salinity Fraser River water flowed in over the surface of
East Sound. This, in turn drove near-bottom (but not
intermediate) water out of the sound, until the water
(with its entrained flora) that had been at the depth of
the thin layer of the upper water column was now just
above the sea floor. Since the P. fraudulenta cells re-
mained within a water mass of ~29.8 psu throughout
the entire period, we conclude that the deep P. fraudu-
lenta layer resulted from physical transport of water
masses, rather than the sinking of a senescent popula-
tion. Since buoyant plumes are a common feature in
coastal waters, it seems likely that similar events in
other systems could rapidly transport Pseudo-nitzschia
species to depth, where, if toxic, domoic acid could
quickly accumulate in benthic filter-feeders. In such
cases, attempts to predict toxicity based on purely
physiological considerations (e.g. sinking of a surface
bloom following nutrient depletion) would fail.

Rapid displacement of surface water (with its en-
trained flora) to depth was the result of regional scale

physical forcing in the southern part of the Strait of
Georgia (Thomson 1981). The reported sequence of
events is common in this region, and the resulting
near-bottom optical thin layers are a recurrent phe-
nomenon in East Sound (Dekshenieks et al. 2001). In
our study, the near-bottom layer was dominated by
Pseudo-nitzschia fraudulenta, which appeared to
remain healthy and motile despite the very low light
(e.g. 1 to 2 µmol photons m–2 s–1) at this depth. Very
few studies have sampled at the critical scales required
to find thin layers, but there is repeated documentation
in the literature that Pseudo-nitzschia spp. cells may
often reside deep in the water column (e.g. Gran &
Thompson 1930, Forbes & Denman 1991, Allen in
Fryxell et al. 1997, Trainer et al. 1998a).

Deep layers of Pseudo-nitzschia spp.

Our observations are concordant with the earlier
work of Gran & Thompson (1930). Their study exam-
ined the distribution of diatoms in the San Juan archi-
pelago with respect to general circulation patterns and
water masses in the region. They discussed the distrib-
ution of ‘Nitzschia seriata’, a name which at that time
was used for all Nitzschia species that formed ‘stepped’
colonies (now called Pseudo-nitzschia). Gran & Thomp-
son depict the transitory passing of a large population
of ‘N. seriata’, at depth, through the Spieden Channel
(Fig. 1) from July 11 to 22, 1928. On July 11, diatoms
were limited to the surface layer and the maximum
recorded abundance of ‘N. seriata’ was 5 × 103 cells l–1.
Two days later, 1.6 × 105 cells l–1 of ‘N. seriata’ were
recorded at 20 m depth, but only 0 to 103 cells l–1 at all
other depths (1, 5, 10, 35, 50, 100 and 225 m). Their
sampling scale was too coarse to determine whether
this was a thin layer sampled only by chance, or part of
a broad, subsurface Pseudo-nitzschia spp. maximum.
The surface water was several degrees warmer, indi-
cating the presence of a different water mass, inter-
preted as Fraser River-diluted seawater from the Strait
of Georgia. Nearby at Olga, near the mouth of East
Sound, ‘N. seriata’ numbers were also greatest at
depth: 2.9 and 1.9 × 105 cells l–1 at 10 and 20 m, respec-
tively. A week later, the bloom was not detected at
either location. Collectively, this suggests that deep
populations of Pseudo-nitzschia spp. are a recurrent
phenomenon in the San Juan Islands, perhaps occur-
ring annually in response to hydrographic conditions
in early summer related to the seasonal outflow of the
Fraser River. Regional hydrography can also influence
blooms which are spread throughout much of the
water column: the vertical position of a dense, mixed-
species Pseudo-nitzschia bloom in Penn Cove, Whid-
bey Island (Puget Sound) was strongly influenced by
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the position of buoyancy fronts of less saline water
originating from the Skagit River outflow (Trainer et al.
1998a). Forbes & Denman (1991), examining an ex-
tensive data set from British Columbian shelf waters,
noted that all but 1 sample in which Pseudo-nitzschia
spp. concentrations exceeded 105 cells l–1 were col-
lected at greater than 20 m depth. In Barkley Sound, on
the west coast of Vancouver Island, Taylor & Haigh
(1996) reported intrusions from offshore of Pseudo-
nitzschia spp. at depth, as well as a deep, resident
population, which coincided with toxicity of mussels.

In the 1920s and 1930s, W. E. Allen collected an ex-
traordinary phytoplankton data set along the US west
coast. Fryxell et al. (1997) reviewed his Pseudo-
nitzschia spp. data, which provided further evidence
that healthy Pseudo-nitzschia spp. cells occur in deep
layers. Their Fig. 4 depicts Allen’s counts at 5 m inter-
vals at 2 stations off La Jolla, California, in July and
August 1927. Concentrations exceeding 105 cells l–1

were observed as deep as 60 m. On 2 occasions, peak
concentrations occurred in a narrow, 5 to 10 m band.
Allen did not have the hydrographic data that would
have enabled him to trace water masses. He therefore
reached the conclusion that the Pseudo-nitzschia spp.
cells were controlling their vertical position in the
water column, and unlike a Chaetoceros bloom, which
deteriorated at depth, the Pseudo-nitzschia spp. cells
maintained their health.

The above observations of deep layers of healthy,
non-aggregated colonies are in contrast with those of
Dortch et al. (1997), who also noted that Pseudo-
nitzschia spp. could be abundant in bottom waters.
These authors documented the sedimentation of
Pseudo-nitzschia spp. blooms in the Gulf of Mexico
in 1990 and 1991. In these cases, long colonies disso-
ciated into single cells and doublets and sank, with up
to 90% of the material collected in traps being com-
posed of dead cells. The observations of Dortch et al.
are consistent with those of Fryxell et al. (1990), who
noted that in old cultures, colonies hundreds of cells in
length broke apart simultaneously and settled to the
bottom as single cells and doublets, which rapidly lost
color.

Relative to phytoplankton, the concept of ‘deep’
depends not so much on the actual water depth as on
the depth of light penetration—which will be entirely
different in coastal and offshore waters. Nevertheless,
there is repeated evidence of Pseudo-nitzschia spp.
being found ‘deep’ in the water column, at very low
light levels. If these are indeed viable populations, how
are they surviving? The colonies we observed at depth
were long and highly motile; hence they were unlikely
to have been physiologically resting cells (e.g. Fryxell
1989, McQuoid & Hobson 1996). Could they have been
heterotrophic? Pseudo-nitzschia spp. are raphid, pen-

nate diatoms (family Bacillariaceae Ehrenberg 1831).
Facultative, and even obligate heterotrophy is well
documented (Hellebust & Lewin 1977, Li & Volcani
1987) amongst pennates. However, although hetero-
trophy has been anecdotally reported for Pseudo-
nitzschia spp. (Pan et al. 1996, Stewart et al. 1997),
there has been no thorough evaluation of the ability of
Pseudo-nitzschia species to persist in low light, or to
live heterotrophically in the dark.

Association between Chaetoceros spp. and 
Pseudo-nitzschia spp.

Chaetoceros spp. and Pseudo-nitzschia spp. have
often been observed to bloom at the same time (W. E.
Allen in Fryxell et al.1997). Aggregates of marine
snow co-dominated by Chaetoceros spp. and Pseudo-
nitzschia spp. have been reported by Alldredge &
Gotschalk (1989). In contrast to Chaetoceros/Pseudo-
nitzschia aggregates, which are passively formed by
the mass flocculation and settling of a diatom bloom
(Alldredge & Gotschalk 1989), our observations show
that these genera may actively live in close association
with each other. Since Pseudo-nitzschia spp. are pen-
nate diatoms, this is not surprising: Although Pseudo-
nitzschia spp. are considered planktonic, most pennate
diatoms live on or in the sediments or attached to a
substrate such as another organism, rock, sand grains
or pilings (e.g. Round et al. 1990). Other pennate
diatoms, especially Nitzschia americana, are com-
monly observed living on the cell bodies and setae
of many Chaetoceros species (Taylor 1980, Rines &
Hargraves 1988, 1990, Fryxell et al. 1990, Hasle &
Syvertsen 1996, Rines: http://thalassa.gso.uri.edu/rines/
ecology/epipred.htm).

Chaetoceros socialis provides a unique micro-envi-
ronment for this kind of association because it has an
unusually complex morphological structure. Individual
cells are joined by fusion of the setae of adjacent cells
into flexible colonies with specialized terminal valves.
Three-quarters of the colony’s setae are short and
curved to one side of the chain; the remainder are
extremely elongate, and are directed in the opposite
direction. The commonly observed spherical colony is
actually a ‘super-colony’, composed of numerous indi-
vidual linear colonies, which are arrayed on the sur-
face of the sphere, much like stitches on a baseball.
The elongate setae traverse the interior of the sphere
and meet at the center, while the short setae are
directed outward, rendering the sphere ‘fuzzy’ in out-
line. C. socialis colonies are frequently colonized by
many types of protists (Rines & Hargraves 1988, Sier-
acki et al. 1998, Rines unpubl. obs.). Long, needle-like
‘Nitzschia’ living on C. socialis have been reported
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by Margalef et al. (1955) and by Taylor (1982). Our
repeated observations of P. pseudodelicatissima living
upon/within C. socialis colonies are thus consistent
with the biology of raphid, pennate diatoms.

The Chaetoceros socialis–Pseudonitzschia pseudo-
delicatissima association is of interest for several
reasons: (1) By definition, Pseudo-nitzschia spp. are
pelagic, colonial diatoms (Hasle 1994, Hasle & Syvert-
sen 1996). However, both single cells and chains of
P. pseudodelicatissima were found living within the
C. socialis colonies, suggesting that this taxon may
have both unicellular and colonial life-history stages as
has previously been suggested for P. multiseries and
P. subcurvata (Fryxell et al. 1990, 1991). Thus, there is
the potential for a Pseudo-nitzschia spp. bloom to
develop unnoticed both because it originated as single
cells, easily misidentified as non-toxic ‘Nitzschia spp.’,
and because the developing population was camou-
flaged by the more obvious C. socialis colonies. (2) The
interior of C. socialis colonies may constitute a micro-
environment with conditions different from those in
the water column, such that the growth dynamics of
Pseudo-nitzschia spp. cells are decoupled from aver-
age water column processes. (3) Pseudo-nitzschia spp.
are motile only when they have a substrate to glide
on. Motility is important for sexual reproduction in
Pseudo-nitzschia species, because colonies of different
mating types must line up with each other, or clump
together (Fryxell et al. 1991, Davidovich & Bates 1998),
and the gametangia require a substrate against which
to glide. C. socialis provides a substrate within the
water column, which may provide a setting for comple-
tion of the life cycle.

Implications

In order to predict the onset and consequences of
Pseudo-nitzschia spp. blooms, we must understand
which factors are most important in regulating their
distribution through space and over time. To achieve
this goal, the correct set of questions must be asked.
However, scientific research is often guided by pre-
conceptions and reigning paradigms—we ask ques-
tions leading us to look for what we expect to see. It is
generally expected that, along with other phytoplank-
ton, Pseudo-nitzschia spp. colonies will be found float-
ing freely in the water column, that they will be located
in the ‘euphotic zone’, and that they will be distributed
throughout the surface ‘mixed’ layer. We questioned
several common assumptions, viz (1) that field sam-
pling strategies commonly employed to study phyto-
plankton in the mixed layer are effective in revealing
the distributional patterns of Pseudo-nitzschia spp.
populations; (2) that distributional patterns are strictly

the result of in situ processes in the water column; and
(3) that Pseudo-nitzschia species have life histories
typical of other planktonic diatoms. In doing so, we
found populations of Pseudo-nitzschia spp. in 3 places
in which one would not normally look for them: in
an upper water-column thin layer; concentrated in a
dense, apparently healthy thin layer, persisting at very
low light levels just above the sea floor; and living in
association with Chaetoceros socialis colonies. Although
growth in response to the nutrient, temperature, light
and salinity fields in the upper mixed layer is undoubt-
edly important in regulating the biomass of a bloom,
we found that the vertical distribution of cells was not
simply a function of in situ growth processes in the
euphotic zone. The deep, dense layer of Pseudo-
nitzschia spp. cells did not result from the sinking of a
senescent and/or aggregating population: cells were
rapidly advected downward by physical oceanographic
events. Although hidden from routine sampling proce-
dures, the Pseudo-nitzschia spp. cells were neither
dead nor destroyed, nor had they left the sound. Long,
motile colonies suggest a viable population, now in
close proximity to filter-feeding shellfish. Might some
of the unexplained domoic acid events be related to
similar, near bottom thin layers of high cell density?

Pseudo-nitzschia fraudulenta, P. pungens and P.
pseudodelicatissima have been reported to produce
low levels of domoic acid (Martin et al. 1990, Rhodes
et al. 1996, 1998b, Trainer et al. 1998b, Wekell et al.
1998). Although these taxa do not share the reputation
of P. australis and P. multiseries for causing large-scale
domoic acid poisoning events, all 5 are reported from
the Puget Sound region. They frequently co-occur,
suggesting that species within the genus Pseudo-
nitzschia are ecologically similar. Blooms hidden in
thin layers or camouflaged within Chaetoceros socialis
colonies pose an additional challenge to domoic acid
monitoring efforts, because they imply that (1) a toxic-
ity event can occur, even if Pseudo-nitzschia spp. have
not been detected in the water column, and (2) that the
toxicity within a thin layer may exceed a threshold
value which would not be met if cell concentrations
were integrated throughout the water column (e.g. by
a net tow).

The extensive coastline of Puget Sound and British
Columbia is dominated by fjords and islands. Different
water masses, tidal currents and episodic weather sys-
tems interact to create complex hydrographic regimes,
resulting in the type of physical forcing events that led
to the observed Pseudo-nitzschia fraudulenta distribu-
tions in East Sound. Similar processes are likely to
occur throughout this region as well as along the fjord-
rich coastlines of Norway, Sweden, Finland, Scotland,
Chile and New Zealand. Thus, Pseudo-nitzschia taxa
may routinely occur in undetected thin layers, in a
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suite of geographic areas which are extensively uti-
lized by commercial and recreational fisheries as well
as by the aquaculture industry. Dense, toxic thin layers
have the potential to directly impact shellfish toxicity,
to be advected at depth and unnoticed into a new
region, or, when mixed back into the euphotic zone, to
serve as a large inoculum initiating a sudden surface
bloom. Consideration of alternative conceptual frame-
works may be critical to the successful development
of models predicting the dynamics and impacts of
Pseudo-nitzschia spp. blooms.
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