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INTRODUCTION

If we are to understand the Earth system, it is impor-
tant to be able to obtain accurate and precise estimates
of the primary productivity of the oceans. The develop-
ment of satellite ocean colour sensors has made a huge
impact on our ability to make global measurements of
phytoplankton biomass, and much progress has been
made in describing the seasonal progression of phyto-
plankton biomass in the surface ocean. Different mod-
elling approaches have also allowed primary produc-
tivity to be estimated from satellite-derived pigment
concentrations (Platt et al. 1990, 1995, Morel 1991,
Behrenfeld & Falkowski 1997) and it has been possible
to estimate phytoplankton production on basin (e.g.
Joint et al. 2002) and global (e.g. Field et al. 1998)
scales. The annual productivity of the marine and ter-

restrial systems can now be routinely estimated. Field
et al. (1998) estimated global primary productivity to
be 105 Pg C yr–1, with the oceans contributing ca. 45 Pg
C yr–1; this estimate was refined by Behrenfeld et al.
(2002) to 41 Pg C yr–1. However, confidence in these
estimates requires that they be validated. The usual
approach is to compare with estimates of primary pro-
duction that are derived by well established method-
ologies, such as the 14C method. 

In 1975, Steemann Nielsen wrote, ‘We should not
consider measurements of primary production to be
correct by more than ±30%’. If this is true, then we are
attempting to calibrate remote-sensing estimates of
production with a measurement that may have large
unquantified uncertainties. In this paper, we examine
the uncertainties associated with 2 commonly applied
methods to estimate primary production. These are the
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14C technique — the classic method of determining
oceanic productivity that has now been used in more
than 35 000 oceanographic experiments (Williams &
del Giorgio 2005) — and use of a recently designed
instrument for estimating production, the fast repeti-
tion rate fluorometer (FRRF, Kolber et al. 1998). 

The 14C method involves the estimation of photosyn-
thetic parameters (Jassby & Platt 1976) from the photo-
synthesis–light response (P/E ) curve. Samples are
incubated in a light gradient to determine the maxi-
mum specific rate of photosynthesis (P B

m, mg C [mg
chlorophyll]–1 h–1), the initial slope of the P/E curve
(α B, mg C [mg chl]–1 h–1 [μmol quanta m–2 s–1]–1) and
the derived parameter Ek (μmol quanta m–2 s–1). Exper-
iments are usually of short duration (3 to 4 h). Daily,
depth-integrated production is determined using algo-
rithms that incorporate light attenuation through the
water column and photosynthetically active radiation
(PAR), measured at the sea surface over the course of
the day. The FRRF is a self-contained instrument that
allows measurement of photosynthetic parameters in
natural phytoplankton assemblages. The ratio of vari-
able fluorescence (the difference between minimum
and maximum fluorescence yield) to maximum fluo-
rescence, both measured under ambient irradiance, is
used to estimate the photosynthetic quantum yield and
the functional absorption cross-section of Photosystem
II (σPSII). Biomass-specific production rates can be esti-
mated from PAR, σPSII, quantum yield and a knowledge
of the size of the photosynthetic unit (Kolber &
Falkowski 1993, Suggett et al. 2001).

All these measurements have associated errors; that
is, there is uncertainty around any estimate of primary
production that is derived either from the 14C tech-
nique or from the FRRF. This variability is difficult to
quantify precisely because of the complexity of models
of primary production but, in order to establish a level
of confidence in production estimates, some estimate
of the errors is required. The main sources of uncer-
tainty include errors in the measured values, the effect
of integrating parameters over time or space and, most
seriously, the ability of a model to accurately describe
the process of interest.

In this paper, we examine the uncertainty associated
with the estimation of production (specifically, from
values of P B

m and α B, derived by both the 14C technique
and the FRRF) and use 2 statistical approaches. The
first is a Taylor series. This asymptotic, theoretical
approach calculates errors from a polynomial equation
that is based on an understanding of the model and of
the importance of each parameter in the final produc-
tion estimate. In the second, a Monte Carlo approach
repeatedly calculates production using randomly gen-
erated numbers to parameterise the model; the error
around the mean of the repeat calculations is an indi-

cator of the uncertainty of the model. We acknowledge
that other sources of uncertainty, not considered in this
study, could lead to appreciable error in a final esti-
mate of primary production. However, an inclusive and
thorough understanding of total potential error would
require very complex calculations and many of the
errors required for such calculations are very difficult
or impossible to quantify. In calculating the error asso-
ciated with a very simple model of primary production,
and by including only sources of error associated with
measured parameters, we hope to demonstrate how
the need to integrate estimates over many hours and
many depths results in very large uncertainties around
production estimates even when the uncertainties
associated with individual parameters are small.

MATERIALS AND METHODS

Estimates from the Celtic Sea. Measurements of
photosynthetic parameters (P B

m and α B) from the 14C and
FRRF methods were made in the Celtic Sea during May
2000. We sampled 3 different stations over a 7 d period,
and the study has been reported in detail by Pemberton
et al. (2004). Briefly, P/E parameters were determined on
water samples collected from the surface mixed layer at
dawn and incubated with H14CO3

– for 3 to 4 h in a light
gradient incubator that was cooled with surface sea-
water. The light source was a 12V tungsten-halogen
lamp with a blue filter to adjust the spectrum to be closer
to that of natural light; 15 data points were used for each
curve. Carbon fixation rates were normalised to chlo-
rophyll concentration and P/E curves were fitted to the
equations of Platt et al. (1980) using SPSS SigmaPlot
Version 5.0. In contrast to the data reported in Pem-
berton et al. (2004) the curve fit used for this study did
not include a term for photoinhibition. This change was
made because a photoinhibition parameter was not
calculated from FRRF data. A Chelsea Instruments
FAST-TRACKA FRR fluorometer was used to measure
vertical profiles of active fluorescence. For these cal-
culations, data were extracted from 1 cast made in the
morning. The instrument was used with an acquisition
sequence of 100 saturation flashes, 20 relaxation flashes
and 10 ms sleep time between acquisitions. The para-
meters determined were minimum and maximum
fluorescence in the dark-adapted state (F0 and Fm),
maximum fluorescence under ambient light (Fm’) and
steady state fluorescence under ambient light (Fs’). The
ratio of variable fluorescence, Fv (= Fm – F0) to Fm, gives
an estimate of the maximum photosynthetic quantum
efficiency of Photosystem II. The effective photosynthetic
quantum efficiency of Photosystem II is calculated as the
ratio of Fq’ (= Fm’ – Fs’) to Fm’. Photosynthetic parameters
from both techniques were adjusted to account for the
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differences between the in situ light quality and the light
sources in the incubator or FRRF. Photosynthetic para-
meters determined by the 14C method, were adjusted as
described in Pemberton et al. (2004). Corrections were
made to photosynthetic parameters derived from the
FRRF in a similar way, except that the emission spectrum
of the FRRF LED was used instead of the emission spec-
trum of the incubator lamp.

Production derived from P/E parameters from incu-
bations with 14C. Primary production was calculated
from parameters derived from P/E curves using:

(1)

PPz, t is an estimate of depth- and time-specific primary
production (mg C m–2 h–1), EPARz, t is the photosyntheti-
cally active radiation (μmol quanta m–2 s–1) at depth z
and time t and [chl] is the average chlorophyll a con-
centration in the water column (mg m–3). The equation
assumes that there is no photoinhibition. EPAR was
measured using an ELE DRP-5 PAR sensor mounted
high on the ship to avoid shading of the sensor. Data
were logged every 30 s and EPAR was measured in
W m–2. The data were averaged over 30 min intervals
and converted to units of μmol quanta m–2 s–1 using the
equations of Kirk (1994). The attenuation of PAR with
depth, (KPAR) was calculated as the negative-slope
coefficient of the regression against depth of the nat-
ural log of EPAR, measured using a Chelsea Instruments
PAR meter (downwelling scalar irradiance) attached to
the FRRF. The KPAR value was calculated using data
from the morning cast for the surface 30 m. Within this
shelf sea region, there was little variability of the slope.
Daily, depth-integrated primary production (PPdaily in
mg C m–2 d–1) was calculated by integrating PPz, t over
the day and over the euphotic zone.

The variance associated with a parameter must be
known before it can be included in a calculation of the
overall error. The standard deviations related to P B

m and
α B were estimated in the P/E curve fitting procedure us-
ing a non-linear (Marquardt-Levenberg) algorithm, and
those associated with KPAR were derived from the linear
least squares regression of log PAR against depth. In this
study, insufficient replicates were taken for an indepen-
dent estimation of the errors associated with pigment
analysis, but the analytical uncertainty of HPLC pigment
analysis in the experimental protocol adopted has been
shown to be less than 5% (Mantoura & Llewellyn 1983).
Consequently, for this analysis of primary production un-
certainty, we have assumed that no error was associated
with the chlorophyll concentrations determined by
HPLC or with the measurement of PAR values at the sea
surface. Addition of these sources of error would widen
confidence intervals still further (see ‘Discussion’).

FRRF photosynthetic parameters. Eq. (1) was also
used to estimate primary production using photosyn-
thetic parameters derived from FRRF measurements.
This provided a direct comparison with the uncertainty
determined for the 14C method. Photosynthetic para-
meters were calculated using data from the light
chamber of the FRRF instrument (Eqs. 2 & 3, adapted
from Smyth et al. 2004):

(2)

The factor 0.000121 accounts for the conversion of
units from mol C [g chl]–1 mol quanta–1 m–2 to mg C [mg
chl]–1 h–1 [μmol quanta m–2 s–1]–1, the requirement of 8
electrons to evolve 1 molecule of oxygen (O2) and a
photosynthetic quotient (PQ) value of 1.2. The maxi-
mum value of Fq’:Fm’ was chosen to avoid using a value
that was quenched by high light.

P B
m = α B × Ek (3)

Ek, the light saturation parameter, was calculated from
values of Fv/Fm and Fq’/Fm’ fitted to an exponential
model (Smyth et al. 2004):

(4)

where A is the product (Fv/Fm × Ek) and EPAR was taken
from the PAR meter attached to the FRRF. Again the
variance associated with each parameter is required for
the calculation of error propagation. Photosynthetic pa-
rameters from the FRRF are calculated indirectly from
fluorescence parameters Fq’/Fm’, Fv/Fm and σPSII. This
means that the error (or standard deviation, SD) associ-
ated with derived photosynthetic parameters (α B and
P B

m) also had to be calculated indirectly from the error on
Fq’/Fm’ and σPSII (Eqs. 5 & 6, respectively). The errors as-
sociated with Fq’/Fm’ and σPSII were derived from the
variability in the parameter values within the 2 m depth
interval from which the value was taken.

(5)

(6)

Development of Taylor series algorithm to calculate
error on PPdaily determined by 14C incubations and
FRRF. A Taylor series was constructed to determine the
variance of the estimated production. The procedure
weights the error associated with each individual para-
meter in the model according to its overall importance
in the calculation. This was calculated using partial dif-
ferentials of the production equation, which can be
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derived and computed to calculate how much change
would occur if all parameters except one were held
constant. Thus this procedure indicates the extent to
which a single parameter influences the result of the
overall equation. The process was repeated for all the
parameters included in the equation for which error
could be calculated (i.e. α B, P B

m and KPAR). The final part
of the analysis was the inclusion of a covariance factor
for α B and P B

m. The estimates of these 2 parameters are
known to co-vary, so that high values of α B co-occur
with high values of P B

m (Behrenfeld et al. 2004). In such
cases, correlation between the 2 estimates must be
taken into account in the variance calculation. Depend-
ing on the form of the function of the parameter esti-
mates whose variance is sought, this covariance factor
can either increase or decrease the final variance.

The Taylor series approximation was computed at
depth intervals of 1 m and time intervals of 1 h to give
variance PPz,t, and these values were integrated
throughout the day and euphotic water column depth
to calculate the overall variance of daily primary pro-
duction (variance PPdaily). The standard deviation (SD)
for the overall model was calculated as the square root
of the variance and the 95% confidence intervals was
calculated as 1.96 × SD. The model was written in Mat-
lab Version 7.0.4 and detailed equations are included
in Appendix 1.

Development of Monte Carlo models to calculate
error on PPdaily from 14C incubations and FRRF. The
Monte Carlo approach is based on repeat calculations
of production using randomly generated numbers.
Random numbers, of normal distribution and within
the expected limits, were generated for those parame-
ters in the model for which the variance had been cal-
culated (α B, P B

m and KPAR), and primary production was
calculated for each group of random numbers. The cor-
relation between estimates of α B and P B

m was taken
into account in the random number generation proce-
dure. We calculated 100 replicate estimates of produc-
tion for each depth and time interval, and the standard
deviations of the replicate estimates around the mean
were assumed to be equal to the error associated with
the model. The overall daily error was calculated by
integrating these values over depth and over the day.
The form of the model is described in Appendix 2.

RESULTS

Primary production estimated by 14C technique
and FRRF

A series of measurements made in the Celtic Sea in
May 2000 has been used to test methods to determine
the uncertainty of primary production estimates by

both the 14C and the FRRF methods. Fig. 1 shows a typ-
ical P/E curve obtained, with low SD on estimates of
P B

m and α B (Table 1). The derived photosynthetic para-
meter values for the FRRF method, as well as station
positions, are shown in Table 1.

Values of P B
m estimated by the 2 methods were simi-

lar. The 14C method had a range from 1.36 to 3.39 mg C
[mg chl]–1 h–1 and the estimates by the FRRF method
were 2.09 to 3.09 mg C [mg chl]–1 h–1. However, there
was a consistent difference in the estimates of α B by
the 2 methods. The 14C method had a range from 0.012
to 0.035 mg C [mg chl]–1 h–1 (μmol quanta m–2 s–1)–1, but
the FRRF method showed much less variation, with
generally higher values between 0.027 and 0.033 mg C
[mg chl]–1 h–1 (μmol quanta m–2 s–1)–1 (the possible rea-
sons for this are discussed by Smyth et al. 2004). Even
without considering any potential errors, the 2
approaches resulted in very different estimates of daily
depth-integrated primary production. The minimum
production occurred on 27 May and was estimated to
be 281 mg C m–2 d–1 by the 14C method and 541 mg C
m–2 d–1 by the FRRF method. There was a smaller dif-
ference in the maximum values (1380 and 1309 mg C
m–2 d–1 respectively) measured on 23 May. The general
day-to-day pattern was similar, with production esti-
mates by the 2 methods increasing from Day 1 to
Day 2, then showing a general decrease from Day 2
onwards (Fig. 2). Regression analyses of daily produc-
tion estimates showed a strong correlation between
the 2 methods, but consistently higher values from the
FRRF approach (slope of symmetric regression of FRRF
on 14C data = 1.34, r2 = 0.88). It is worth noting that
there is a much greater agreement between calculated
daily production estimates by the 14C and FRRF
approaches than between individual photosynthetic
parameters. This is because a large source of the vari-
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Fig. 1. P/E curve derived from samples taken at dawn in
surface mixed layer of the Celtic Sea on 24 May 2000
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ance in production estimates is due to changes in PAR
and chlorophyll and values for these parameters are
common to the equations used for both the 14C and
FRRF approaches. When confidence intervals were
included in the plots, the differences between esti-
mates from the 14C and FRRF approaches appears
less obvious. The 95% confidence intervals calculated
from the Taylor series (Fig. 2a) for the 2 approaches
overlapped for 2 of the 7 dates. For the other dates,
estimates from the FRRF were higher than those from
14C in all but 1 case. When Monte Carlo modelling
was used, the error bars from the 2 approaches over-
lapped in all but 2 cases (26 and 27 May), when esti-
mates from the FRRF were again higher than those by
the 14C method.

Estimating uncertainty in production estimates

The 2 methods used in this study to determine the
uncertainties associated with production estimates are
entirely independent. The Taylor series analysis of the
14C method found that the 95% confidence interval
widths varied from 4 to 20% of the estimated produc-
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tion (Table 1). The smallest error was calculated for
25 May, when production was estimated to be 600 mg
C m–2 d–1. However, even with this small error, we can-
not say that the true value of production was 600 mg C
m–2 d–1, only that the interval (578, 622) mg C m–2 d–1

probably covers the true value (in 95% of identical
experiments it would have done so). The largest error
in 14C estimates (±20%) was for 28 May, when the pro-
duction was calculated to be 377 mg C m–2 d–1; in this
case, we can state with 95% confidence that the true
value was between 302 and 451 mg C m–2 d–1. So the
initial production estimation of 377 mg C m–2 d–1 does
not have the confidence that most researchers place on
it, and the true value may be up to 75 mg C m–2 d–1

more or less than the initial estimate. There were also
significant differences in the measurement of uncer-
tainty given by the 2 approaches to error estimation.
The 95% confidence intervals were usually greater for
the Monte Carlo approach than for the Taylor series,
although the greatest error was 20% of primary pro-
duction (28 May) for both methods. The uncertainties
associated with the FRRF method were larger than
those of the 14C method. The range of 95% confidence
intervals for the Taylor series varied from ±15 to
±55%, and by the Monte Carlo approach from ±32 to
±60%. For example, the estimated production on 26
May was 787 mg C m–2 d–1; the 95% CI by the Taylor
series was 644 to 911 mg C m–2 d–1 and by the Monte
Carlo method was 530 to 1045 mg C m–2 d–1.

DISCUSSION

It is common for published values of primary produc-
tion to quote a single value for primary production esti-
mates and it is rare for the uncertainty associated with
that number to be calculated. In one of the few studies
that addressed uncertainty, Lewis et al. (1985) used
sensitivity analyses to calculate the errors introduced
into calculations of areal photosynthesis rate. In a sim-
ilar approach to that of the present study, they differ-
entiated a simple production equation with respect to
P B

m, α B and KPAR to determine the effect that errors in
each parameter would have on estimates of integral
production. They studied the variability in final pro-
duction estimates introduced by varying 1 parameter
at a time. The present study expands on their work by
combining the partial differentials of the parameters in
a Taylor series, allowing the calculation of confidence
intervals on the production estimate when more than 1
parameter varies.

This study has quantified, using Taylor series and
Monte Carlo approaches, the considerable uncertainty
in the measurement of parameters in estimates of pri-
mary production (Fig. 2, Table 1) — in this case, inte-

grated over the upper 30 m of the water column.
Uncertainty varies from experiment to experiment, so
it is not possible to apply a constant error term to any
one methodology. However, in absolute terms, the
error estimates are not so variable here as to invalidate
standard homogeneity assumptions in an analysis of
variance or Student’s t-test carried out on the resulting
average production estimates. For either method, stan-
dard deviations varied here by no more than a factor of
2, usually less. Where such estimates of error can be
particularly helpful is in identifying experimental con-
ditions with much larger errors relative to other sta-
tions and times, so that these points can be handled
differently in subsequent analysis. This might range
from (crudely) excluding them to carrying out
weighted least squares ANOVAs, regressions etc.,
which make use of the varying error estimates to
down-weight or up-weight each point in relation to the
others.

Why does the estimated error vary with the method
applied, and which is more appropriate for routine
determinations of error? The difference was largely
due to the way in which the error from the Taylor
series was combined over depth and time, and this led
to a lower integrated error than predicted by the
Monte Carlo model. The Taylor series calculated
depth- and time-specific variance for every metre and
every hour and these values were integrated to esti-
mate error for the whole day and water column. This
simple integration is a non-conservative approach, as it
assumed complete independence of the individual
error estimates; this is actually unrealistic because the
data are not independent. An assumption of the model
is that parameter values (and their standard devia-
tions) remain constant over the course of the day and
throughout the whole water column. This means that a
high error estimated at one depth is likely to influence
the model and result in high error estimates at other
depths and times. The magnitude of the error is posi-
tively correlated to PAR, decreasing with depth and
towards dusk and dawn. Thus, in this study, the Taylor
series probably underestimated the daily, depth-
integrated error. The Monte Carlo approach does not
suffer from such limitations and, assuming that 100
replicate simulations were enough to provide a realis-
tic measure of the range of estimates possible, is
expected to provide a better estimate of the confidence
intervals around production values.

Some of the large uncertainties associated with the
14C and FRRF based production estimates are due to
the way in which we have estimated daily production.
Since similar approaches are taken by other re-
searchers to obtain daily estimates of primary produc-
tion, it is relevant to discuss these limitations. Photo-
synthetic parameter values used in the analyses were
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measured in the morning and assumed to be constant
over the course of the day. This is obviously not realis-
tic and leads to error in the model. However, the model
used here was designed to address just such a simple
situation in order to demonstrate that the inherent
uncertainty associated even with very simple models
can be surprisingly large.

The photosynthetic parameters from the FRRF were
derived indirectly from Fq’:Fm’, Fv/Fm, σPSII and Ek. As a
result, the errors on the FRRF values of α B and P B

m had
to be derived indirectly from the errors on the original
parameters, a calculation that required summing the
relative errors from each parameter, and multiplying
the sum by the photosynthetic parameter values. This
need to combine numerous errors is the probable
cause of the high final uncertainty on the FRRF esti-
mates of daily production. In contrast, the errors in the
14C method were derived directly as part of the curve
fitting process of estimating α B and P B

m. It was noted in
‘Materials and methods’ that in a parallel study, (Pem-
berton et al. 2004), P/E parameters were calculated
using an equation which included a photoinhibition
parameter because the curve showed a slightly better
fit to most data when photoinhibition was included. In
some cases removing photoinhibition led to an
increase in the standard error associated with derived
parameters, whilst in others the error was decreased.

Lewis et al. (1985) calculated algebraically that when
EPAR(0):Ek is <4, the final production estimate is more
sensitive to α B and when the value is >4, the final pro-
duction estimate is more sensitive to P B

m. Using this cri-
teria and archived data, they found that under most
oceanographic conditions, errors in α B would have a
greater effect than errors in P B

m on estimates of areal
production. Morel et al. (1996) considered the relative
roles of parameters in a primary production algorithm
and carried out a sensitivity analysis. They compared a
model where physiological values were assumed to be
constant (in all water types, over the whole water col-
umn and throughout the day) with a model in which
measured values were used. Their study showed that
when either type of model was used, altering P B

m had a
greater effect on final production estimates than alter-
ing α B. However, they noted that the results were
dependent on the ratio of the 2 parameters (i.e. the
value of Ek) and the surface irradiance (EPAR(0)). In
order to see how well our results supported this theory,
sensitivity analyses were carried out by altering α B, P B

m

and KPAR by a fixed percentage. We found that when
14C data were used, the results were variable, with
alterations in α B leading to greater changes in areal
production estimates in some cases and P B

m in others.
When FRRF data were used, altering P B

m always had a
greater effect than altering α B on production esti-
mates. This is due to the FRRF approach leading to a

lower Ek value than the 14C approach which, in turn,
resulted in P B

m limiting the rate of photosynthesis at
lower light. In support of the work of Lewis et al.
(1985), our data show a clear correlation between the
percentage of daylight hours where EPAR(0):Ek <4 and
the sensitivity of the production model to α B or P B

m;
i.e. an increase in the number of hours, whereby sur-
face EPAR(0):Ek >4 led to an increase in the sensitivity of
the model to P B

m.
In their study, Lewis et al. (1985) noted that a large

source of error in estimates in α B was due to spectral
differences between ambient light and artificial light
in the incubator. In our study, α B values were spec-
trally-corrected to minimise this source of error. In
order to assess the effect of this correction on predic-
tions of primary production, models were re-run using
non-corrected α B values. Spectral correction led to
larger estimates of α B by the 14C method, with a subse-
quent increase in primary production of 13 to 19%. In
contrast, spectral correction led to a decrease in α B by
the FRRF and a subsequent decrease in primary pro-
duction of 14 to 21%. Without this correction the differ-
ence between estimates from the 2 approaches would
therefore have been much greater.

It is important to emphasise that the errors calculated
here do not tell us anything about how well the chosen
models actually describe the relationship between pri-
mary production and PAR. The errors reflect only the
standard deviations of the parameter values. In this
study, we have assumed that the measurements of sur-
face PAR and chlorophyll are entirely error-free. In
reality, there are uncertainties in these and other mea-
surements that should be incorporated into an overall
assessment of confidence. From a practical point of
view, comparing EPAR(0) with Ek gives a good indication
of which parameters are likely to have the greatest
effect on primary production estimates. Improvements
in our ability to correct for spectral differences
between artificial and ambient light should also
improve estimates of photosynthetic parameters.
Absorption due to non-photosynthetic pigments was
not taken into account in this study but could help
improve future estimates of the phytoplankton absorp-
tion spectrum (Lewis et al. 1985).

The high degree of uncertainty in primary production
estimates has important implications for the estimation
of production by satellite remote sensing. Algorithms to
estimate production from biomass are poorly cali-
brated, there are uncertainties in converting water-
leaving radiance into pigment concentration, and there
are difficulties in dealing with cloud cover. Some at-
tempts have been made to quantify the uncertainties
related to satellite-derived production estimates. For
example, Joint & Groom (2000) attempted to place
limits on the uncertainty of a simple regression of
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surface chlorophyll with depth-integrated production,
based on 24 h in situ incubations. The regression had a
reasonably high explained variance (r2 = 0.75), but
when the prediction intervals were calculated, there
was a large spread in predicted values of production.
With a mean value for predicted production of ~0.6 g C
m–2 d–1, and assuming that there was no error at all in
the estimation of chlorophyll concentration, the 95%
prediction intervals were 0.33 and 1.1 g C m–2 d–1. It is
worth emphasising that these wide prediction limits
from this empirical satellite algorithm were obtained by
assuming perfect chlorophyll retrieval from SeaWiFS
images (Joint & Groom 2000). This is an example of the
uncertainties associated with the use of the simplest
possible algorithm to determine production and does
not consider the uncertainties associated with more
complex algorithms to estimate production (e.g. Morel
1991). Biomass retrieval is considered to be the largest
source of error in satellite production models (Platt et al.
1995, Joint & Groom 2000). The design specification of
the SeaWiFS sensor anticipated retrieval of chlorophyll
concentrations for CaseI waters to within ±35% of real
values (Hooker & McClain 2000). This high uncertainty
may propagate errors through the process of estimating
production from satellite remote sensing.

Added to these uncertainties, we believe that more
consideration should be given to determining the actual
precision of primary production estimates that are used
for ground-truthing. It is important that an understand-
ing is developed of the limitations of primary production
estimates and that it is made clear which sources of error
are included or excluded from any calculation.
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Total variance (Variance PPdaily) was calculated according to
Eqs. (A1.1) to (A1.3):

(A1.1)

(A1.2)

where n is the ‘nth’ parameter in the production model.

(A1.3)

In order to simplify the expression of the differentials of the pro-
duction equation, it is convenient to define 2 terms A and B as:

(A1.4)

(A1.5)

The specific production equation could then be described as:

PPz,t = P B
m(1–A) (A1.6)

The partial differentials of this equation with respect to the
parameters PB

m, αB, and KPAR are as follows:

(A1.7)

(A1.8)

(A1.9)

Eqs. (A1.10) and (A1.11) show the form of the Covariance factor
and the equation used to calculate the Covariance (Cov)
between PB

m and αB respectively. (The covariances between PB
m

and KPAR, and αB and KPAR estimates are taken to be zero).
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Appendix 1. Equations used to quantify the error associated with
primary production based on a Taylor series approximation

Normally distributed random numbers, with mean of 0 and
standard deviation of 1, were generated using an in-built
IDL function (RANDOMN), which is based on the Box-
Muller method. These numbers are referred to as x1, x2 and
x3 and are used to generate the 3 values P B

m, αB and KPAR.
The correlation between P B

m and αB was included by con-
verting x1 and x2 to a pair of correlated normal variables,
y1 and y2, according to:

y1 = x1 (A2.1)

(A2.2)

where ρ is the correlation between PB
m and αB. KPAR was not

correlated to the other variables, so x3 was used in subse-
quent calculations. Finally, y1, y2 and x3 were converted to
the random numbers for use in the model by an adjustment
to make the mean and standard deviation fall in the
expected range, as shown below:

(A2.3)

(A2.4)

(A2.5)

rP B
m, rαB and rKPAR refer to the random estimates of P B

m, αB

and KPAR respectively, and the parameter values on the right
hand side of the equation relate to the measured means (μ)
and standard deviations (SD).

rK K K xPAR PAR PARSD= + ×μ( ) ( ) 3

r yα μ α αB B BSD= ( ) + ( ) × 2

rP P P ym
B

m
B

m
BSD= ( ) + ( ) ×μ 1

y x x2 1 1 22= × + −( ) ×ρ ρ

Appendix 2. Equations used to quantify the error associated
with primary production using Monte Carlo modelling
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