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INTRODUCTION

Seagrass beds are among the most widespread and
productive coastal ecosystem types worldwide, and
range from the tropics to boreal margins of every
ocean (Hemminga & Duarte 2000). Seagrasses provide
physical structure on otherwise largely featureless
sediment bottoms, enhancing community diversity,
biomass, and primary and secondary production. The
leaves provide a substratum for growth of epiphytic
microalgae that fuel food webs and a shelter for inver-
tebrates and fishes that reach substantially greater
densities than in unvegetated benthic habitats (Heck &
Orth 1980, Orth et al. 1984). This combined productiv-
ity of seagrasses and associated algae ranks seagrass
beds among the most productive ecosystems on earth
(Duarte & Cebrián 1996), and their provision of nursery

areas for juvenile stages of commercially important
species (Heck et al. 2003) contributes significantly to
the economic importance of estuarine fisheries (Ander-
son 1989, Costanza et al. 1997). Moreover, because
much seagrass production ends up in below-ground
tissues and ungrazed detritus, seagrass beds are an
important global sink for carbon, accounting for an
estimated 15% of net CO2 uptake by marine organisms
on a global scale, despite contributing only 1% of
marine primary production (Duarte & Chiscano 1999).

Unfortunately, seagrass beds are also among the
most threatened of marine habitats (Short & Wyllie-
Echevarria 1996, Duarte 2002). As in most other
shallow marine ecosystems, 3 threats stand out as
being especially pervasive. These are eutrophication
(Howarth et al. 2000, Cloern 2001), overfishing (Jack-
son et al. 2001), and the destruction of physical and
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biogenic habitat (Watling & Norse 1998, Thrush & Day-
ton 2002). These impacts, along with pollution, have
caused major changes in abundance, species composi-
tion, and structure of marine communities, including
regional and even global extinctions (Carlton et al.
1999, Jackson et al. 2001). Of the several types of
human insults that the natural world faces, however,
species extinction is arguably unique in being the only
one that is irreversible. Thus, there are compelling
reasons for understanding how declining biodiversity
mediates ecosystem functional processes such as pro-
ductivity, trophic transfer, and carbon storage.

Recognizing these links, the potential influence of
changing biodiversity on ecosystem functioning (BEF)
has become a central topic in ecology and conservation
biology (Tilman 1999, Loreau et al. 2001, Naeem 2002,
Srivastava & Vellend 2005) and a controversial one
(Huston 1994, Huston et al. 2000, Schwartz et al. 2000,
Wardle et al. 2000). By ecosystem functioning, I mean
aggregate processes of whole ecosystems, such as pri-
mary and secondary production, trophic transfer, bio-
geochemical fluxes, and resistance and resilience
of ecosystem-level properties to disturbance. In this
review, I consider whether and how changing biodi-
versity, across a hierarchy of taxonomic and ecological
scales, may influence the functioning of seagrass eco-
systems, based on the few explicit experimental tests
of such relationships and on inferences from other lines
of evidence. I close with thoughts on how this research
might inform our response to mitigating worldwide
seagrass decline and its consequences for ecosystem
services important to human society.

FUNCTIONAL ASPECTS OF BIODIVERSITY

Living organisms vary at every level of the phyloge-
netic hierarchy from individual genes through higher
taxa, and ecological assemblages vary in composition
from guilds or functional groups, through communi-
ties, to landscapes. This variation is of interest in
understanding ecosystem functioning insofar as it pro-
vides a proxy for variation in traits important to pro-
cesses such as growth, production, and resource use
(e.g. Norberg et al. 2001). Historically, most research
exploring biodiversity effects on ecosystem function-
ing has equated ‘biodiversity’ with the number of
species (Tilman 1999, Loreau et al. 2001). In principal,
however, diversity at any level might influence eco-
system processes, and there is evidence that variation
at several levels does so, as reviewed below.

Conceptually, diversity can be partitioned into varia-
tion in identity (often called composition in the BEF lit-
erature) and number (or richness) of elements, whether
those elements are species, genotypes, or other enti-

ties. It has long been recognized that the identities of
species in a system strongly influence its functioning.
Particular keystone species, dominant species, and
ecosystem engineers have pervasive impacts on struc-
ture and functioning of a wide range of ecosystems
(Jones et al. 1994, Power et al. 1996, Grime 1998). In
seagrass systems, specifically, identity of the dominant
seagrass and macroalgal species strongly influences
sediment biogeochemistry, nutrient cycling, water-col-
umn oxygen profiles, water filtration capacity, primary
and secondary production, carbon storage, support of
higher trophic levels including commercially impor-
tant species, and response to disturbance (Heck & Orth
1980, Duarte 1991, Lemmens et al. 1996, Cebrián et al.
1997, Duarte et al. 1997, Valiela et al. 1997, Wigand et
al. 1997, Lipcius et al. 1998, Hemminga & Duarte 2000,
Deegan et al. 2002). For example, shallow eutrophic
estuaries are often dominated by macroalgae (Valiela
et al. 1997), which support much sparser animal popu-
lations than seagrass beds (Deegan 2002). Experimen-
tal removal of macroalgae in a eutrophic estuary
shifted dominance back to eelgrass Zostera marina,
substantially enhancing abundances of fishes and
decapod crustaceans, and reducing water-column
hypoxia (Deegan et al. 2002). At a finer taxonomic
scale, 4 Mediterranean seagrass species spanned an
order of magnitude in the proportion of their produc-
tion stored as refractory detritus (Cebrián et al. 1997),
and a suite of Philippine seagrass species responded
quite differently to experimental sediment loading,
with some species declining rapidly, but others show-
ing an opportunistic growth increase (Duarte et al.
1997).

Similarly, the identity of herbivore taxa is important
to ecosystem processes; fishes and sea urchins often
injure seagrasses by feeding on them, whereas most
gastropods and crustaceans facilitate seagrasses by
grazing their competitors (Hughes et al. 2004, Valen-
tine & Duffy 2005). Even superficially similar grazer
taxa can have widely different impacts on the structure
and functioning of seagrass systems (Duffy et al. 2003,
2005). In short, the ecosystem consequences of
variation in species identity are well documented and
uncontroversial for seagrass beds and other eco-
systems.

The more challenging question is whether and how
the richness or variety of elements (genotypes, species,
habitat types) in a system influence its functioning.
That is, are there general relationships between spe-
cies richness and ecosystem processes, or are species
effects entirely idiosyncratic? Under what circum-
stances might we expect diversity effects or idiosyn-
crasy? These and related questions have been a pri-
mary focus of recent research in ecology (reviewed by
Tilman 1999, Loreau et al. 2001, 2002b, Kinzig et al.
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2002). The abundant functional variation among spe-
cies in seagrass communities provides much raw mate-
rial by which diversity might influence ecosystem
properties. Accordingly, I focus here on whether and
how the number (richness) of genotypes, species,
higher taxa, and habitat types in seagrass systems
influences production, trophic transfer, biogeochemi-
cal fluxes, and resistance to disturbance. Existing data
suggest that biodiversity at a range of scales can sig-
nificantly influence the functioning of seagrass eco-
systems and enhances the magnitude and stability of
services that they provide to humans.

EVIDENCE AND INFERENCE

Since much controversy has surrounded proposed
relationships between biodiversity and ecosystem
function (Huston 1997, Huston et al. 2000, Wardle et
al. 2000), it is important to consider the nature of avail-
able evidence. A logical first pass at evaluating such
relationships might involve mining the extensive
datasets on community composition and rates of
ecosystem processes available for marine systems.
Emmerson & Huxham (2002) used this approach in a
thoughtful review of potential links between diversity
and ecosystem properties in marine sedimentary sys-
tems. Using individual sites or studies as data points,
they found positive correlations between benthic in-
vertebrate species richness and ammonium flux, parti-
cle clearance from the water column, and secondary
production. Using a similar approach, Duarte (2000)
found that aggregate seagrass biomass and species
richness of seagrasses covaried positively in southeast
Asian beds.

While such relationships are intriguing, it is critical
to bear in mind, as Emmerson & Huxham (2002) noted,
that correlation is not causation. Relationships be-
tween species diversity and productivity, for example,
are bidirectional (Loreau et al. 2001, Naeem 2002,
Worm & Duffy 2003). Species richness varies pre-
dictably with resource availability, disturbance, and
other abiotic gradients (Huston 1994). Typically, within-
habitat diversity increases as resource availability
(productivity potential) increases from very low to
moderate levels, above which excess nutrient loading
can reduce diversity again (the ‘paradox of enrich-
ment’, Rosenzweig 1971). The initially rising diversity
is attributable in large part to the greater carrying
capacity and favorability of more productive environ-
ments, which allows additional species to persist that
could not do so under very low resource availability.
Such cross-site comparisons explicitly consider a gra-
dient in the abiotic environment and assume that a
regional pool of species is available to colonize all sites.

In this scenario, then, one expects a positive correla-
tion between aggregate biomass, which reflects carry-
ing capacity, and diversity. However, it is because
resource availability (environmental ‘productivity’) is
driving diversity, rather than vice versa.

Studies of how biodiversity influences ecosystem
processes address a very different question, namely
the consequences o irreversible species loss from a
system in which the abiotic environment is held con-
stant. That is, they simulate the consequences of global
or regional extinction. The distinction is critical, and
has often been misunderstood. The most rigorous way
to test this latter hypothesis is through experimental
manipulation of biodiversity. In contrast, surveys of
unmanipulated systems rarely can rigorously test
whether diversity influences aggregate biomass (or
other ecosystem processes) because, in open systems,
diversity and biomass patterns are both responses to
resource availability.

THREATS TO BIODIVERSITY OF SEAGRASS
ECOSYSTEMS

Whether and how changing biodiversity influences
ecosystem functioning obviously depend on which
taxa are lost—and which are gained via invasion.
Experiments (Jonsson et al. 2002, Zavaleta & Hulvey
2004) and simulations (Ostfeld & LoGiudice 2003,
Solan et al. 2004) show that the identity and order in
which species are lost from a system strongly influence
how those losses translate to changing ecosystem
functioning. Several patterns in how humans influence
biodiversity appear to apply across a broad range of
aquatic (and many terrestrial) systems (Fig. 1). Perhaps
the most consistent is that overharvesting results in
large animals being the first species to be lost, or ren-
dered so rare as to be ecologically extinct (Jackson et
al. 2001, Pandolfi et al. 2003, Lotze & Milewski 2004).
Thus, one of the first consequences of human impact
on most ecosystems is ‘trophic skew’, i.e. flattening of
the trophic biomass pyramid with general reduction in
impacts of large predators (Duffy 2003). Such overhar-
vesting followed rapidly after human occupation of
sites worldwide, even with low human population den-
sities and primitive hunting technologies (Jackson et
al. 2001, Wing & Wing 2001). Reduction of large ani-
mals can have several ecosystem-level consequences.
Depending on the number and discreteness of effec-
tive trophic levels (Strong 1992), reduced predator
abundance may actually increase grazing pressure via
a trophic cascade. Such cascades have not yet been
demonstrated conclusively in seagrass beds, but are
documented or inferred in other coastal systems. For
example, hunting of sea otters in the 19th century
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caused a phase shift from productive kelp beds to
structureless sea urchin barrens (Estes & Duggins
1995). Similarly, destructive grazing of salt-marsh cord-
grass by abundant snails in the southeastern United
States may have been exacerbated by overfishing of
their main predator, the blue crab Callinectes sapidus
(Silliman & Bertness 2002). Finally, perennial sea-
weeds like rockweeds Fucus and giant kelp have occa-
sionally been decimated by outbreaks of grazing crus-
taceans in recent decades (e.g. Kangas et al. 1982,
Haahtela 1984, Tegner & Dayton 1987), although the
link to reduced predation has not been made conclu-
sively in these cases. Because many large marine ver-
tebrates are highly mobile, loss of these animals may
also break important functional links between habitats
that involve transport of materials or consumer influ-
ence (Polis et al. 1997, Lundberg & Moberg 2002).

In modern coastal regions, anthropogenic habitat
destruction and eutrophication (Fig. 1) are also nearly
universal, and are major threats to seagrass systems
(Short & Wyllie-Echeverria 1996, Duarte 2002). Like
harvesting, habitat destruction tends to influence
large, slow-growing plants and animals most heavily,

leading to dominance by opportunistic ‘weedy’ taxa
with small bodies and fast growth (Watling & Norse
1998). This loss of large plants and sessile inverte-
brates removes important habitat structure for associ-
ated mobile organisms. Moreover, since large species
tend to have correspondingly large per-capita effects
on ecosystem processes (Emmerson & Raffaelli 2004,
Solan et al. 2004), loss of large mobile invertebrates
can reduce bioturbation, with important biogeochemi-
cal consequences (e.g. Aller & Yingst 1978, 1985,
Emmerson et al. 2004, Lohrer et al. 2004, Waldbusser
et al. 2004, Widdicombe et al. 2004). Finally, eutrophi-
cation generally selects for fast-growing algae (includ-
ing phytoplankton) over perennial seagrasses (Valiela
et al. 1997). Hence, under human impact, biodiversity
loss most severely affects large animals, high trophic
levels, and perennial benthic plants. What is left are
physically fragmented systems dominated by small,
opportunistic species tolerant of various anthropogenic
stressors (Fig. 1).

While human activities have reduced biodiversity
through the mechanisms just discussed, they have also
transported and established many species outside their
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native ranges, both intentionally and inadvertently.
For example, the Asian seagrass Zostera japonica has
become established on the northwest coast of North
America, essentially converting intertidal mudflats into
seagrass beds, and increasing benthic animal diversity,
abundance, and sediment organic matter much as
native seagrasses do (Posey 1988). Although such inva-
sions often increase local species richness, at least in
the short term (Sax & Gaines 2003), exotic predators,
disease organisms, and competitors also frequently
have large detrimental impacts on the structure and
functioning of native ecosystems (Simberloff et al.
2005), including seagrass systems. For example, inva-
sion and aggressive growth of the non-indigenous alga
Caulerpa taxifolia in the Mediterranean are threaten-
ing seagrass beds there (deVilléle & Verlaque 1995). In
California, USA, the exotic mussel Musculista senhou-
sia reduces the rhizome extension rates of eelgrass
Zostera marina, suggesting that these invaders might
be particularly detrimental to eelgrass beds that have
already been fragmented (Reusch & Williams 1998).

BIODIVERSITY AND FUNCTIONING OF
SEAGRASS ECOSYSTEMS

Conceptual background

Diversity and resource use and productivity

Theory predicts that declining biodiversity should
reduce community resource use and productivity, alter
trophic interactions, and reduce a system’s stability in
the face of natural and human-induced perturbations.
Tilman (1999) has reviewed the theoretical basis, as
well as the first generation of experiments supporting
the influence of plant species diversity on resource use
and productivity. Briefly, diverse assemblages are pre-
dicted to be more productive, on average, than spe-
cies-poor assemblages, because their larger range of
traits allows exploitation of a greater fraction of avail-
able resources (niche complementarity), and because
diverse assemblages are more likely, by chance alone,
to contain species that grow well under the local con-
ditions (the sampling effect ). Most manipulations of
grassland plant diversity have supported these predic-
tions (Hector et al. 1999, Tilman 1999), although there
are conspicuous exceptions (Hooper & Vitousek 1997,
Pfisterer & Schmid 2002) and debate continues over
interpretation of results (e.g. Huston & McBride 2002).
While the theory was developed primarily for plants, it
should apply in principle to competitive assemblages
of any type of organism, and experiments have indeed
shown that species richness also enhances efficiency of
resource use by sessile marine invertebrates (Stachow-

icz et al. 1999, 2002), stream suspension feeders
(Cardinale et al. 2002), mobile grazers (Naeem & Li
1998, Duffy et al. 2003), aquatic detritivores (Jonsson &
Malmqvist 2000), and heterotrophic bacteria (Naeem
et al. 2000). Thus, the greater efficiency of resource use
by more diverse assemblages appears to be a common
phenomenon in a range of taxa and ecosystems.

Diversity and trophic interactions

Within a food web, biodiversity can be thought of as
having 2 dimensions: a ‘vertical’ component summa-
rized by the length of food chains and a ‘horizontal’
component representing the number of species or
functional groups within trophic levels (Fig. 2).
Changes in vertical diversity (e.g. food chain length)
often strongly influence ecosystem properties through
changing trophic interactions (e.g. Pace et al. 1999,
Shurin et al. 2002, Borer et al. 2005). Horizontal diver-
sity influences ecosystem functioning through com-
petition, facilitation, and resource partitioning, topics
which have been the focus of most of the previous BEF
research (Kinzig et al. 2002, Loreau et al. 2002b). Low-
diversity systems often function approximately as sim-
ple linear food chains with strong trophic cascades, as
shown in temperate lakes (Carpenter et al. 1985, Jones
& Sayer 2003), high-latitude kelp beds (Estes et al.
1998), and the boreal ocean (Worm & Myers 2003).
Higher-diversity systems, in contrast, are expected to
show weaker cascades and weaker top-down control
(Leibold 1989, 1996, Strong 1992). The reason is that
more diverse assemblages contain a wider range of
predator-resistant taxa, such that predation shifts
dominance toward resistant species (‘species turnover’,
Leibold 1996) rather than reducing aggregate prey
biomass as in simple food chains (Duffy 2002). This
buffering effect of diversity against top-down control
is supported by a meta-analysis of periphyton–grazer
experiments (Hillebrand & Cardinale 2004), a meta-
analysis of terrestrial trophic cascade experiments
(Schmitz et al. 2000), data on parasitoid control in
terrestrial food webs (Montoya et al. 2003), and an
explicit experimental test in a seagrass system (Duffy
et al. 2005). Conversely, the effects of changing preda-
tor diversity on aggregate prey biomass have received
little study (Duffy 2002, but see Finke & Denno 2004,
Bruno & O’Connor 2005). In general, available data
suggest that increasing diversity within a trophic level
(or other functional group) often increases that level’s
relative influence on ecosystem functioning, as it leads
to both greater resource use and greater resistance
to control by higher-order predators. Nevertheless,
trophic cascades have been observed in several highly
diverse systems (Pace et al. 1999, Borer et al. 2005),
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confirming that keystone species and other strong
interactors can override the potentially buffering effects
of diversity in some situations.

Diversity and stability

Finally, biodiversity is hypothesized to enhance sta-
bility of aggregate ecosystem properties (e.g. total plant
biomass) under changing environmental conditions
(Naeem 1998, Yachi & Loreau 1999), because function-
ally redundant species can provide insurance when any
one species is lost and because variation among species
in response to environmental change (response diver-
sity, Elmqvist et al. 2003) can even-out temporal fluc-
tuations in community biomass. Some terrestrial and
aquatic microbial experiments support these predic-
tions. For example, in experimental moss assem-
blages, more diverse plots showed greater resistance to

drought stress, that is, aggregate biomass was less af-
fected by drought than in lower-diversity plots (Mulder
et al. 1999). In microbial microcosms, ecosystem bio-
mass was more predictable under changing resource
(light and nutrient) conditions when more species were
present (Naeem & Li 1998). In the marine benthos, ex-
periments and surveys both showed that more diverse
fouling assemblages were more resistant to invasion by
non-indigenous species (Stachowicz et al. 1999, 2002).
Thus, high diversity often appears to buffer against
effects of disturbance in a variety of ecosystems.

Special considerations in seagrass ecosystems

The current themes of BEF research are based
largely on research aimed at terrestrial plants.
Although several ecosystem-level effects of diversity
have been demonstrated in a variety of systems and
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taxa, understanding potential effects of biodiversity on
functioning of seagrass and other marine ecosystems
also requires recognizing their typically strong top-
down control, strong species dominance, and dis-
cordance between biomass and productivity. First,
the strong consumer pressure characteristic of many
aquatic systems (Cyr & Pace 1993, Shurin et al. 2002)
and the special vulnerability of large marine predators
(Pauly et al. 1998, Worm et al. 2005) mean that effects
of changing diversity on marine ecosystem functioning
will likely entail complex interactions of changing
diversity within levels and changing food chain length
(Duffy 2003, Duffy et al. 2005). Second, many
temperate seagrass systems are dominated by 1 or a
few foundation species, the characteristics of which are
likely to dominate ecosystem processes (Grime 1998).
In such cases we may expect, by analogy with the
effects of species richness, that genetic and phenotypic
diversity within foundation species will be important
(Reusch & Hughes 2006). Finally, the use of standing
plant biomass as a proxy for plant production, as is typ-
ically done in terrestrial experiments, is inappropriate
in aquatic algal-based systems, because much algal
production is rapidly grazed (Cyr & Pace 1993), result-
ing in poor correlations between biomass and produc-
tivity. Moreover, the existence of many aquatic macro-
phyte systems depends paradoxically on dominance of
the least productive primary producer species in the
community. Seagrasses generally have substantially
lower biomass-specific productivity than marine
macro- and microalgae, which outcompete them under
eutrophication or relaxed grazing pressure (Valiela et
al. 1997). Yet, seagrass beds typically support con-
siderably higher secondary production than sediment
bottoms dominated by more productive macroalgae
(e.g. Klumpp et al. 1989, Deegan 2002), because sea-
grass beds provide more a favorable physical struc-
ture, which supports both growth of microalgal food
and shelter from predators for small animals. Thus, plant
species composition, rather than total productivity, is
important to the functioning of seagrass ecosystems.

Functional consequences of primary-producer
species diversity

In an early discussion of marine BEF linkages, Duarte
(2000) summarized evidence for differences among sea-
grass species in growth capacity and response to distur-
bance, and argued that these differences should lead to
enhanced productivity and stability in diverse tropical
seagrass assemblages, as they do in some terrestrial
grasslands (Hector et al. 1999, Tilman 1999). Although
his discussion predated experimental tests of such links
in marine systems, much circumstantial evidence is con-

sistent with Duarte’s suggestions. For example, in the
Caribbean, co-occurring seagrass species differ in root-
ing depth, with Halodule and rhizophytic algae near the
surface, Syringodium below, and Thalassia occupying
the deepest layer (Williams 1990). This partitioning of
the rooting zone may foster complementarity of resource
use, and thus greater aggregate efficiency of resource
use by the plant assemblage, as has been demonstrated
experimentally in terrestrial grasslands (Tilman 1999,
Hector et al. 1999).

Despite dominance of plant biomass in seagrass beds
by 1 or a few seagrass species, macroalgae are also
characteristic components of seagrass communities
and can play important functional roles. Although
macroalgal blooms can smother seagrasses under
excess nutrient loading (Raffaelli et al. 1998, Hauxwell
et al. 2001), macroalgae can also facilitate seagrass
growth under normal, low-nutrient conditions. Two
examples illustrate this role. First, field experiments in
a Caribbean seagrass bed suggest that rhizophytic
green algae facilitate seagrass recolonization of cleared
plots because decomposition of below-ground algal
tissues increases nutrient concentrations in these
oligotrophic sediments (Williams 1990). Such apparent
facilitation is reminiscent of that between legumes and
grasses in terrestrial grasslands. Second, Caribbean
turtlegrass Thalassia testudinum beds often support a
dense understory of the calcareous alga Halimeda. In
Puerto Rico, turtlegrass associated with Halimeda
mounds was denser, and had higher biomass and pro-
ductivity, than turtlegrass away from Halimeda; 13C
signatures of leaves growing from the mounds sug-
gested that the calcareous alga elevated dissolved CO2

in the interstices of the mounds, enhancing turtlegrass
productivity (Kenworthy & Reid 2003). These exam-
ples suggest that facilitation and niche complementar-
ity among co-occurring plant species in seagrass beds
may enhance resource use and aggregate production
above those found in more pure stands.

Functional consequences of seagrass genetic diversity

In communities with strong dominance, such as many
seagrass beds, intraspecific genetic diversity within
dominant species may enhance the species’ perfor-
mance by analogous mechanisms to the niche comple-
mentarity and facilitation among species discussed
above (Reusch & Hughes 2006). Several studies from
seagrass systems support such effects. Williams (2001)
tested how allelic diversity at the individual (or clone)
level influenced eelgrass performance, transplanting
eelgrass shoots of known allozyme genotypes into the
field in southern California to achieve treatments with
higher allelic diversity (heterozygous at 1 or both of 2
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loci) and lower allelic diversity (homozygous at both
loci). The metabolic enzyme loci studied (MDH and
GPI-2) are known to be influenced by selection in other
taxa, and thus may not be ideal proxies for genome-
wide genetic diversity. Nevertheless, the more hetero-
zygous plots produced greater shoot density by the end
of the 2 yr experiment. In a separate mesocosm experi-
ment measuring eelgrass growth responses to tempera-
ture stress, heterozygous genotypes also showed lower
variability among treatments than did homozygotes
(Williams 2001). Finally, seeds from a genetically de-
pauperate transplant site had lower germination suc-
cess than those from a more genetically diverse bed.

The link between population genetic diversity and
stability was demonstrated conclusively by a field
experiment on the central California coast that estab-
lished replicated eelgrass plots spanning a range in
clonal diversity, identified using microsatellite mark-
ers, from 1 to 8 genotypes per plot (Hughes & Stachow-
icz 2004). The ecological consequence of higher geno-
typic diversity in this experiment was expressed as
enhanced eelgrass resistance to disturbance by graz-
ing geese and the stress associated with transplanta-
tion, resulting in more stable seagrass biomass and
higher abundances of invertebrates and other associ-
ated species. A similar positive effect of genotypic
diversity on eelgrass performance was demonstrated
in the North Sea (Reusch et al. 2005), where more
diverse plots achieved higher biomass during the
anomalously hot summer of 2003.

Fisher’s fundamental theorem of natural selection
states that the adaptive evolutionary potential of a
population is proportional to its genetic diversity. The ex-
amples reviewed here show that genetic diversity can
also be important to the population’s ability to cope with
environmental change in ecological time. High genetic
diversity within populations of dominant seagrasses can
enhance growth performance and stability in the face of
perturbations; thus, maintenance of high genetic diver-
sity within seagrass populations may be important to
maintaining the normal structure and functioning of the
ecosystems they support. Positive consequences of geno-
typic diversity within foundation species for system sta-
bility and performance also may be common in other sys-
tems with strong dominance such as salt marshes, kelp
beds, oyster reefs, deep-sea coral reefs, and pelagic up-
welling systems. This possibility has clear conservation
implications and deserves further study.

Functional consequences of consumer diversity

Human impacts on marine communities generally
begin with depletion of large vertebrate predators and
herbivores (Fig. 1), reducing the vertical component of

biodiversity (Fig. 2). The consequences of this deple-
tion will be mediated via cascading trophic interac-
tions. In seagrass systems, the impacts of depleted
large vertebrates have been inferred largely from indi-
rect evidence and are speculative (as is true in most
other systems), but it seems clear that large vertebrates
were formerly far more abundant, particularly in trop-
ical seagrass ecosystems, than they are today. Histori-
cal records suggest, for example, that sea turtles, some
of which feed primarily on seagrasses, were orders of
magnitude denser in the Caribbean prior to European
contact (Jackson et al. 2001), and probably imposed
strong grazing pressure on tropical seagrass beds, as
dugongs probably did in the Indo-Pacific (Domning
2001). In addition to such mega-herbivores, predatory
fishes have been greatly reduced in most coastal and
oceanic ecosystems (Pauly et al. 1998, Jackson et al.
2001, Myers & Worm 2003, Worm & Myers 2003). Com-
parisons with other systems suggest that these losses
should cascade down to affect the structure and func-
tioning of seagrass beds, although there is little hard
evidence to evaluate the possibility (Williams & Heck
2001).

The expected ecosystem consequences of changing
consumer diversity are inherently more complex than
those of changing plant diversity (Holt & Loreau 2002,
Thébault & Loreau 2003). Whether effects of shortened
food chains on seagrasses are primarily positive or
negative will depend, for example, on the number and
distinctness of links in the chain (Hairston et al. 1960,
Strong 1992), on diet breadth of consumers (Duffy
2002), and on whether herbivores feed preferentially
on seagrasses or their competitors. Herbivores in
modern seagrass systems include both direct grazers
on seagrasses, such as sea urchins, turtles, and some
fishes, as well as grazers on epiphytes, which include
most crustaceans and molluscs. Meta-analysis con-
firms that these 2 groups are functionally distinct, with
negative and positive effects, respectively, on seagrass
growth and production (Hughes et al. 2004). As epi-
phyte grazers tend to be more diverse and abundant
than seagrass grazers, especially in modern temperate
systems, grazing in many seagrass systems tends, on
average, to favor seagrasses (Hughes et al. 2004) and
facilitate their positive impacts on ecosystem services.

The strength of top-down control generally, and
trophic cascades specifically, should also be influenced
by diversity within trophic levels, i.e. the horizontal
component of biodiversity (Fig. 2; Leibold 1996, Duffy
2002). Supporting these predictions, recent mesocosm
experiments in an eelgrass system demonstrated that
declining species richness of crustacean mesograzers
decreased their aggregate impact on the resource
(algae) and decreased mesograzer production, in par-
allel with patterns demonstrated under declining plant
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diversity (Duffy et al. 2003). Specifically, treatments
with 1 or 3 grazer species imposed lower total grazing
impact on algae and accumulated less grazer biomass
(secondary production), on average, than assemblages
of 6 grazer species (Duffy et al. 2003). In a subsequent
experiment that added a third trophic level (juvenile
blue crabs Callinectes sapidus), declining grazer diver-
sity also reduced the grazer assemblage’s average
resistance to predation, because diverse assemblages
more consistently contained grazer species that eluded
capture (Duffy et al. 2005). The latter experiment illus-
trates the important point that biodiversity and food
chain length (i.e. presence or absence of predators)
interactively influence ecosystem functioning and that
neither factor’s impact is predictable in isolation. In
general, grazer diversity effects on resource use and
production were stronger in the presence of a predator
(Duffy et al. 2005), suggesting that increasing diversity
within a trophic level buffered that level from top-
down control. Finally, in both experiments with and
without predatory crabs, declining mesograzer diver-
sity reduced the dominance of eelgrass over macro-
algae and epiphytes (Duffy et al. 2003, 2005). Thus, in
this eelgrass system, high diversity of epiphyte grazers
enhanced both control of epiphytes and macroalgae
and the production of crustacean biomass, a critical
link in food chains to higher trophic levels.

Biodiversity and stability

Among the most important hypothesized benefits of
biodiversity for ecosystem functioning is provision of
insurance that stabilizes the system against natural
and anthropogenic environmental change (Naeem
1998, Yachi & Loreau 1999, Loreau et al. 2002a). This
insurance is provided by variation among the species
within a functional group in response to change, or
response diversity (Elmqvist et al. 2003). Importantly,
such species might be considered functionally redun-
dant under ‘normal’ conditions, but their response di-
versity (i.e. greater range of functional response traits,
Naeem & Wright 2003) makes the diverse assemblage
better able to cope with environmental change.

There is mounting evidence that both genetic diver-
sity and species richness provide such response diver-
sity against perturbations in seagrass systems. This is
because species or genotypes that appear functionally
redundant under some circumstances fill different roles
under changing conditions, as illustrated by 2 experi-
ments. First, in the experiment discussed previously,
Hughes & Stachowicz (2004) found no effect of eel-
grass genotypic diversity on either eelgrass biomass or
the associated faunal assemblage in the absence of
disturbance, suggesting that the genotypes were func-

tionally redundant under normal circumstances. The
importance of genetic diversity only became evident
after disturbance, as the genotypes responded dif-
ferently to a pulse of intense goose grazing. Second,
response diversity among peracarid grazer species was
demonstrated experimentally in eelgrass mesocosms
(Duffy et al. 2005). In the absence of predation, the 4
grazer species had similar and strong impacts on epi-
phyte biomass, that is, they were functionally redun-
dant. In the presence of predatory crabs, however, epi-
phyte control differed widely among grazer species,
because of their differential vulnerability to predation,
and grazing efficiency was higher in more diverse
grazer assemblages. Finally, non-experimental evi-
dence for response diversity comes from the varied
responses of co-occurring seagrass species to experi-
mental burial (Duarte et al. 1997) and the shift in dom-
inance from Zostera to Ruppia during the 1997/1998
El Niño–Southern Oscillation event in Southern Cali-
fornia (Johnson et al. 2003). Such response diversity is
likely to be especially important in maintaining the
stability of ecosystem services as the pace of anthro-
pogenic environmental change accelerates. Thus,
‘functional redundancy’ may often be a misleading
concept (Loreau 2004), and maintaining multiple,
superficially similar species within functional groups is
important to insuring seagrass and other ecosystems
against unexpected surprises.

STRUCTURAL COMPLEXITY AND FUNCTIONING
OF SEAGRASS ECOSYSTEMS

Patch-scale processes

Diversity can also influence ecosystem processes
through its effects on habitat physical structure or com-
plexity, which pervasively influence ecological pro-
cesses, including productivity, trophic transfer, and
maintenance of species diversity. Several of these
topics are especially pertinent and well studied in
seagrass systems, and have recently been comprehen-
sively reviewed (Bell et al. 2006).

Plant diversity and faunal production

Seagrasses are classic ecosystem engineers, trans-
forming relatively monotonous sediment bottoms into
structurally complex, diverse, and highly productive
habitats (Fig. 1). In addition to the seagrasses them-
selves, seagrass beds often recruit macroalgae, sponges,
corals, large bivalves, and other sessile invertebrates
that are rare or absent on unvegetated bottoms. Struc-
tural complexity of seagrass beds derives from both the
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physical arrangement of seagrass units within beds—
shoot density, leaf length, patch structure—and from
the richness and identity of other co-occurring sessile
organisms.

Structurally complex habitats support higher diver-
sity of mobile organisms in a wide range of systems
(e.g. Kohn 1967, Abele 1974, Kotler & Brown 1988).
Several lines of evidence, mostly indirect, suggest
that diversity of primary producers and sessile inverte-
brates influences structural complexity and associated
functioning of seagrass systems. Stoner & Lewis (1985)
found that the understory of calcareous algae (Hali-
meda) in a Caribbean turtlegrass bed roughly doubled
the surface area available for epifaunal habitat, relative
to pure stands of turtlegrass, and that epifaunal densi-
ties were accordingly higher in plots with Halimeda.
Moreover, while aggregate abundance of epifauna ap-
peared closely related to plant surface area across all
plots, 8 of the 15 dominant crustacean species were
more abundant (per unit surface area) in plots with
Halimeda. Thus, seagrass plots with macroalgae sup-
ported epifaunal assemblages that differed both quan-
titatively and qualitatively from those in pure seagrass
stands. Similarly, Parker et al. (2001) showed experi-
mentally in Chesapeake Bay that epifaunal abundance
in mixed stands of seagrasses and macroalgae was pro-
portional to total plant surface area, but that epifaunal
species differed in their associations with particular
macrophyte species such that epifaunal diversity was
only slightly higher in plots of mixed seagrass and
macroalgal species. These results recall similarly signif-
icant but weak relationships between plant diversity
and insect diversity in terrestrial grasslands (Siemann
et al. 1998). As is often true, however, too much of a
good thing can be detrimental: in eutrophic systems,
fleshy macroalgae outcompete seagrasses, increase
water-column hypoxia, and support reduced animal
abundance and production (Deegan et al. 2002).

Roles of sessile invertebrates

In tropical seas, sessile invertebrates are characteris-
tic features of seagrass landscapes. Sponges, in partic-
ular, fulfill several important functions in these sys-
tems. These suspension feeders can have very high
rates of water clearance, and symbiotic bacteria in
some species make them disproportionately important
to element cycling. Incubations of 4 common Carib-
bean sponges yielded the highest mass-specific rates
of dissolved inorganic nitrogen production yet re-
corded from a benthic community (Diaz & Ward 1997),
and suggest that sponge-mediated nitrification may be
substantial in shallow tropical environments where
they are abundant. Sponges also provide unique and

important physical habitat in seagrass systems, and
many animals shelter within and under large sponges.
A dramatic example of the importance of sponges be-
came evident after the ecosystem phase shift that
affected Florida Bay, USA, in the early 1990s. Large
areas affected by blooms of planktonic cyanobacteria
suffered severe mortality of sponges, thus losing criti-
cal shelter habitat for juvenile spiny lobsters and other
animals; as a result, abundance of lobsters, which con-
stitute a valuable fishery resource, declined wherever
artificial shelters were unavailable (Butler et al. 1995).

Habitat complexity and trophic transfer

Among the most important and well-studied ecosys-
tem services provided by seagrass beds is the provision
of habitat for small animals and, thus, the enhance-
ment of secondary production. A rich history of research
shows that increasing seagrass structural complexity
enhances epifaunal abundance and production, but
conversely decreases the efficiency by which that pro-
duction is transferred to predators (reviewed by Heck
& Orth 1980, 2006). This research has focused primar-
ily on the role of seagrass density (often referred to as
‘complexity’) in mediating predator–prey interactions,
but there is also evidence that species of seagrasses
and macroalgae differ in the total density, and species
relative abundances, of associated epifauna they sup-
port (Lewis 1987, Virnstein & Howard 1987a,b, Jer-
nakoff & Nielsen 1998, Parker et al. 2001). Experiments
have illuminated the mechanistic bases for these rela-
tionships, showing that variation among plant species
in epifaunal density is largely, but not entirely,
explained by plant surface area (Stoner & Lewis 1985,
Parker et al. 2001). Experiments also suggest that the
relationship between seagrass density and effective-
ness of predation is non-linear (reviewed by Heck &
Orth 2006), a conclusion also reached for juvenile
decapod prey sheltering among macroalgae in sea-
grass beds (Lipcius et al. 1998). Although debate con-
tinues on the precise form of relationships between
plant density and predation rate, it seems clear that
some threshold density of vegetation is usually neces-
sary to reduce predation rates on epifauna. Recent
experiments on oyster reefs add an intriguing twist,
indicating that at high predator densities, predation
may be more, rather than less, effective in complex
habitats, because habitat complexity reduces inter-
ference competition among predators (Grabowski &
Powers 2004). A central challenge for future research
is determining how the higher densities of both prey
and predators in denser seagrass interact with reduced
per capita effectiveness of predators to mediate trophic
transfer (Heck & Orth 2006).
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Landscape diversity

Research in a wide range of systems demonstrates that
interactions among the communities of different habitats
in a landscape, mediated by both migrations of organisms
and advection of resources, can profoundly influence
community structure and ecosystem functioning (Polis et
al. 1997, 2004). Such landscape diversity should be espe-
cially important to the functioning of marine systems, be-
cause they tend to be much more open than terrestrial
systems (Witman et al. 2004, Heck & Orth 2006).

Seagrass patch structure

The most basic aspect of landscape structure in sea-
grass systems involves the arrangement of seagrass
patches relative to the matrix of unvegetated sediment
area. Seagrasses are patchily distributed at a wide range
of spatial scales, and there has accordingly been sub-
stantial research on the role of patch size and structure
on associated animals and trophic interactions (Bell et al.
2006). Evidence to date suggests that relationships be-
tween patch size and animal abundance are idiosyn-
cratic, and few consistent patterns have emerged (Bell et
al. 2006). Nevertheless, several studies support the hy-
pothesis that seagrass patch edges can act as ecotones
where both epifaunal settlement and predation are ele-
vated, potentially enhancing trophic transfer. In turtle-
grass beds in the Gulf of Mexico, USA, density and esti-
mated production of invertebrates was greater at the
edges than in the interiors of patches (Bologna & Heck
2002). Both adult peracarids in turtlegrass (Bologna &
Heck 2000) and newly settled sessile invertebrates in
eelgrass (Orth 1992) were more abundant near patch
edges, suggesting that abundance is determined in part
by encounter rates of drifting larvae with seagrass, cre-
ating settlement shadows in the interior of patches. Pre-
dation also commonly appears to be elevated in patchy
seagrass landscapes, as is also true in many terrestrial
ecosystems (e.g. Hartley & Hunter 1998, Chalfoun et al.
2002). Experiments have demonstrated elevated preda-
tion rates on juvenile blue crabs in seagrass patches sep-
arated by large expanses of sand (Hovel & Lipcius 2002),
and clams and scallops also showed lower survival in
patchy than in continuous seagrass beds (Irlandi 1994,
Irlandi et al.1995). These results suggest that trophic
transfer is often elevated along patch edges and in frag-
mented seagrass landscapes relative to continuous ones.

Cross-habitat subsidies

Many community and ecosystem processes are
strongly affected by connections between different

kinds of habitats. These effects can result from passive
advection of propagules and resources, or from active
movement of mobile predators among habitats. A
striking example is the subsidy of deep-sea food webs
by seagrass leaves advected away from tropical islands
(Suchanek et al. 1985). Seagrass beds may also be
recipients of advected material, as exemplified by the
high diversity and biomass of epiphytic macroalgae
measured on seagrasses near reefs in Western Aus-
tralia (Van Elven et al. 2004). By recruiting propagules
from both habitats, near-reef seagrasses supported
20% higher algal diversity than on the adjacent reef,
and 43% higher diversity than on seagrasses distant
from the reef. Epiphytic algal biomass on near-reef
seagrasses was >3-fold greater than on the reefs, and
nearly 6-fold higher than on distant seagrasses.

Active movement of predators between habitats can
enhance densities and direct impacts of predators, and
enhance primary producer growth indirectly via trans-
port and excretion of inorganic nutrients by migrating
predators. As an example of the first type of process,
pinfish were more abundant in salt marshes adjoining
seagrass beds than in marshes without seagrass beds
(Irlandi & Crawford 1997). Similarly, Micheli & Peter-
son (1999) showed that oyster reefs isolated from sea-
grass beds and salt marshes supported higher macro-
invertebrate species richness and higher survival of
transplanted clams than reefs adjacent to vegetated
areas. Experiments demonstrated that surrounding
vegetation served as corridors facilitating access
by predatory blue crabs to oyster reefs. Hence, in
this instance, landscape-level diversity enhanced
the strength of top-down control. The second process,
transport of nutrients among habitats, was docu-
mented by Meyer et al. (1983). They showed that
haemulid fishes (grunts) fed on invertebrates in sea-
grass beds by day and, during the night, moved to
shelters among coral heads, where their excretion
fertilized nutrient-limited corals and enhanced their
growth rates. Subsidies moving in the opposite direc-
tion, into seagrass beds, are mediated by piscivorous
birds that deposit nitrogen-rich guano near their
roosts; seagrass beds surrounding bird islands had
higher seagrass biomass and different seagrass species
composition than islands without bird colonies (Powell
et al. 1991).

Habitat diversity and complex life histories

A major functional consequence of landscape diver-
sity derives from the complex ontogenic habitat shifts
characteristic of many large marine animals with long-
lived larvae. Tropical seagrass and mangrove habitats
serve as nursery areas for many fishes that live as
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adults on nearby reefs. Thus, proximity of different
habitats in the landscape is critical to the populations
of these fishes. As a specific example, comparisons of
otherwise similar Belizean reef islands with and with-
out fringing mangroves showed that biomass of several
commercially important reef fishes was more than
twice as great on the reefs adjacent to mangrove nurs-
eries (Mumby et al. 2004). Size-frequency distributions
indicated that mangroves served as a way-station
between larval settlement into seagrass habitats and
migration to adult reef habitat. Most striking is the case
of Scarus guacamaia, the largest herbivorous fish in
the Atlantic, whose juveniles were found only among
mangroves; this species has suffered extinction on
several reefs after mangrove removal (Mumby et al.
2004). A similar phenomenon has been implicated for
spiny lobsters that recruit into seagrass beds and even-
tually migrate to reefs and mangrove habitats, where
they live as adults. Acosta (1999) found that mangrove
and coral islands surrounded by seagrass supported
higher lobster densities, and higher proportions of
juvenile size classes, than islands surrounded by un-
vegetated rubble. The seagrass habitats apparently
served as safe migration corridors for juvenile lobsters,
since measured emigration and immigration rates were
3 to 4 times higher on islands surrounded by seagrass.

These results from seagrass beds associated with
oyster reefs, coral reefs, salt marshes, and mangroves
illustrate that landscape diversity—the variety and
arrangement of different habitats in a landscape—can
strongly affect population dynamics of key species, pri-
mary and secondary production, and trophic transfer,
including productivity and stability of commercially
important species.

CONCLUSIONS AND FUTURE DIRECTIONS

Implications for conservation and management

Human activities have strong and direct negative
impacts on the functioning of ecosystems (Sala et al.
2000, Foley et al. 2005), including seagrass beds (Short
& Wyllie-Echeveria 1996, Duarte 2002). Changes in
ecosystem functioning mediated indirectly by chang-
ing biodiversity are likely to be modest compared with
these strong direct effects (Srivastava & Vellend 2005).
Nevertheless, over the long term, the capacity of eco-
systems to continue adapting to environmental change
must ultimately be compromised by continuing extinc-
tions of species. Empirical research reviewed here
suggests that biodiversity at a hierarchy of scales can
influence the stable functioning of seagrass systems
and the several services they provide to humans.
These results have several practical implications. First,

evidence that genetic diversity enhances seagrass
growth and resistance to disturbance supports argu-
ments that seagrass mitigation and restoration efforts
should strive to minimize the genetic bottlenecks com-
mon to such programs (Williams 2001). Genetic diver-
sity within populations is demonstrably important, not
only to the long-term evolutionary potential of a spe-
cies, but also for flexibility in the face of environmental
change on ecological time scales (‘resilience’ in the
parlance of Holling 1973). Because dominant species,
such as seagrasses in many low-diversity temperate
beds, have pervasive bottom-up influences on asso-
ciated communities, genetic diversity within such
species can influence the structure and functioning
of entire ecosystems (Whitham et al. 2003, Reusch &
Hughes 2006). Experiments also show that resistance
to perturbations can be fostered by response diversity
among otherwise similar species, cautioning that
‘functional redundancy’ can be a misleading concept
(Loreau 2004). Conservation measures that result in
maintaining multiple species within functional groups
(e.g. of seagrasses, grazers, or fishes) should provide
seagrass beds with some insurance against impacts of
environmental change.

There is growing evidence that trophic interactions
can have important stabilizing and stimulating effects
on ecosystem processes in many systems, i.e. that
vertical diversity is functionally important. In seagrass
beds specifically, epiphyte grazers have impacts on
seagrasses that are comparable in magnitude, but
opposite in sign, to those of the water-column nutrient
loading widely recognized as a major threat to sea-
grass systems (Williams & Ruckelshaus 1993, Heck et
al. 2000, Hughes et al. 2004). As diverse assemblages
of algal grazers are both more efficient consumers and
more resistant to predator control, on average (Duffy et
al. 2003, 2005), biodiversity at the grazer level may also
benefit seagrass systems. Vertical diversity can also be
important in reducing exotic invasions; in California,
USA, native predatory snails killed 95% of the exotic
mussels Musculista senhousia in native eelgrass beds,
and preferentially attacked these invaders over native
bivalve prey (Reusch 1998). These patterns underscore
the premium on understanding how changing food-
web structure affects the structure and functioning of
seagrass ecosystems (Williams & Heck 2001, Hughes et
al. 2004, Valentine & Duffy 2005).

Finally, the interactions among communities of dif-
ferent habitats within a landscape, and particularly the
complex, spatially distributed life histories of many
commercially important tropical fishes and decapods,
emphasize the importance of a landscape-level per-
spective in conserving both biodiversity and marine
ecosystem services. Landscapes and species are mutu-
ally related, as large consumers serve as mobile links
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between habitats, and loss of those consumers can
disrupt essential cross-habitat resource subsidies or
important top-down control mediated by animals
visiting from other habitats (Polis et al. 1997, Lundberg
& Moberg 2002). Humans, of course, are the ultimate
‘mobile link’ species, and our activities often have
unanticipated consequences at landscape and regional
scales, such as the increased hunting pressure on
endangered African forest animals when overexploita-
tion reduced fishery production in adjacent marine
waters (Brashares et al. 2004).

Future research priorities

Scaling up

Some of the most pressing priorities for research to
understand seagrass systems are common to ecology
and conservation as a whole. One critical, general
challenge for ecology is finding creative and rigorous
means of scaling up understanding based on small-plot
experiments to the large scales over which marine
population and community processes typically occur
(see Naeem 2006, in this Theme Section). As one
example, small-scale mesocosm experiments show
that invertebrate grazers can counteract the negative
effects of eutrophication on seagrass systems by crop-
ping the increased algal biomass (reviewed by Hughes
et al. 2004). In nature, however, this grazer control may
be reduced by emigration of highly mobile grazers in
search of more favorable habitat (Christie & Kraufvelin
2003) and by shifts in dominance from epiphytic
microalgae to macroalgae, which negatively affect dis-
solved oxygen in the water column and reduce grazer
abundance (Deegan et al. 2002). While there is a con-
tinuing need for controlled experiments to identify
mechanisms of diversity effects on ecosystem func-
tioning, there is an even greater need for creative
approaches, such as rigorous comparative studies,
exploitation of ‘natural experiments’, and community
modeling (e.g. Estes et al. 1998, Terborgh et al. 1999,
Dulvy et al. 2004, Mumby et al. 2004, Ebenman &
Jonsson 2005) to evaluate the effects of changing bio-
diversity at the ecosystem scale.

Realistic scenarios of biodiversity loss (and gain)

A second frontier for BEF research involves develop-
ing experimental designs that incorporate realistic tra-
jectories of biodiversity change. Several non-marine
experiments have shown that preferential extinction of
species with particular traits (e.g. large body size, sen-
sitivity to pollutants) produces quite different changes

in ecosystem functioning than does random species
loss (Jonsson et al. 2002, Ostfeld & LoGiudice 2003,
Zavaleta & Hulvey 2004). An obvious part of most
extinction trajectories is the loss of large consumers
(Duffy 2003, Worm et al. 2005). Thus, BEF research
would profit from hybridization with food-web and
predator–prey ecology (Duffy 2002, Worm & Duffy
2003, Ives et al. 2005, Ebenman & Jonsson 2005), again
exploiting ‘natural experiments’ as well as research
opportunities provided by the return of large predators
in marine protected areas (Palumbi 2001, Micheli &
Halpern 2005). Moreover, while BEF research has
focused almost exclusively on loss of species, an
equally pressing concern is the gain of exotic species,
which can have pervasive effects on ecosystems. Spe-
cies loss and gain are often coupled, in that inter-
actions with non-native species are a leading cause of
extinction and endangerment of native species (Czech
& Krausman 1997, Clavero & Garcia-Berthou 2005).
Developing a rigorous ecological understanding of the
causes and consequences of invasion (Sax et al. 2005)
and of how invasion is affected by native species rich-
ness (Levine & D’Antonio 1999, Stachowicz & Tilman
2005) will be important in predicting ecosystem-level
consequences of changing biodiversity.

Landscape interactions

Other research priorities are more specific to marine
ecosystems, or seagrass ecosystems specifically. The
openness of marine systems, characterized by rela-
tively long-distance advection of materials and larvae
and by long-distance migration of many large verte-
brates, challenges ecologists to incorporate meta-
population, meta-community, and regional perspec-
tives into BEF research. Ecological theory has begun to
do so (Holt & Loreau 2002, Loreau et al. 2003, Holt
2004). Most importantly, theory shows that the rela-
tionship of community structure generally, and diver-
sity specifically, to ecosystem functioning depends
strongly on the overall degree of openness and the rel-
ative openness at different trophic levels (Holt 2004).
There is a need to understand better how qualitatively
distinct habitat types, such as seagrass beds and coral
or oyster reefs, interact within landscapes. As summa-
rized above, such linkages are probably important in
most marine systems.
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