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INTRODUCTION

Fish experience severe challenges to survival during
their early life stages. Growth rates represent survival
potential during these stages, playing a key role in sur-
vival dynamics. The paradigm that faster-growing
individuals are more likely to survive has emerged
through numerous studies (Meekan & Fortier 1996,
Hare & Cowen 1997, Baumann et al. 2003, Takasuka et
al. 2003, Takahashi & Watanabe 2004, Tanaka et al.
2006), and led to various field study designs (Shoji &
Tanaka 2006, Takasuka & Aoki 2006, Robert et al.
2007, Takasuka et al. 2007), although there have been
some conflicting observations (Litvak & Leggett 1992,
Lankford et al. 2001, Munch & Conover 2003). Ander-

son (1988) concluded that the theory linking growth
rate and mortality provides a rational framework, but
that the relationship remains to be quantified. To
clarify how and to what extent growth rates regulate
survival, the functional mechanisms of the ‘growth-
survival’ paradigm need to be scrutinized at finer
scales (Hare & Cowen 1997, Searcy & Sponaugle
2001).

The growth–survival paradigm has been explained
by size and time. The size-based concept, known as
the bigger-is-better hypothesis (Miller et al. 1988),
assumes survival advantages of larger somatic size of
faster-growing individuals, although several studies
concluded that bigger is not always better (Leggett &
DeBlois 1994). The time-based idea is termed the
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stage-duration hypothesis (Chambers & Leggett 1987,
Houde 1987, 1989) and assumes that mortality rate
decreases markedly with developmental stage. If a
higher growth rate accelerates the timing of metamor-
phosis, faster-growing individuals will experience a
much lower cumulative mortality rate during the larval
stage. In these concepts, however, growth rates are
translated into size or time and thus are indirectly
linked to survival. Furthermore, no direct evidence has
linked growth rate to predation, despite predation
being recognized as the major source of mortality (Bai-
ley & Houde 1989). These issues emerged because
previous field tests focused solely on the characteristics
of the survivors (references in Takasuka et al. 2003).

Takasuka et al. (2003) instead focused on the charac-
teristics of larvae actually ingested by predators.
Growth rates were compared between larval Japanese
anchovy Engraulis japonicus from the stomachs of
predators and the larvae from the original populations.
As a consequence, the growth-selective predation
hypothesis was proposed, which states that slower-
growing individuals are more vulnerable to predation
than their faster-growing conspecifics, even if they are
of the same size. This hypothesis was also supported
by the characteristics of the survivors (Takasuka et al.
2004a). However, it was suggested that the occurrence
of growth-selective predation could differ among
predatory species (Takasuka et al. 2003, 2004b).
Predator specificity, if it exists, could markedly influ-
ence phenotypic selection and thus needs clarification
if growth rates are to be used as a predictor of recruit-
ment.

The present study shows predator-specific growth-
selective predation on larval Japanese anchovy, based
on original data and reanalyzed data from previous
studies (Takasuka et al. 2003, 2004a,b). Through
otolith microstructure analysis, growth rates and
somatic sizes were compared between larvae from the
stomachs of different predatory species and larvae
from the original populations. Furthermore, changes in
relative predation mortality with varying growth rates
were estimated to quantify the potential role of
growth-selective predation in survival dynamics.

MATERIALS AND METHODS

We conducted field collections of larval anchovy and
predators in Sagami Bay, Japan, in 2001 and reana-
lyzed data from the previous studies by Takasuka et al.
(2003, 2004b) (Table 1). Collection and quantitative
methods from all studies were performed identically,
unless otherwise noted.

Larval anchovy and their fish predators were cap-
tured simultaneously by the same tows of a commer-

cial trawl with a cod-end mesh size of 2.3 mm. The
trawl was towed for 5 to 10 min several times after sun-
rise. Our same-tow sampling targeted dense larval
shoals and predators attacking them in shallow
(<10 m) areas. In Takasuka et al. (2003), sampling was
conducted in Sagami Bay from 28 October to 4 No-
vember 2000 (Sample I) and on 23 November 2000
(Sample II). We added original samples collected in
Sagami Bay from 1 to 9 July 2001 (Sample III), on
18 July 2001 (Sample IV) and from 6 to 8 November
(Sample V) 2001. In Takasuka et al. (2004b), offshore
sampling was conducted in the western North Pacific;
larval and juvenile anchovy were captured by the
same tow of a frame-type trawl with an 8 mm stretch
mesh on 11 June 1997 (Sample VI), and larval anchovy
and skipjack tuna Katsuwonus pelamis were captured
concurrently using a neuston net with a mesh size of
0.45 mm and trolling lines, respectively, on 15 May
2000 (Sample VII). More details of sampling methods
and location are described in the respective source
papers.

Larval anchovy were captured simultaneously with
the predators (original larvae) and were taken from the
stomach contents of dissected predators (ingested lar-
vae). Using the same-tow or concurrent sampling of
larvae and predators, we assumed that the ingested
larvae and original larvae originated from the same
populations. The standard length (SL) of each original
larva was measured directly, while that of each
ingested larva was estimated from otolith sizes, except
for individuals in an undigested condition. The extent
of digestion of the ingested larvae was ranked as fol-
lows. Rank 1: fresh or having partial digestion of the
integument; Rank 2: partial digestion of muscular tis-
sue (< ca. 75% by sight); Rank 3: most of the muscular
tissue digested.

Sagittal otoliths were extracted from both ingested
larvae and original larvae. Maximum otolith radius
(OR) and each daily growth increment width were
measured to the nearest 0.1 µm along a measurement
transect set from the nucleus to the outermost margin,
with a transmitting light microscope equipped with a
video camera connected to a computer and monitor.
The relationships between SL and OR were expressed
as allometric formulae for all samples of original larvae
(0.786 ≤ r2 ≤ 0.930, p < 0.001). The SL of each ingested
larvae was estimated from its OR, based on the OR–SL
relationships from the corresponding original larvae.
This SL estimation procedure was previously validated
to prevent serious biases in size and growth compar-
isons (Takasuka et al. 2003).

Daily growth-rate history was back-calculated at the
individual level by the biological intercept method
(Campana 1990, Campana & Jones 1992), based on an
allometric formula determined for each larva. The SL
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Sample (date of capture) Predator Larvae SL (mm) GR (mm d–1) Comparison
Ingested larvae (by predator) N (N’) n n’ n” (range) (range) SL GR
or original larvae

Sample I (28 Oct–4 Nov ‘00)
Original larvae – – – 120 20.3 ± 3.3 0.44 ± 0.11 – –

(14.0–30.0) (0.24–0.80)
Japanese anchovy 2 (2) 24 9 – 16.5 ± 1.5 0.33 ± 0.05 Smaller**b Lower*a

(67–70 mm SL) (14.8–19.5) (0.26–0.44)
Japanese jack mackerel 12 (1) 7 6 – 17.9 ± 1.5 0.33 ± 0.06 NSa Lower*a

(98–138 mm FL) (15.8–19.9) (0.24–0.40)
White croaker 2 (2) 15 13 – 21.3 ± 2.6 0.37 ± 0.06 NSa Lower**b

(123–128 mm SL) (16.4–26.0) (0.27–0.47)
Japanese sea bass 2 (2) 12 4 – 24.1 ± 1.9 0.44 ± 0.17 Larger**c NSa

(202–210 mm SL) (21.4–25.7) (0.19–0.55)

Sample II (23 Nov ‘00)
Original larvae – – – 120 21.8 ± 1.9 0.33 ± 0.07 – –

(18.7–28.6) (0.20–0.55)
Pacific round herring 3 (3) 60 40 – 21.6 ± 2.3 0.28 ± 0.04 NSa Lower**b

(134–148 mm SL) (17.6–28.5) (0.14–0.38)

Sample III (1–9 Jul ‘01)
Original larvae – – – 120 25.4 ± 3.6 0.44 ± 0.08 – –

(15.6–33.2) (0.27–0.74)
Japanese jack mackerel 15 (7) 21 16 – 25.2 ± 5.2 0.39 ± 0.08 NSb Lower*a

(93–167 mm FL) (15.2–34.3) (0.25–0.58)
Greater amberjack 2 (2) 28 15 – 25.5 ± 2.3 0.41 ± 0.07 NSa NSa

(135–199 mm FL) (20.7–29.3) (0.30–0.52)

Sample IV (18 Jul ‘01)
Original larvae – – – 120 24.7 ± 3.5 0.42 ± 0.08 – –

(16.1–32.4) (0.24–0.65)
Pacific round herring 5 (5) 53 30 – 19.8 ± 2.5 0.42 ± 0.08 Smaller**c NSc

(71–86 mm SL) (15.0–26.4) (0.28–0.61)
Japanese jack mackerel 4 (3) 33 27 – 23.7 ± 3.3 0.39 ± 0.08 NSa Lower*a

(114–198 mm FL) (16.5–28.3) (0.27–0.62)

Sample V (6–8 Nov ‘01)
Original larvae – – – 120 26.2 ± 2.3 0.43 ± 0.07 – –

(20.4–31.4) (0.29–0.62)
Pacific round herring 15 (15) 288 67 – 25.2 ± 2.6 0.40 ± 0.07 Smaller**a Lower**a

(112–132 mm SL) (19.6–32.0) (0.28–0.59)
Japanese jack mackerel 6 (3) 26 19 – 24.3 ± 1.5 0.39 ± 0.06 Smaller**a Lower**a

(127–154 mm FL) (22.0–27.0) (0.31–0.53)

Sample VI (11 Jun ‘97)
Original larvae – – – 100 18.9 ± 3.1 0.57 ± 0.12 – –

(13.1–31.1) (0.34–0.99)
Japanese anchovy 120 (31)0 85 33 – 17.5 ± 1.4 0.50 ± 0.07 Smaller**c Lower**b

(36–61 mm SL) (13.6–20.2) (0.38–0.63)

Sample VII (15 May ‘00)
Original larvae – – – 47 22.0 ± 3.1 0.48 ± 0.08 – –

(14.4–27.4) (0.26–0.61)
Skipjack tuna 9 (7) 59 12 – 23.9 ± 1.2 0.50 ± 0.08 Larger*c NSa

(450–540 mm FL) (22.2–26.2) (0.35–0.64)

Total 197 (83) 711 291 747

Table 1. Engraulis japonicus. Comparison of standard length (SL; mean ± SD) and recent 5 d growth rate (GR; mean ± SD)
between larvae from stomach contents of each predatory fish species (ingested larvae) and from the original populations (original
larvae). SL or fork length (FL) is indicated in parentheses for each predatory species. Numbers of individuals are indicated
for predators (N), predators whose stomachs contained larvae (N’), ingested larvae in the stomachs (n), ingested larvae available
for sagittal otolith microstructure analysis (n’) and original larvae (n”). If the regression of growth rates on SL for the original
larvae and differences in SL between the ingested larvae and original larvae were both significant, growth rates were compared
within the overlapped range of SL between the 2 groups. Larger and Smaller:  SL of the ingested larvae was larger/smaller than
those of the original larvae; Higher and Lower: growth rates of the ingested larvae were higher/lower than those of the original
larvae. Samples I and II were derived from Takasuka et al. (2003); Samples VI and VII were derived from Takasuka et al. (2004b).
Samples III, IV and V represent original data described herein. *p < 0.05, **p < 0.01, aStudent’s t-test, bWelch’s t-test or

cMann-Whitney’s U-test
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at the first ring deposition (i.e. biological intercept)
was fixed at 5.6 mm. A recent 5 d mean growth rate
(mm d–1) directly before capture or predation was
adopted as a proxy for survival potential, as recent
growth rates reflect conditions that affect selective
mortality (Oozeki et al. 2004, Takasuka et al. 2004b).
To test size- and growth-selective predation mortali-
ties, SL at the time of capture or predation and recent
5 d mean growth rates were compared between the
ingested larvae and corresponding original larvae
by Student’s t-test, Welch’s t-test or Mann-Whitney’s
U-test, depending on the results of tests of normality
and homogeneity for each pair. If growth rates are
related to somatic sizes, including the overall size
range could lead to biases in growth comparisons
under any significant size-selective predation. When
growth rates were significantly related to SL for the
original larvae and SL differed significantly between
ingested and original larvae, we compared the growth
rates of the original and ingested larvae whose SL
range overlapped to reduce a possibility of such biases
and discriminate size- and growth-selections.

The intensities of selection for size or growth rate
were quantified by comparing the relative frequency
distributions of estimated size or growth rate between
the survivors and the original population (i.e. survival
ratio) (Healey 1982, Hovenkamp 1992, Meekan &
Fortier 1996). Since the present study focused on the
characteristics of ingested larvae versus original lar-
vae, we calculated the predation mortality ratio (PMR)
as a proxy for relative predation mortality: PMR = 
Fingested/Foriginal, where Fingested and Foriginal are relative
frequencies of each class of recent 5 d mean growth
rate (interval: 0.05 mm d–1) for the ingested larvae and
original larvae, respectively.

RESULTS

Pacific round herring Etrumeus teres, Japanese jack
mackerel Trachurus japonicus, white croaker Argyro-
somus argentatus, Japanese sea bass Lateolabrax
japonicus, greater amberjack Seriola dumerili and
skipjack tuna Katsuwonus pelamis were found to be
predators of larval anchovy (Table 1). Furthermore,
juvenile Japanese anchovy also preyed on larvae of
their own species. A total of 711 larval anchovy were
collected from the stomach contents of 83 (of 197) indi-
vidual predators; sagittal otoliths of 291 larvae were
available for analysis. SL was estimated for 255
ingested larvae and directly measured for the remain-
ing 36 ingested larvae. The ingested larvae were
digested to varying degrees. For the 3 original samples
(Samples III, IV and V), the ingested larvae with
otoliths available were classified into Rank 1 (n = 21),

Rank 2 (n = 104) and Rank 3 (n = 49). No significant dif-
ferences were found in growth rates among digestion
ranks (where sample sizes allowed comparison), at
least within each sample or within the ingested larvae
from round herring of Sample V (ANOVA, p > 0.05). As
such, we pooled the ingested larvae within each sam-
ple regardless of the extent of digestion.

The ingested larvae were compared with their cor-
responding original larvae in terms of SL for each
predatory species (Table 1). The SL of the ingested
larvae was significantly smaller than the original lar-
vae for juvenile anchovy (Samples I and VI), round
herring (Samples IV and V) and Japanese jack mack-
erel (Sample V). By contrast, the ingested larvae from
the stomachs of sea bass and skipjack tuna had larger
SL than the original larvae (Samples I and VII). No
significant differences were found between ingested
larvae and original larvae for round herring from
Sample II, jack mackerel from Samples I, III and IV,
white croaker from Sample I and greater amberjack
from Sample III.

Recent 5 d mean growth rates were positively
related with SL for the original larvae from Samples I,
II, VI and VII (Fig. 1; linear regression analysis, 0.066 ≤
r2 ≤ 0.295, p < 0.01), but this was not the case with the
original larvae from Samples III, IV and V (0.001 ≤ r2 ≤
0.014, p > 0.05). Thus, the original larvae whose SL
range overlapped with the SL of the ingested larvae
were used for growth comparisons for anchovy and sea
bass from Sample I, juvenile anchovy from Sample VI
and skipjack tuna from Sample VII. For Samples III, IV
and V, size ranges were not considered in growth
comparisons, even when SL differed between ingested
larvae and original larvae.

The growth rates of the ingested larvae were gener-
ally lower than those of their corresponding original
larvae when compared at the same SL (Fig. 1). Such
same-size differences in growth rates were particularly
evident for larvae with SL >20 to 25 mm. The growth
rates of the ingested larvae from juvenile anchovy
(Samples I and VI), round herring (Samples II and V),
jack mackerel (Samples I, III, IV and V) and white
croaker (Sample I) were significantly lower than those
of the corresponding original larvae (p < 0.05)
(Table 1). No differences were found for the ingested
larvae from round herring from Sample IV. There were
also no significant differences in growth rates between
ingested larvae and original larvae for sea bass (Sam-
ple I), greater amberjack (Sample III) and skipjack
tuna (Sample VII) (p > 0.05).

PMR was calculated for the predatory species that
exhibited significant growth-selective predation. In
general, PMR declined exponentially with growth rate
(Fig. 2). Based on the exponential functions fitted to the
PMR versus growth rate, the decline in growth rates
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from 0.50 to 0.30 mm d–1 corresponded to an increase
in PMR from 0.21 to 3.43 for juvenile anchovy, jack
mackerel and white croaker from Sample I, from
0.38 to 2.24 for jack mackerel from Sample IV and from
0.50 to 2.49 for round herring and jack mackerel from

Sample V. Similarly, as growth rates decreased from
0.40 to 0.20 mm d–1 and from 0.70 to 0.40 mm d–1, the
PMR increased from 0.33 to 3.03 and from 0.33 to 2.28
for round herring from Sample II and juvenile anchovy
from Sample VI, respectively.
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DISCUSSION

Size-selective predation on larval anchovy and its
direction depended on predatory species. Size-selec-
tion favored larger larvae for juvenile anchovy, round
herring and jack mackerel, and favored smaller larvae
for sea bass and skipjack tuna—although in some
samples, round herring and jack mackerel showed no
size-selection. For the bigger-is-better mechanism to
come into effect in the growth–survival paradigm, the
assumption of a positive relationship between growth
rate and somatic size must be satisfied. If all individu-
als hatched on the same date, this would be the case.
However, in natural populations the individuals of dif-
ferent sizes, ages and growth rates are mixed. No clear
relationship between growth rates and sizes was ob-

served for 3 of 7 original populations of larval anchovy,
indicating that even if size-selection favors larger
larvae, it does not always follow that faster-growing
larvae have enhanced survivorship.

Predator-specific growth-selective predation was
demonstrated through snapshots of prey–predator
interactions between larval anchovy and various fish
predators in field conditions. Slower-growing larvae
were more vulnerable to predation than faster-grow-
ing conspecifics when they were attacked by juvenile
anchovy, round herring, jack mackerel and white
croaker. This growth-selective predation was observed
for larvae of the same size and thus was independent
of somatic size and stage duration. The link between
growth rate and predation could be mediated by phys-
iological condition and the ability for anti-predator
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behaviors (Takasuka et al. 2003). In general, larval
behavior is closely related to predation vulnerability
(Fuiman & Magurran 1994, Fuiman et al. 2005). Physi-
ological conditions can affect responses to predator
attacks, escape activities (Chick & Van Den Avyle
2000, Grorud-Colvert & Sponaugle 2006) and positions
in larval shoals (Skajaa et al. 2003). The characteris-
tics-of-survivors approach also has indicated selective
removal of individuals with poorer physiological con-
ditions (Searcy & Sponaugle 2001, Hoey & McCormick
2004). Slower-growing larvae would have lower poten-
tial for anti-predator behaviors and may tend to be
isolated from shoals, owing to deteriorated conditions.
This inference also explains the possible shifts from
random to growth-selective predation mortalities
with larval size, since variation in the ability for anti-
predator behaviors would increase as larvae develop
(Skajaa et al. 2003).

Differences in predation mortality among different
predator species or types have been shown in experi-
mental studies (Bailey & Houde 1989, Chick & Van
Den Avyle 2000); however, direct evidence has rarely
been obtained in field conditions. The present study
revealed that the presence of growth-selective preda-
tion on larval anchovy depended on predatory species.
In general, juvenile anchovy, round herring, jack
mackerel and white croaker ingested slower-growing
larvae selectively and were therefore identified as
growth-selective predators. In contrast, sea bass,
greater amberjack and skipjack tuna ingested larvae
almost randomly and were therefore identified as 
non-growth-selective predators. A distinction between
these 2 predator groups lies in their sizes and, perhaps,
feeding strategies. The growth-selective predators in
this study comprise relatively small pelagic species
whose stomachs contained zooplankton such as cope-
pods as alternative prey (data not shown). In contrast,
non-growth-selective predators comprise relatively
large piscivorous predatory species whose stomachs
contained almost exclusively fish larvae and juveniles.
Probably because of the different attack performance
of predators, faster-growing larvae may be able to
escape from small pelagic predator attacks, but not
from large piscivorous predators. However, future
studies may need to clarify the more dynamic aspects
of prey–predator interactions, as the size and feeding
ecology of predators shift.

Both the size- and growth-selective predation mech-
anisms have a similar causal background, since size-
selective mortality is also related to larval activity
(Miller et al. 1988). Why do small pelagic predators
nonetheless often select for growth rate rather than
size? This could be theoretically addressed from the
viewpoint of the optimal foraging theory with regard to
of predators (Takasuka et al. 2003). The smaller the

larva a predator selects, the more easily the predator is
able to capture the larva, but the gain of energy is less,
since energy provided by the larva is an exponential
function of larval size (Fig. 3: solid curves). In size-
selective predation, net profitability for predators will
approximate a dome-shaped function of larval size.
However, by selecting a larva with a lower growth rate
(irrespective of size), a predator minimizes its energy
loss because the larva is easier to capture (due to its
presumably poorer physiological condition) than a
faster-growing larva of comparable size. In growth-
selective predation, net profitability for predators will
therefore be a monotone decreasing function of larval
growth rate. Although the relative importance of size
and growth rate has yet to be quantified, growth selec-
tion was more consistent than size selection within the
size and growth ranges of the targeted populations. In
reality, a predator does not consciously select a slower-
growing larva; rather it incidentally ingests a slower-
growing larva as a consequence of larval behaviors.
However, the mechanism is rational for small pelagic
predators. In contrast, large piscivorous predators
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would not benefit from easiness of capture of a smaller
or slower-growing larva because of their higher attack
abilities, leading to non-growth-selection and, maybe,
positive size-selection (Fig. 3: dashed curves). Note
that predation vulnerability may become more com-
plex if growth rates affect an encounter rate with
predators (Bailey & Houde 1989). Also, if maximized
growth rate increases predation susceptibility under
an energy and growth trade-off against investment
in anti-predator performance (Lankford et al. 2001,
Munch & Conover 2003), the net profitability for small
pelagic predators may deviate from a monotone
decrease with growth rate (Fig. 3: dotted curves). In
any case, the present field tests did not detect any
disadvantage to faster-growing larvae.

At present, the stage-duration theory is most com-
pelling to explain the effect of growth rate on survival
probability. Houde (1987) showed that a more than
100-fold fluctuation in survival probabilities could
result through cumulative effects of stage duration. In
theory, the growth-selective predation mechanism is
independent of and synergistic with size- and time-
based mechanisms (Takasuka et al. 2003). The ob-
served changes in PMR values with larval growth rates
for the growth-selective predators showed that even
subtle growth variations could lead to considerable
fluctuations in relative predation mortality even
through instantaneous events. Every encounter with a
growth-selective predator will elevate mortality risk
for slower-growing larvae. As such, growth-selective
predation would serve as an amplifier in growth–
survival processes during the early life stages in a
predator field dominated by growth-selective preda-
tors; yet it would be less relevant in a predator field
dominated by non-growth-selective predators. Growth
rates potentially exert a far greater impact on recruit-
ment variability through synergistic effects of multiple
mechanisms than previously expected. However, the
predator field would strongly regulate selection
for growth characteristics of survivors, and serve as
a key factor toward predicting the recruitment dyna-
mics under the framework of the growth–survival
paradigm.
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