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INTRODUCTION

Formal evaluation of evidence regarding biological
impacts of human activities is an important role for
marine ecologists (e.g. Underwood & Peterson 1988,
Underwood 1997). The usual statistical tool used to
evaluate such evidence in ecology is testing of point-
null hypotheses in the frequentist paradigm (e.g.
Underwood 1990, 1997, Fairweather 1991). Under
such an approach, evidence is gathered to test the null
hypothesis that there is no difference whatsoever
between the population parameters considered (e.g.
means). This hypothesis is rejected if the p-value for its

test is less than the permissible Type I error risk (the
probability of rejecting a true hypothesis, usually
taken as α = 0.05), and it is concluded that the treat-
ments differ. In this way p-values for point-null tests
are treated as evidence for or against research
hypotheses. Even exhortations to publish statistically
non-significant results appear to accept that the 
p-value from such a test is an appropriate criterion for
judging the strength of the evidence gathered (e.g.
Lortie & Dyer 1999). However, the interpretation of
these p-values as evidence invokes serious inferential
problems (see Appendix 1), not the least being that
they tend to become ever smaller as the number of
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samples is increased. This is because the p-value is cal-
culated assuming the tested hypothesis to be true, but
in fact it isn’t — there will be some difference present,
however small. This has tended to be discussed in the
statistical (e.g. Gibbons & Pratt 1975, Berger & Sellke
1987, Sellke et al. 2001, McBride 2002), medical
(Goodman & Royall 1988, Goodman 1999, Poole 2001)
and sociological literatures (Morrison & Henkel 1970,
Harlow et al. 1997), but it is increasingly discussed in
some sectors of the ecological community (e.g.
Shrader-Frechette & McCoy 1992, Mapstone 1995,
Germano 1999, Johnson 1999, Quinn & Keough 2002).
In particular, such p-values can serve well when com-
paring the strength of evidence from tests using the
same number of data, but they are not comparable
when the number of samples differs.

Comparisons of p-values cause difficulties for ecolo-
gists in several situations. As an example, rules have
been offered for interpreting p-values in tables that
arise from complex analysis of variance designs (e.g.
Underwood 1991, 1992, 1993, 1997). In many situations,
presentation of such tables is taken to summarise the
data. However, as above, if different numbers of sam-
ples are used between factors or across studies, the rel-
ative sizes of p-values will not adequately summarise
even the comparative evidence. In Cohen  (1988), ex-
ample 8.8 (p. 374–375) demonstrates this for 3 fixed fac-
tors with varying numbers of levels using 5% level
tests. For a true effect size of 0.25, the 3 main effect tests
have powers that range from 0.58 to 0.70. This varying
power means that p-values will tend to differ between
comparisons, merely as a result of the different num-
bers of samples between factors. The use of relative
size of p-values as evidence is thus confounded by
varying sample sizes. As a further example, Osenberg
et al. (1999; their Fig. 1) report a meta-analysis of ex-
periments investigating stonefly predator effects on
densities of various taxa in streams. They show that the
effect sizes of some of the statistically significant tests
(i.e. those with p ≤ α) are relatively small compared to
other statistically non-significant comparisons, demon-
strating that the failure to reject the null hypothesis was
a result of small power, rather than a small effect.

Such issues have given rise to discussions regarding
negative results (Browman 1999, et seq.) and publica-
tion bias (Palmer 1999), indicating a need to have
access to at least some studies in which a point-null
hypothesis has not been rejected (i.e. α-censoring,
where studies that fail to attain p < 0.05 tend not to be
published). This can be manifest in calls to emphasize
estimation (especially using confidence intervals)
rather than testing (Gardner & Altman 1989, Hoenig &
Heisey 2001). Indeed, Peterson et al. (2001) noted a
move in ecological studies away from testing hypothe-
ses toward estimation of the magnitude of effects. This

approach permits some freedom for interpretation, and
is always useful. However, it fails to provide a proce-
dure for detecting ecologically important effects, as is
often required, for example, in studies of environmen-
tal impact or for processing resource-use applications.
Having expended considerable effort collecting and
analysing the data, failing to reach a conclusion on the
basis of those data is unsatisfactory. For those reasons,
and because confidence interval widths depend (inter
alia) upon the number of samples, we see the call for
greater emphasis on estimation as desirable but in-
complete.

Another approach to the problems caused by α-cen-
soring is to adjust α (Cascio & Zedeck 1983, Mapstone
1995). In Mapstone’s procedure, a sampling pro-
gramme is designed to regularly detect a minimum
effect size (if such an effect actually exists) judged by
experts to be of biological consequence. In analyzing a
set of data, α and the Type II error risk β (of failing to
reject a false hypothesis) are adjusted according to the
ratio of costs associated with committing either error
(the originators of hypothesis testing procedures Ney-
man & Pearson 1933, noted that the choice of error cri-
teria has to do with the consequences of each error
occurring). Inevitably, given the small numbers of sam-
ples used in marine ecological studies, this procedure
will result in values of α larger than the usual 0.05, and
accordingly this procedure will detect more effects
than the traditional approach, especially because it
forces the analyst to confront issues of minimum
detectable effect size and permissible error risks
before performing the test. However, it still tests an
untenable (point-null) hypothesis — in which case,
why test it at all?

In this paper we examine a different hypothesis test-
ing approach that abandons the testing of point-null
hypotheses and instead tests hypotheses stated in terms
of equivalence intervals (Wellek 2002). The basic idea
of such equivalence tests is that if a test suggests that
the true difference is inside that interval, then a decla-
ration of equivalence may be made. That is, it is recog-
nised that there is a difference but that it can be small
enough for the population parameters to be considered
equivalent. These tests supply a formal mechanism by
which the evidence for the tested hypothesis may actu-
ally be strengthened by the collection of more data (for
a point-null hypothesis the overall outcome of increas-
ing sample size is an inevitable weakening of the evi-
dence for that hypothesis). We note that some working
statisticians have the same view, e.g. ‘… we think
equivalence testing approaches are underutilized. We
often see examples where statisticians and non-statisti-
cians are testing the wrong hypotheses, apparently
stuck in a mode of thinking based on null hypotheses of
no-difference’ (Anderson & Hauck 1996).
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Limiting the discussion to the 2-mean comparison,
equivalence tests can examine either (1) the equivalence
hypothesis, in which the true difference between means
is postulated to lie within a prescribed equivalence in-
terval, or (2) the inequivalence hypothesis, in which the
true difference in means is postulated to lie beyond that
interval. These tests provide a formal framework for
demonstrating proof of hazard (1) or proof of safety (2).
Therefore, tests of the latter hypothesis will be of
particular interest to ecologists, since they provide a for-
mal vehicle to implement the precautionary approach
that traditional approaches have great difficulty in
accommodating. For example, Dayton (1998) has advo-
cated reversing the usual burden of proof in fisheries
management—testing the inequivalence hypothesis en-
ables this to be done in a straightforward manner; tests of
point hypotheses do not (see especially the analysis of
the power approach by Schuirmann 1987). Tests of the
inequivalence hypothesis are now in routine use in ap-
plied fields where incorrect conclusions are matters of
human life and death. In medical investigations (which
are necessarily precautionary) of the efficacy of drug for-
mulations, tests of point-null hypotheses have fallen from
favour and equivalence procedures are mandated
(http://www.fda.gov/cder/guidance/1716dft.htm). De-
spite their considerable advantages and their mandated
use in drug tests, equivalence tests are seldom used in
the ecological literature (see McDonald & Erickson 1993,
Garrett 1997, McBride 1999, Cole et al. 2001 and
MacKenzie & Kendall 2002 for non-medical examples).
Here we demonstrate the use of equivalence tests in a
dredge spoil disposal example. Our intention is to pro-
vide examples of the usage of tests of interval hypo-
theses, to underscore their advantages over tests of
point-null hypotheses, and to demonstrate
important consequences of their use.

MATERIALS AND METHODS

Study site. New Plymouth is situated in
the province of Taranaki, on the west coast
of the North Island of New Zealand (Fig. 1).
The physical characteristics of this wave-
swept coast are described in McComb et al.
(1997) and McComb & Black (2001). Cole
et al. (1999) describe a depauperate subti-
dal fauna of mobile invertebrates mainly
comprising echinoderms and molluscs. De-
spite the dominance of coralline-covered
areas, abundances of grazing invertebrates
such as echinoids and herbivorous gas-
tropods are much lower than those in
northeastern New Zealand (summarised
in Andrew 1988, Creese 1988).

Sampling. A sampling programme was instigated to
assess impacts in the shallow subtidal of a trial subtidal
disposal of 47 000 m3 of sand (Fig. 1). Disposal occurred
in late February and early March 1999 and details of
the dispersal of the sediment can be found in McComb
& Black (2001). Ecological sampling was done on
3 occasions, before (December 1998), and twice after
(May 1999 and November 1999) spoil disposal. During
May 1999 there was no underwater visibility at several
sites, and no subtidal data could be obtained there;
that incomplete subtidal survey is therefore omitted. A
preliminary presentation of results is given in Cole et
al. (1999).

Sampling was done at 12 sites on reefs, of which
6 lay close to and in the path of sediment from the dis-
posal ground, and were designated impact sites, and
6 lay further away, and served as controls (Fig. 1). At
each site, 5 randomly placed 1 m2 quadrats were sam-
pled for seaweeds and large mobile benthic inverte-
brates. Number of seaweed stipes (Carpophyllum
maschalocarpum and Ecklonia radiata), and numbers
of echinoids, starfish, and gastropods were counted in
each quadrat. We analysed number of species and
number of individuals, as abundances of individual
subtidal species were low and/or highly variable.

Due to concerns that the sample sizes required to
demonstrate equivalence or inequivalence may be pro-
hibitively high, we undertook further sampling at New
Plymouth. In December 2003, R. Cole recorded the num-
ber of mobile invertebrate species in 60 random 1 m2

samples at each of 3 intertidal sites. Sampling of the 3
sites took a total of about 6 person hours.

Analysis. The nomenclature is introduced in
Table 1. We present results for 3 types of hypothesis
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Fig. 1. Study area on the west coast of North Island, New Zealand (39°02.5’S,
174°03’E), with locations of sampling sites. Depth contours are at 5 m intervals.
Sampling sites are labelled 1 to 12. Polygon surrounded by Sites 1, 2, 4 and 5 
indicates spoil disposal area. Breakwaters at left of diagram enclose Port Taranaki.

Sites 1 to 6 were designated as impacted, Sites 7 to 12 are distant controls
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tests: (1) traditional 2-sided t-test for the difference
between 2 means, (2) a confidence interval approach
to test the equivalence hypothesis (McBride 1999), (3)
the 2 one-sided tests (TOST) of inequivalence hypo-
theses (Schuirmann 1987) which is also a confidence
interval approach. Tests of equivalence, inequiva-
lence hypotheses and Bayesian posterior probabilities
of a difference being within an equivalence interval,
were carried out using basic Excel™ probability
functions (McBride 1999). To demonstrate the behav-
iour of the equivalence tests, we present detection
curves for all 3 types of tests. For cases (1) and (2)
these are power curves; for case (3) this is the opera-
tional characteristic (OC) curve (the complement of a
power curve). The abscissa used is the population
effect size (ES), the true difference in means divided
by their (unknown) common standard deviation.
We used power analysis freeware available at
www.niwa.co.nz/rc/prog/stats.

As noted above, equivalence tests can only be per-
formed after the analyst states the width of the equiva-
lence interval. Our best professional judgement (given
the lack of information regarding the variability of
fauna and flora in the area) is that a change of mean
density of more than 50% of the natural variability (i.e.
half the true standard deviation) is of biological impor-
tance. A change of 100% would definitely be of con-
cern. So, for our equivalence tests, we have defined an
equivalence interval with boundaries at an effect size
of ±50% (at which the true difference in means is half
the true standard deviation). In so doing we have
sought to cater for issues in defining effects in terms of
natural variability (Peterson 1993), i.e. smaller changes
in other variables, such as light penetration, may be
biologically important. We note the possibility that at
some later date there may be a better understanding of
impacts with respect to natural variability and the data
could be re-analyzed with a different interval. We used
a 20% equivalence interval for the analysis of species
richness in intertidal sampling, because more informa-
tion regarding those taxa is available regarding vari-
ability of those assemblages (Taranaki Regional Coun-
cil unpubl. data).

RESULTS

Detection curves

Detection curves (Fig. 2) reveal the fundamentally
different features of the 3 test procedures (t-tests for a
point-null hypothesis, testing the equivalence hypoth-
esis and testing the inequivalence hypothesis, all at
the 5% level). For the t-test we see that at low sample
size (i.e. n = 10) the test is permissive, not precaution-
ary. That is, only large differences (well beyond the
equivalence interval) will be regularly detected. This
is even more pronounced for tests of the equivalence
hypothesis. However, at large sample size the t-test
becomes ultra-precautionary, often detecting effects
well within the equivalence interval. In contrast, the
test of the equivalence hypothesis regularly detects
effects just a little beyond the equivalence interval.
Consider now testing the inequivalence hypothesis.
At n = 10, this has the greatest probability of detect-
ing an effect —nearly 100% for all effect sizes,
demonstrating why proof of safety is much more diffi-
cult than proof of hazard (Bross 1985). With 50 sam-
ples this procedure will still routinely detect effects —
about 40% of the time if in fact there were only a
miniscule effect size present. Note that the detection
curves for the equivalence and inequivalence proce-
dures pivot around the 5 and 95 percentile points at
the edge of the equivalence region’s relevant abscissa
values (–50 and +50%) (except when the sample size
is small, in which case the true significance level of
the inequivalence test cannot be maintained at 5%,
see Appendix 1). The difference between the equiva-
lence test procedures is that tests of the inequivalence
hypothesis (the proof of safety approach) have about a
95% chance of detecting an effect of ±50%, whereas
for equivalence tests (the proof of hazard approach)
that probability is about 5%. Thus, testing the
inequivalence hypothesis at small α keeps the risk to
the environment (the consumer’s risk) small, and will
often detect an effect even when that effect is some
way within the equivalence interval. The reverse is
true when testing the equivalence hypothesis at small
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p Probability of obtaining data at least as extreme as have been obtained assuming that the tested hypothesis was true
µ Mean of a population
σ, σ2 Joint common standard deviations, variances of 2 or more populations
CV Coefficient of variation of a population (the population CV is σ/µ)
ES Effect size, e.g. (µ1–µ0)/σ, a relative measure of the strength of a difference between population 1 and a control

population compared with the natural variability. Note that if we define the limits on the equivalence interval in terms
of change from the control sites’ mean, i.e. as ∆ = ± (µ1–µ0)/µ0, rather than as effect size limits, then equivalence prob-
ability calculations can only be calculated once the control sites’ coefficient of variation is supplied (because ∆ =
(ES)(CV0))

Table 1. Nomenclature
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α; keeping α small protects the producer’s risk, and so
will regularly detect an effect only if that effect is
some way beyond the equivalence interval. These
distances within or beyond the interval decrease as
the number of samples is increased, giving greater
certainty of conclusions.

In summary, detection curves for the t-test move
from being permissive (at low number of samples) to
an increasingly precautionary stance as the number of
samples is increased. That is, they move from a
propensity to miss important effects to a propensity to
detect the trivial. Equivalence test procedures do not
exhibit this unfortunate behaviour, and remain consis-
tent with their associated burdens-of-proof.

Subtidal sampling

Prior to disposal, the number of individuals
and number of species were slightly higher
at control sites than at impact sites (Fig. 3,
Table 2). Site means were moderately vari-
able, having SD/mean ratios of more than
75% in 3 of the 4 comparisons. Tests of point-
null hypotheses indicated no statistically sig-
nificant differences (Table 2), and tests of
equivalence and inequivalence hypotheses
retained their respective hypotheses for both
variables (Table 2). The Bayesian posterior
probabilities that the true difference be-
tween control and impact areas lay within
the equivalence intervals for the before sur-
vey were 59 and 72% for number of individu-
als and number of taxa respectively.

After disposal, a similar pattern persisted
as prior to disposal; numbers of individuals
and species were slightly higher at control
sites than at dumpground sites (Fig. 3).
Again, there were no significant differences
in the tests of null hypotheses, neither test of
an equivalence hypothesis rejected its
hypothesis, and the Bayesian posterior prob-
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abilities were roughly similar to those before disposal
(52% for number of individuals, 76% for number of
species) (Table 2).

The failure to reject any tested hypothesis suggests
an examination of the adequacy of sample sizes to
demonstrate safety. For example, how many samples
would be necessary to infer safety, using ±50% effect
size equivalence intervals, if in fact the true effect was
vanishingly small (i.e. effect size ~ 0)? Assuming sam-
pling from a normal distribution, and an α level of 0.05,
calculations indicate that 60 sites per treatment would
give a probability of about 70% to detect no effect, and
that with 80 sites per treatment this probability rises to
about 87%. These results indicate that many more
than our 12 sites (6 impacted sites round the dump-
ground, and 6 more distant control sites) would be nec-
essary to be confident that we might reliably demon-
strate absence of effect (defining effect as being larger
than the interval, not ES ~ 0). (Note that for the among-
site means, CVs of the tested variables ranged from 37
to 135%. Taking a typical CV as 100%, the ±50%
effect size limits on the equivalence interval are also
±50% of the control sites mean, see Table 1).

Intertidal sampling, December 2003

The hypothesis of inequivalence of species richness
could be rejected in favour of equivalence for Sites 1 and
3 (Bayesian posterior probability [BPP] that the differ-
ence is within the equivalence interval >99.9%),

whereas both those sites were not equiv-
alent to Site 2 (BPP Site 1 vs 2 = 2.43%,
[BPP] Site 2 vs 3 = 0.07%) (Fig. 4). Thus,
it is clear that although appropriate sam-
ple sizes are higher than for tests of
point-null hypotheses, they are not im-
possibly large, and clear demonstrations
of equivalence and inequivalence may
be attained.

DISCUSSION

There are 2 major differences
between the conventional approach of
testing point-null hypotheses and
equivalence tests. The first, and more
general, distinction is that equivalence
tests have to do with an interval
hypothesis, which immediately adds
realism compared to tests of point
hypotheses. The statistical literature
contains numerous expressions of
doubt regarding the utility of testing an

hypothesis that we know a priori to be untrue for any
real population of continuous variables (e.g. Goodman
& Royall 1988, Cohen 1990), and also for most discrete
variables. Of course the means of 2 or more field popu-
lations differ, it merely remains to be determined
whether the sample size was large enough, or the vari-
ability small enough, to render that difference statisti-
cally significant and if so, whether that difference is
environmentally significant. Krebs (1989, p. 8) says
that confusing these 2 items is ‘The greatest mistake an
ecologist can make in the routine use of statistics’. The
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Before After
Control Impact Control Impact

Number of individuals
Means 8.33 5.83 9.30 7.07
SD 7.47 6.69 12.55 6.91
CV 89.6 114.8 135.0 97.8
H: no difference Not significant Not significant
H: inequivalence Inequivalent Inequivalent
H: equivalence Equivalent Equivalent
Bayesian prob. 59 52

Number of species
Means 2.43 1.6 2.13 1.70
SD 0.91 1.26 1.01 1.50
CV 37.3 78.7 47.3 88.0
H: no difference Not significant Not significant
H: inequivalence Inequivalent Inequivalent
H: equivalence Equivalent Equivalent
Bayesian prob. 72 76

Table 2. Statistics from the comparisons of number of individuals and number of
species for the subtidal environment before and after spoil disposal. Data are
based on 6 site means for each treatment. Bayesian probability (prob.) is the
posterior probability (as %) that the true difference is within the equivalence 

interval (using uniform priors). H: hypothesis
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second point of distinction is that the outcome of a test
of an inequivalence hypothesis is exactly that required
to implement the precautionary approach, i.e. assume
the presence of an important effect unless data con-
vincingly demonstrate otherwise. In contrast, cumber-
some procedures are required to render the p-value of
a point-null hypothesis meaningful (e.g. Schuirmann
1987, Dixon 1998); even then interpretation of its result
can be problematic, as it can be overly precautionary
(particularly if variability is small). In testing the
inequivalence hypothesis the means are assumed to
differ by an important amount, unless data are con-
vincing to the contrary (proof of safety). This immedi-
ately weights the decision in favour of the environ-
ment, and reverses the usual burden of proof as
favoured by Dayton (1998) and Gerrodette et al.
(2002). In that case, a developer whose activity poses a
risk to the environment must demonstrate safety. They
cannot collect only a few samples, fail to reject a null
hypothesis, and then conclude that there has been no
impact. Stronger, more thorough, impact assessments
must result, and the onus falls upon those undertaking
activities that could damage the environment to show
that their activities are not harmful. One inevitable
consequence of demonstrating proof of safety rather
than proof of hazard is a substantially increased sam-
pling effort, as we have shown here (Fig. 2). This con-
sequence is also known in the statistical literature (e.g.
Bross 1985), and has also been demonstrated in toxi-
cology by Stallard & Whitehead (1996) using bioequiv-
alence procedures.

Our recommended approach receives little mention
in ecological texts (e.g. Quinn & Keough 2002, but see
Kingsford & Battershill 1998); so what evidence is there
that such methods are useful? The test of the inequiva-
lence hypothesis adopted here is required by US FDA
(http://www.fda.gov/cder/guidance/1716dft.htm) and
EU (http://www.emea.eu.int/pdfs/human/ewp/
140198en.pdf) drug trials. If human health is suffi-
ciently important to adopt equivalence procedures,
could not the environment be given similar protection?
Other barriers to the adoption of the methods include
the availability of software. Most software packages
have numerous procedures for testing null hypotheses,
but lack protocols for tests of interval hypotheses. We
list targeted software packages for carrying out equiv-
alence tests in Appendix 1, and are aware of macros
circulating to carry out such tests in popular statistical
packages. Wellek (2002) contains a webpage (http://
www.zi-mannheim.de/wktsheq) with code for most of
the numerous analyses he gives, including compar-
isons of multiple means. All of our analyses were car-
ried out using code written in Excel™. The major bar-
rier to the adoption of the equivalence testing
approach appears to be one of familiarity, rather than

lack of software. One of our prime objectives here is to
draw attention to the large number of difficulties with
the widely used p-value approach.

Some workers state that they cannot use equivalence
procedures because they are unable or unwilling to
specify an equivalence interval; they cannot indicate
what an effect of real consequence might be, and so test
a point-null hypothesis. In such situations, the appro-
priate course of action is to estimate the magnitude of
the effect, rather than carry out a test with no context.
We consider this to be a point of considerable impor-
tance. Presenting the result of any statistical hypothesis
test, in which the size of a biologically important effect
is unknown, gives an aura of precision where little ex-
ists. If a researcher cannot specify how big an effect of
practical consequence might be, why carry out a test of
an untenable hypothesis? Is it merely because one
doesn’t have to state an important effect size? In that
case, what does statistical significance actually mean?

When this study was designed R. Cole had not
encountered tests of equivalence hypotheses. We sub-
sequently set a relatively lenient symmetrical 50%
equivalence interval as the criterion for our decisions a
posteriori, as in our experience populations of subtidal
organisms can fluctuate considerably. That interval is
probably a reasonable first attempt, but as the relevant
populations become better known, more stringent or
lenient equivalence intervals could be examined.
Resource managers are frequently able to dictate mon-
itoring standards that must be met, and therefore we
suggest they adopt equivalence protocols. Although
the medical derivation of equivalence procedures has
probably directed attention toward the comparison of
multiple treatments with a single control treatment, in
environmental studies it is more usual to compare mul-
tiple control sites with a single impacted site (e.g.
Underwood 1992, 1994). Such experimental designs
are well-suited to the use of equivalence procedures.

Our approach has been that of global safety, where
all treatments must be shown to be safe (i.e. inequiva-
lence hypothesis rejected in favour of equivalence for
all sites in our case). This is a very demanding condi-
tion, and one that is likely to be expensive to demon-
strate (see sample size calculations). Hauschke &
Hothorn (1998) also consider partial safety, in which at
least one comparison shows safety. This more lenient
criterion is less demanding of a developer, but is also
more hazardous to the environment. We consider that
neither approach is necessarily the most useful for
point-source impacts in spatially structured situations.
In assessments such as ours, there are likely to be clear
spatial gradients in the severity of the impact, since the
source of impact is clearly identified (the disposal
area), and it is effectively a point-source impact. The
large sample sizes required by the inequivalence pro-
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cedure also offer the opportunity to map the severity of
the impact in detail. In such cases, an added benefit of
the equivalence testing approach is that, where clear
definitions of impact and control are not possible, map-
ping the extent and severity of impact will be done in
more detail. Such assessments of impact could be
incorporated into predictions of mixing zones and
zones of acceptable impact.

Our findings have important implications for survey
design. To demonstrate no effect with the inequiva-
lence procedure, powerful tests and therefore high
replication are required. Intra-site variation does not
influence the power of the test for an effect of disposal.
To obtain a powerful test for the effect of disposal, it is
best to minimise replication within sites and maximise
the number of sites within each level of disposal. With
data such as these (which are not particularly variable
compared to abundances of plankton or many reef
fishes), sample sizes at least an order of magnitude
larger than are usual currently will be required to
determine whether there has been an impact, even for
the relatively large effects we postulate to be of conse-
quence. That finding is particularly characteristic of
inequivalence test procedures (e.g. Bross 1985, our
Fig. 2). In our experience, such sample sizes are not
prohibitive, and use of innovative technology can
further reduce sampling costs.
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A p-value is defined as the probability of obtaining
data at least as extreme as have been obtained assuming
that the tested hypothesis was true (e.g. Wonnacott &
Wonnacott 1977). The most common hypothesis tested is
a 2-sided point-null, positing exact equality between
population parameters, e.g. means. There are 2 other
options for the form of tested hypotheses. The first is ‘one-
sided‘, positing an inequality; for example that the mean
of one population is less than that for a second population.
The second (intermediate) hypothesis form is that of a 2-
sided interval — that a difference (e.g. between means)
lies within or beyond an interval, such as the equivalence
tests discussed in this paper.

The behaviour of p-values is fundamentally different
for tests of these types of hypotheses. For a 2-sided
point-null, p tends to become ever smaller as the num-
ber of samples (the sample size) increases, as can be
shown mathematically. This is because the hypothesis
tested in fact cannot be expected to be true, even
though it is assumed to be true when calculating the p-
value. To see that the hypothesis cannot be true, note
that it poses an exact equality, but for continuous vari-
ables there will virtually always be some difference
between the tested parameters, however small. Conse-
quently, if p is not small (i.e. less than the significance
level) one should never infer that a point-null hypothe-
sis is valid, by accepting it. This was always stated by
R. A. Fisher (the original proponent of significance
tests; see Goodman 1993, Royall 1997). Though not
widely understood, procedures of acceptance of such
hypotheses, in notions of hypothesis tests advanced by
Neyman & Pearson (1933), were proposed for the pur-
poses of a guide to behaviour, i.e. to guide a decision
(what should I do?) rather than as a means of inference
(what should I believe?), as elaborated by Royall (1997).

In contrast, the p-value for 1-sided tests and for 2-sided
equivalence tests can rise or fall as the sample size increases,
and the tested hypothesis (which is no longer null) can be
accepted for inference.

An interesting consequence of the above behaviour of p
concerns Bayesian hypothesis probabilities (i.e. the probabil-
ity of a hypothesis being true, obtained by using new data to
update a prior probability). For a 1-sided test the Bayesian
probability and p may be very close to one another (Casella &
Berger 1987), whereas for a 2-sided point-null these 2 proba-
bilities are nearly always quite different. In the intermediate
case of 2-sided tests of interval hypotheses (equivalence
tests) p-values are often rather close to the appropriate
Bayesian probability.

Finally, for interval tests with unknown variance, UMPU
(Uniformly Most Powerful Unbiased) tests do not exist; the t-
test is UMPU however. A consequence of this is that the true
level of significance of the equivalence tests presented
herein may be less than the nominal significance level (α),
even though the test’s size is α. This is particularly the case at
small numbers of samples. That is, the power of the test at the
edge of the critical region may be less than the desired 5%,
as seen in the inequivalence test in Fig. 2 for n = 10 samples.

Software for calculating equivalence tests available at:
http://www.statsol.ie/equivtest/equivtest.htm
http://www.studysize.com/index.htm
http://pages.prodigy.net/johnsonp12/cd1and2.html
http://www.summitpk.com/pksolutions/pksolutions.htm
http://www.zi-mannheim.de/wktsheq

Dixon (1998) and Atherton-Skaff & Sloan (1998; http://
www2.sas.com/proceedings/sugi23/Stats/p218.pdf) show
how to calculate tests of equivalence with generic statistical
software, and Atherton-Skaff & Sloan (1998) and http://
niwa.co.nz/rc/prog/stats/news provide software for power
analysis procedures.


