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INTRODUCTION

Hermaphroditism is common in plants and occurs in a
third of animal species (Bell 1982). When hermaphro-
ditism is simultaneous, self-fertilization (selfing) may
occur. Selfing and its evolution have been studied for a
century in plants, but there are fewer studies on ani-
mals (Jarne & Charlesworth 1993, Goodwillie et al.
2005, Jarne & Auld 2006). The mechanism has ap-
peared multiple times during animal evolution, and
within taxa selfing may occur in isolated species. For
example, the soft coral genus Alcyonium comprises
both gonochoric and hermaphroditic species (McFad-
den et al. 2001), suggesting that selfing is not a fixed
trait at the genus level. Distribution of selfing rates
across species in the animal and plant kingdoms is U-
shaped—with low selfing more frequently expressed

than high selfing (Goodwillie et al. 2005, Jarnes & Auld
2006)—suggesting that the median rates are probably
not evolutionarily stable. Moreover, selfing rate may
vary within species in both time and space (Jain 1976,
Charbonnel et al. 2005), and genetic structure may be
greatly affected by selfing; the main cost is inbreeding
depression (Charlesworth 1992, Takebayashi & Morrell
2001). Selfing may result in the loss of genetic diversity
with a consequent reduction in adaptation to changing
environments (Stebbins 1974). Self-fertilization also has
a range of advantages including an assurance of repro-
duction in populations with low density or even without
mates. Therefore, after successful dispersal of a single
specimen in a new and/or free habitat, a new popula-
tion may be able to develop (Baker 1955, 1967).

Whereas brittle stars are mainly gonochoric with
indirect development (free planktonic larvae), Amphi-
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pholis squamata (Delle Chiaje 1828) (Ophiuroidea,
Echinodermata) is a diminutive (disk diameter <5 mm)
species that is simultaneously hermaphroditic, as
shown by a study on maturation of male and female
gonads (Alvà 1996). The species is thus regarded as
capable of selfing and outcrossing. Based on RAPD
dominant markers, Poulin et al. (1999) calculated a
minimum outcrossing rate of 0.36. A. squamata is also
viviparous (Quatrefages 1842, Fell 1946); embryos are
brooded and crawl-away young are released without a
free larval stage, which reduces the dispersal poten-
tial. However, in contrast to congeners that have
restricted distribution areas, A. squamata is quite cos-
mopolitan, being found in all oceans except the polar
seas (Gage et al. 1983, Hendler 1995). Sponer (2002)
and Sponer & Roy (2002) showed that A. squamata is in
fact a species complex made of up very divergent mito-
chondrial lineages (7 lineages, named A to G) some of
which seem endemic to geographical regions while
others are cosmopolitan. The results from these two
studies did not solve the paradox of a widespread dis-
tribution in this brooding species. To explain such a
distribution, several conditions are necessary, viz. a
dispersal event such as rafting on macroalgae or other
substrata (Highsmith 1985, Edgar 1987, Bushing 1994)
and then success in founding of a new population. The
potential for selfing favours the founding process.

In the northwestern Mediterranean Sea, 2 main lin-
eages of Amphipholis squamata (A and B) are present
(Le Gac et al. 2004). In the area studied, on the basis of
mitochondrial and nuclear data, we showed that the
complex encompasses at least 4 cryptic biological spe-
cies (AI, AII, AIII and B; Boissin et al. 2008). The aims
of the present study were to (1) assess whether all
species are capable of self-fertilization and (2) estimate
the rates of selfing and outcrossing in each species. To
assess the selfing rates, we used 2 complementary
methods, i.e. an analysis of population deviations from
Hardy-Weinberg equilibrium and a progeny-array

analysis. We developed an original method to estimate
confidence intervals for selfing rate that can be applied
to single locus data.

MATERIALS AND METHODS

Collection. Samples were collected at Les Goudes
(Marseille) in spring 2005 and spring 2006 (Table 1).
On each sampling date, 1 square patch (15 × 15 cm) of
seaweed (coralline red algae) was scraped clear and
carefully placed in a bag full of seawater. Density of
ophiuroids in quadrates was very variable in time and
space, with single quadrats containing from 0 to >100
specimens. In the area studied, highest densities were
encountered during spring and summer, periods when
most specimens of Amphipholis squamata were brood-
ing and juvenile were recruited (E. Boissin, personal
observation). Once back in the laboratory, we thor-
oughly searched for brittle stars among the seaweeds.
The specimens were then either placed individually in
jars until they released their progeny (spring 2005), or
dissected by removing the aboral disc-cover (spring
2006) after anaesthesia by immersion in 3% w/w
MgCl2 in sea water. If removal of the adult disc-cover
revealed brooded young within the bursa, they were
taken out under a binocular magnifying glass and
rinsed to remove maternal tissue or fluids. They
were individually preserved in 95% ethanol. To
compare the mode of reproduction of populations of
the species in this site with other distant populations,
we also analysed samples from the northeastern
Atlantic and other sites in the Mediterranean Sea
(Fig. 1, Table 1).

Molecular analyses. DNA was extracted using the
Chelex 10% protocol (Walsh et al. 1991). To avoid con-
tamination of brooder-DNA with DNA of internally
brooded offspring, only arm tissues were used. For
juveniles, we used either the entire body or only arm
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Region/Country Code Coordinates Adults Offspring

Les Goudes (Provence, France) April 2005 GOU05 43° 12’ 50” N, 5° 20’ 15” E 190 (45a) 121
Les Goudes (Provence, France) May 2006 GOU06 43° 12’ 50” N, 5° 20’ 15” E 46a 248
Total 236 (91a) 369

White Bay (Scotland, UK) WBA 55° 36’ 17” N, 5° 13’ 34” W 24 –
Helgoland (North Sea, Germany) HEL 54° 11’ 34” N, 7° 53’ 21” E 13 –
Roscoff (Brittany, France) ROS 48° 43’ 46” N, 3° 59’ 19” W 20 –
Arrabida (Portugal) ARR 38° 32’ 53” N, 9° 12’ 23” W 11 –
Neeltje Jans (Netherlands) NEJ 51° 37’ 53” N, 3° 41’ 44” E 12 –
Banyuls (southern France) BAN 42° 27’ 34” N, 3° 09’ 28” E 29 –
Palazzu (Corsica, France) PAL 42° 22’ 18”N, 8° 32’ 04” E 21 –
aNumber of brooders used for the progeny-array analysis

Table 1. Amphipholis squamata. Origin (locality and date) and sizes of adult and offspring samples analysed
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tissues, depending on specimen size.
Seven nuclear markers that produced
clean, repeatable patterns were used
in this study, one intron from verte-
brates (intron 2 from the Actin gene,
Atarhouch et al. 2003) and 6 micro-
satellites (Aj9 and Ai8 from Chenuil et
al. 2003; AS-12, AS-14, AS-15 and AS-
16 from a new screening). We used
thermal and MgCl2 gradients to be
sure that only target loci were ampli-
fied and to obtain the most easily
interpretable pattern. Table 2 gives
primer sequences and annealing tem-
peratures for the nuclear markers.
Microsatellite PCR reactions were car-
ried out under the following condi-
tions: a denaturation step of 2 min at
95°C, followed by 25 cycles of 30 s at
95°C, 30 s at the annealing tempera-
ture , 1 min at 72°C and a final elongation step of 3 min
at 72°C. Each reaction was carried out in a 10 µl vol-
ume containing 1 × buffer (Promega), 2 mM of MgCl2,
65 µM of dNTP (Invitrogen), 0.5 µM of each primer

(MWG-Biotech AG, labelled with CY5 or Fluorescein),
0.25 U of Taq polymerase (Promega), 1 µl of DNA tem-
plate and sterile water up to 10 µl. The Actin2 intron
was amplified following the procedure of Atarhouch et
al. (2003). Two µl of PCR products from each individual
were loaded onto an 8% denaturing polyacrylamide
gel (Biorad). The PCR products were visualized with a
FMBIO fluorescent imaging system (Hitachi). Allele
sizes were determined using a fluorescently labelled
ladder (Promega) with the FMBIO Analysis 8.0 image
analyser program.

The intron and 3 microsatellite loci (AS-14, 15, 16)
had multiband patterns (up to 4 bands per specimen).
The loci Ai8, Aj9 and AS-12 had regular patterns
of microsatellites although no heterozygote was de-
tected. No null amplification was observed in speci-
mens from lineage A, supporting the absence of null
alleles. In order to check the most variable marker (AS-
12), we sequenced several individuals and obtained
the expected regular pattern of microsatellites (8 to 20
times TC motif repeats).

Data analyses. To estimate selfing rates, we used 2
complementary methods, 1 based on the lack of het-
erozygotes and the other based on progeny-array. As
previously established and validated on 150 speci-
mens (Boissin et al. 2008), because of private alleles,
the combination of nuclear markers Actin2, Ai8, Aj9
allowed species assignment of each specimen.

Using the co-dominant microsatellites Aj9, Ai8 and
AS-12 and the 190 specimens in the 2005 samples, we
computed standard measures of genetic variability
with GENETIX software (Belkhir et al. 2004), viz. non-
biased expected heterozygosity (Hnb; Nei 1978), mean
number of alleles (A) and estimates of FIS values using
the parameter of Weir & Cockerham (1984).
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Fig. 1. Amphipholis squamata. Locations of sampling sites.
Samples from ‘Les Goudes’ were used for progeny-array
analysis. All samples were in the analysis of population 

genetic structure

Locus name Primer sequences T (°C)

Actin 2 F: 5’-GCT ATA ACC CTC GTA GAT GGG CAC-3’ 54
R: 5’-ATC TGG CAC CAC ACC TTC TAC AA-3’

Ai8 F: 5’-TTA ATG CAG TAC CAC ATG AGT C-3’ 56
R: 5’-GTA GGA GAG ACC TTA TGG CTG C-3’

Aj9 F: 5’-AAT ATA TAT AGC TCT AAT TAC TG-3’ 46
R: 5’-ATA CTA AAT TTA TAT TCA A-3’

AS-12 F: 5’-AGG ATA TGG CAC CTA GAG AG-3’ 58
R: 5’-TAA CTC GAA GTA CGC TCA TT-3’

AS-14 F: 5’-TGC ATG CAA TAG TTA GAT GA-3’ 58
R: 5’-AAT GAG TCA GAT GTC AGG AA-3’

AS-15 F: 5’-CCT TCC AAG TTA CAT CGT TA-3’ 58
R: 5’-ACC ATG TGG AAC AAT AGG TA-3’

AS-16 F: 5’-GAT CAC AAT TGA ACT TTG AG-3’ 58
R: 5’-GGT CTG CTC TTA GTG TGA GGT T-3’

Table 2. Amphipholis squamata. Locus names, primer sequences and optimal
annealing temperature per locus (T) for the intron (Actin2) and the 6 microsatel-

lite markers (Ai8, Aj9, AS-12, AS-14, AS-15, AS-16) used
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From the FIS values, we were able to deduce the self-
ing rate within each species using a simple relation-
ship applicable to an isolated unstructured population
at equilibrium when mutation rate is negligible, i.e.
FIS = S/(2 – S), where S is the selfing rate. Available
methods allowing estimation of a confidence interval
for selfing rate from genotype frequency data are
based on resampling schemes and require genotypes
from at least 5 independent loci (Goudet 2001, avail-
able at www.unil.ch/popgen/softwares/fstat.htm). To
obtain confidence intervals from single locus data, we
constructed contingency tables of observed and
expected numbers of specimens of each monolocus
genotype for several values of selfing rate. From allelic

frequencies, we calculated the expected genotype fre-
quencies. The theoretical number of homozygotes for a
given allele is given by: 

n i =  (p i × p i + (S/2 – S) p i × qi) × N

where pi is the frequency of the allele i, qi = 1 – pi and
N is the total number of specimens per species. In
order to avoid cells with expected numbers of observa-
tions in the contingency table that were too low, we
pooled all expected heterozygotes into the same class
and all expected homozygotes into another class (they
all play the same role with respect to heterozygote
deficiency and selfing rate estimation). The contin-
gency tables were therefore of size 2 × 2 with 4 cells,
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Species A I Species A II Species A III
GOU05 WBA HEL ROS ARR NEJ BAN PAL GOU05 PAL GOU05 WBA ROS NEJ BAN PAL

N 93 14 13 17 11 6 10 12 36 1 33 1 3 6 19 5

AS-12
216 0.32 0 0 0 0 0 0.40 0 0.06 0 0.79 0 0 0 0.52 1.00
218 0 0 1.00 0 0 0.67 0 0.08 0.42 0 0.12 0 0 0.17 0.05 0
220 0.02 1.00 0 1.00 1.00 0.33 0.10 0.17 0.06 0 0.06 0 0 0 0.05 0
222 0.06 0 0 0 0 0 0 0.08 0.03 0 0 0 0 0 0.38 0
224 0.03 0 0 0 0 0 0 0.08 0.06 0 0 1.00 1.00 0.83 0 0
226 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
228 0.02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
230 0.02 0 0 0 0 0 0.10 0 0 1.00 0 0 0 0 0 0
234 0.02 0 0 0 0 0 0 0.17 0.11 0 0 0 0 0 0 0
236 0.01 0 0 0 0 0 0 0.33 0.28 0 0.03 0 0 0 0 0
240 0.35 0 0 0 0 0 0 0.08 0 0 0 0 0 0 0 0
246 0 0 0 0 0 0 0.40 0 0 0 0 0 0 0 0 0
260 0.13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Na 11 1 1 1 1 2 4 7 7 1 4 1 1 1 4 1
Hnb 0.76 0.00 0.00 0.00 0.00 0.67 0.69 0.84 0.74 0.00 0.37 0.00 0.00 0.30 0.60 0.00
FIS 1.00 – – – – 1.00 1.00 1.00 1.00 – 1.00 – – – 1.00 –
Ai8
305 0 – – – – – – – 0.92 – 0 – – – – –
312 0.97 – – – – – – – 0.08 – 1.00 – – – – –
460 0.01 – – – – – – – 0 – 0 – – – – –
700 0.02 – – – – – – – 0 – 0 – – – – –
Na 3 – – – – – – – 2 – 1 – – – – –
Hnb 0.06 – – – – – – – 0.15 – 0 – – – – –
FIS 1.00 – – – – – – – 1.00 – 1.00 – – – – –
Aj9
205 0 – – – – – – – 0 – 1.00 – – – – –
215 1.00 – – – – – – – 0 – 0 – – – – –
223 0 – – – – – – – 1.00 – 0 – – – – –
Na 1 – – – – – – – 1 – 1 – – – – –
Hnb 0.00 – – – – – – – 0.00 – 0.00 – – – – –
FIS 1.00 – – – – – – – 1.00 – 1.00 – – – – –
Multilocus
A 5 – – – – – – – 3.3 – 2 – – – – –
Hnb 0.27 – – – – – – – 0.29 – 0.12 – – – – –
FIS 1.00 – – – – – – – 1.00 – 1.00 – – – – –

Table 3. Amphipholis squamata. Sample size (N), microsatellite allele frequencies, number and mean number of alleles per locus
(Na and A), non biased expected heterozygosity (Hnb, Nei, 1978) and heterozygote deficiency (FIS, Weir & Cockerham 1984)
within each species at Les Goudes (using 3 microsatellites) and other localities (using AS-12 only). Italics: allele sizes in base 

pairs. Bold numbers correspond to fixed alleles. See location codes in Table 1
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i.e. expected heterozygotes, observed heterozygotes,
expected homozygotes, observed homozygotes. Tests
were also performed without pooling specimens and
the results were similar. Discrepancies between
expected and observed data were then detected using
χ2 and exact test methods. Each method has some
weaknesses: (1) in the χ2 method, low expected num-
bers of observations per cell lead to unreliability
(Haberman 1988) and there were likely to be low num-
bers in the monolocus data for expected heterozygotes
with high selfing rates, (2) the exact test requires inte-
ger values in the cells so that, in some cases, a range of
selfing rates produces the same probability values (i.e.
within the range S = 0.53 – 0.31, the p-values are the
same for species AII at locus Ai8). The lowest value of
selfing rate compatible with the observed data is
reached when the test becomes significant at a p-value
of 0.05. To combine data from multiple loci, we
summed all homozygotes and all heterozygotes and
compared expected and observed values.

Finally, using all 7 nuclear markers, we searched for
differences between DNA fingerprints of 91 brooders
and their 369 offspring. When mutation rates are con-
sidered negligible, outcrossing can be identified
unambiguously by the presence of a fragment in the
offspring that is not present in the brooder.

RESULTS

Genetic diversity of species

Among the 190 specimens from spring 2005 geno-
typed with the microsatellite markers (Ai8, Aj9 and
AS-12), 94 belonged to species AI (50%), 36 to AII
(19%), 33 to AIII (17%) and 27 to B (14%). While
microsatellite libraries were obtained for lineage A,
species B had null alleles at the 3 microsatellite loci

and was not analysed further. Table 3 gives allelic fre-
quencies and parameters of diversity for each species
in each locality. The genetic diversity was low, 1 locus
being fixed and diagnostic of 3 species (Aj9), another
was variable only for AI and AII (Ai8) and the third
(AS-12) had up to 11 alleles for a species. Monolocus
non-biased heterozygosity values were all <0.4
excepting AI and AII for the AS-12 locus. Species AIII
had the lowest mean number of alleles and the lowest
non biased heterozygosity.

Selfing rate estimated from FIS values

All 190 specimens were homozygous at the 3 micro-
satellite loci (Ai8, Aj9 and AS-12). Consequently, the
estimated FIS values were all 1.0 (Table 3). Confidence
intervals are given in Table 4. Locus Ai8 had lower
minimum selfing rates (ranging from 0.31 to 0.88) than
locus AS-12 (ranging from 0.77 to 0.98). Multilocus
estimates of minimum selfing rates were very high for
the 2005 sample (0.77 to 0.98) and higher for the
pooled sample of 2005 and 2006 (0.86 to 0.98). Both
tests (χ2 and exact test) gave comparable minimum val-
ues of selfing, at least for multilocus data. For the
remote Atlantic locations, alleles of the AS-12 locus
were fixed at White Bay, Helgoland, Roscoff and Arra-
bida, therefore no calculations of FIS values were

undertaken (Table 3). Moreover, at these
Atlantic sites the species AIII had a com-
mon private allele different from those of
Mediterranean localities. However, calcu-
lations of FIS values were possible for
Neeltje Jans, Banyuls and Corsica sam-
ples (Table 3). We did not find heterozy-
gote individuals in these remote samples.

Selfing rate estimated from progeny-
array analyses

Brooders usually bear offspring (up to
18 per specimen) at different ontogenetic
stages (from larvae to juveniles with
developed arms), even within a single
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Species AI Species AII Species AIII Species B

N (2005) 94 36 33 27
minS AS-12 0.98 (0.96) 0.93 (0.91) 0.84 (0.77) – 
minS Ai8 0.63 (0.52) 0.55 (0.31) – – 
minS multilocus 0.98 (0.97) 0.94 (0.91) 0.84 (0.77) – 

N (2005 + 2006) 110 51 42 31
minS AS-12 0.98 (0.97) 0.96 (0.93) 0.92 (0.86) – 
minS Ai8 0.88 (0.81) 0.85 (0.74) – – 
minS multilocus 0.98 (0.98) 0.96 (0.94) 0.92 (0.86)

Table 4. Amphipholis squamata. Minimum selfing rate (minS) per species,
monolocus and multilocus (AS-12 + Ai8) as tested with a χ2 method and
exact tests (parentheses) at Les Goudes (see Fig. 1 for location). The upper
half of the table gives values for the 2005 sample; the lower half of the table
gives values after adding the 46 brooders from 2006. N = number of speci-

mens analyzed

AI AII AIII B

Adults 38 24 14 8
Adult multilocus genotypes 30 22 11 4
Offspring 62 107 57 22

Table 5. Amphipholis squamata. Numbers of adults, adult
multilocus genotypes and offspring used for the progeny-

array analyses among the four species
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bursa. Table 5 gives the distribution of specimens
among species, number of multilocus genotypes and
offspring per species. In our small samples, AI had the
lowest mean number of offspring per brooder (3.6) and
AII had the highest (6.7). Four out of 7 nuclear markers
were amplified in species B (Act2, AS-14, AS-15 and
AS-16) and therefore supplied information about mode
of reproduction. In all 369 broods, there was exact
replication of the parent genotype. We observed nei-
ther a lack of maternal band nor extra non-maternal
fragments.

DISCUSSION

Mode of reproduction in the Amphipholis squamata
complex

Both the genetic structure and progeny-array analy-
ses led to the same conclusion, viz. extremely high self-
fertilization rates occur in all the species of the
Amphipholis squamata complex present in the area
studied. Our results fit and reinforce the U-shaped dis-
tribution of selfing among plant and animal species,
adding 4 points on the extreme selfing side. Differ-
ences in minimum selfing rates (confidence interval)
between species are due to differences in diversity and
in number of specimens, with both affecting test power
rather than representing a real difference in selfing
rate (as not a single heterozygote was ever observed).
Moreover, both tests (χ2 and exact test) gave compara-
ble minimum values of selfing. The strongest differ-
ences (when considering locus Ai8) are probably due
to the weaknesses in the 2 methods (see ‘Materials and
methods; Data analyses’). The assumptions made for
estimating selfing rates from FIS values (an isolated and
homogeneous population and a negligible mutation
rate) are probably not violated in a way that would
affect our results as demographic scale dispersal
potential is very limited in these species, and micro-
satellites had very few alleles. However, if the popula-
tion is structured, minimum selfing rates may be over-
estimated since outcrossing between neighbours tends
to produce more homozygous genotypes than in a
homogeneous population. Nevertheless, the total lack
of heterozygotes together with the exact replication of
parent genotype point to extreme selfing rates.

Contrary to this study, a previous work on North
Atlantic Amphipholis squamata populations using 3
allozymic loci (Murray 1989) suggested outcrossing,
as revealed by discrepancies between maternal and
offspring genotypes. Another work on 9 adults of A.
squamata and their progeny from the Medes Islands
(northwestern Mediterranean) using RAPD markers
estimated a minimum outcrossing rate of 0.36 (Poulin

et al. 1999). We do not know to which lineage these
specimens belonged. We also suspect non-Mendelian
heritability for the allozyme loci analysed by Murray
(1989) since strong heterozygote excesses were
observed and therefore the assessment of outcrossing
may result from misinterpreted patterns. Furthermore,
the dominant mode of reproduction may vary under
specific local effects, leading to geographic differ-
ences. This is the case in the clam complex Lasea (Ó
Foighil 1988); northeastern Pacific lineages in this
complex reproduce only by parthenogenesis whereas
some species in Australia reproduce only sexually. The
aggregative mode of life in the species complex we
studied and the occurrence of specimens in more or
less isolated patches among coralline red algae in our
study areas (together with densities lower than in Tin-
dari’s (Sicily) lagoons, where it can reach up to 2000
ind. l–1 of algae, Dupont & Mallefet 1999) may favour
locally high selfing rates. Bearing in mind these possi-
ble geographic differences, we analysed broadly sepa-
rated Mediterranean and Atlantic samples and failed
to find a single heterozygote specimen (Table 3). Nev-
ertheless, all our samples belonged to lineage A and it
would be interesting to see whether such selfing
occurs in the 7 lineages of A. squamata described by
Sponer (2002) and whether the mode of reproduction
changes spatially, for example between temperate and
tropical waters. Finally, our results do not rule out the
possibility of episodic sexual reproduction, since after
10 generations of selfing, the proportion of heterozy-
gotes is divided by a thousand (210). The observation of
frequent recombinant genotypes (Boissin et al. 2008)
strongly supports this hypothesis.

Self-fertilization is the mode of sexual reproduction
with the greatest possibility of producing similar
parental and offspring genotypes (Stoddart 1983).
However, our genetic observations could have resulted
from asexual reproduction (Jarne & Charlesworth
1993, de Meeús et al. 2007). Fell (1946) determined
that Amphipholis squamata is non-fissiparous. Par-
thenogenesis is rare in echinoderms; the ophiuroid
Ophiomyxa brevirima is one of the few brittle star spe-
cies known to reproduce parthenogenetically (Garrett
et al. 1997). Moreover, parthenogenesis is rare in her-
maphroditic animals. This may be due to the lower
advantage for a parthenogenetic mutant arising in a
hermaphroditic population compared with a partheno-
genetic female of the population because of the ‘cost’
of the male function. (Charlesworth 1980, Jarne &
Charlesworth 1996). The third argument supporting
the proposition that self-fertilization is more probable
than parthenogenesis comes from the anatomical
structure of A. squamata with both male and female
gonads that end in the bursae (Alvà 1996). Regardless
of the details, self-fertilization and parthenogenesis
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are both selfing and would have the same overall
effect on the microevolution of populations. Clearly,
the main mode of reproduction for species of the north-
western Mediterranean Sea is selfing rather than
cross-fertilization.

Reproductive effects on genetic structure

Microsatellite genetic diversity was relatively low
(A = 1 to 13 and He = 0.12 to 0.27, Table 3) in the
Amphipholis squamata complex compared to non-
selfing echinoderms: Strongylocentrotus droebachien-
sis (A = 13 to 20 and He = 0.83 to 0.91, Addison & Hart
2002), Tripneustes gratilla (A = 8 to 33 and He = 0.26 to
0.96, Carlon & Lippé 2007), Centrostephanus rodgersii
(A = 4 to 21 and He = 0.32 to 0.91, Banks et al. 2007).
Low genetic diversity and multilocus homozygous
genotypes are also observed in well-studied selfing
species such as snails (Viard et al. 1997) and slugs (Jor-
daens et al. 2000). A reduction of genetic diversity by
selfing is also well illustrated when comparing the out-
crossing slug species Deroceras reticulatum (7 to 26
alleles per microsatellite) with the selfing slug species
Arion intermedius (3 to 9 alleles per microsatellite,
Brookes et al. 2001).

Effect of selfing on colonization success 

Although self-fertilization causes a loss of genetic
variability, it provides a way to reproduce when mates
are in low densities (or absent), and thus it facilitates
the development of populations in new habitats after
colonization by only 1 ind. (founding effect). A well
known rule in plants, Baker’s law, highlights a correla-
tion between the success of colonization after long dis-
tance dispersal and selfing rate (Baker 1955, 1967,
Pannell & Dorken 2006). Colonisation (and hence self-
ing) also appears crucial in metapopulation recovery
from local extinction (Pannell & Barrett 1998). In
Amphipholis squamata, the rates of local extinction
may be high (an ongoing study revealed that the pat-
tern of density distribution seems chaotic) and may
cause selection for high selfing rates. From published
records, all other species of the genus Amphipholis
have smaller distribution areas than A. squamata.
Some species are endemic to 1 locality or restricted to 1
area: e.g. A. torelli in Greenland and Iceland (Koehler
1927, D’yakonov 1967), and A. strata and A. similis in
South Africa (Clark & Courtman-Stock 1976). Others
are at most present on both sides of an ocean e.g. A.
pugetana in the North Pacific (Clark 1911, D’yakonov
1967). Moreover, from the literature on the genus, A.
squamata seems to be the only species capable of self-

ing. This life history trait may account for the cos-
mopolitan character of a species complex with a low
potential to disperse.

In summary, all species of the Amphipholis squa-
mata complex encountered in the areas studied had
extreme selfing rates. Despite the lack of a dispersal
phase, some of these species have a large distribution
range, being present in both the Atlantic Ocean and
the Mediterranean Sea. This has been presented as a
paradox in most previous studies of A. squamata. To
explain the cosmopolitism of A. squamata, Emson et al.
(1989) listed its high adaptability potential (as revealed
by physiological tolerance ranges of the species;
Emson & Foote 1980), its generalist feeding require-
ments (Emson & Whitfield 1989) and its capability for
adapting its reproductive pattern in the face of differ-
ent environmental pressure (longevity, recruitment
time etc.). In addition to these ecological characteris-
tics, selfing now appears as an important factor help-
ing to resolve the paradox of A. squamata world-wide
distribution. In order to understand the evolutionary
forces operating on selfing rates in this ophiuroid,
future studies involving different species of the com-
plex and of the genus should attempt to determine
whether selfing rates are (1) species-dependent, (2)
may be influenced by density-dependent effects or (3)
are a feature common to all species of the A. squamata
complex.
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