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INTRODUCTION

Sexual segregation has been defined as the separa-
tion of members of a species, such that sexes live apart,
either singly or as single-sex groups (Wearmouth &
Sims 2008). It is a phenomenon present in reptiles
(Ford & Hampton 2009), fish (Mucientes et al. 2009),
birds (González-Solís et al. 2008, Morales et al. 2008,
Palacin et al. 2009) and mammals. In mammals, sexual
segregation has been studied mostly in terrestrial spe-
cies, particularly ungulates and other group-living
mammals, where it appears to be very common (Mac-
Farlane & Coulson 2007, Ciuti & Apollonio 2008, Hay

et al. 2008, Li & Jiang 2008, Shannon et al. 2008). It is
less well documented in marine mammals, though it
appears to play an important role for various cetacean
species, notably for species that live in social groups
(Whitehead & Weilgart 2000, Martin & da Silva 2004).
Recent advances in satellite-tracking devices for
marine species have led to new understandings of the
pelagic phases of pinniped life cycles across the globe.
As a result, sexual segregation in migration patterns
and depths utilised has increasingly been reported for
a number of seal species (Slip et al. 1994, Page et al.
2005, Wolf et al. 2005, Breed et al. 2006, Staniland &
Robinson 2008).
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Mechanisms presented to explain such difference in
behaviour between sexes include (1) predator avoid-
ance, (2) forage selection, (3) differences in activity
budgets, (4) thermal niche-fecundity in ectotherms,
and (5) social factors (Ruckstuhl 2007, Staniland &
Robinson 2008, Wearmouth & Sims 2008). Notably,
many of these hypotheses are associated with sexual
size dimorphism and predict positive correlations of
sexual segregation with sexual size dimorphism.

Southern elephant seals are extremely sexually
dimorphic, with males sometimes being up to 10
times larger than females (Le Boeuf & Laws 1994).
Adult animals haul out at breeding colony sites twice
during a year — once during the breeding period
(austral spring) and once for the annual moult (aus-
tral mid to late summer). Segregation in forage loca-
tions between the sexes in southern elephant seals
have been reported for animals from various locali-
ties (Slip et al. 1994, Campagna et al. 1995,
McConnell & Fedak 1996, Campagna et al. 1999,
Bornemann et al. 2000, Tosh et al. 2009). Similarly, a
number of studies demonstrate segregation in dive
behaviour, with females foraging mostly pelagically
while males tend to either forage benthically or show
greater variation in forage strategy, often employing
both pelagic and benthic strategies (Hindell et al.
1991, McConnell et al. 1992, Campagna et al. 1995,
Jonker 1997, Malherbe 1998, Campagna et al. 1999,
Field et al. 2005b).

Such differences in forage locations and dive
behaviour are thought to be associated with sex-spe-
cific foraging strategies in this species, with males
reportedly adopting more risky foraging strategies in
order to maximise early growth (Lewis et al. 2006,
Field et al. 2007a). Such segregation has largely been
attributed to inter-sexual competition avoidance in
this species (Field et al. 2005b, Lewis et al. 2006).
While such investigations reported clear differences
in foraging strategies between males and females, no
attempts were made to quantify the effects of body
size differences between sexes. This is important
since the extreme sexual dimorphism of this species is
likely to influence dive parameters and cloud the
potential influence of sex versus body size on the dive
behaviour of elephant seals.

Here we investigate sexual differences in dive
behaviour of southern elephant seals from Marion
Island. Our aims were specifically to determine if dif-
ferences in dive parameters between sexes were a
result of inherent sex-related traits or merely a by-
product of size differences between sexes. Because of
the unbalanced nature of available data, we utilised a
mixed-effects modelling approach to elucidate the
effects of sex, standard length and age on the depth
utilisation of elephant seals.

MATERIALS AND METHODS

Satellite-tag deployments. A total of 57 satellite-relay
data loggers (Sea Mammal Research Unit, University of
St. Andrews, Scotland) were deployed on southern ele-
phant seals of known age and sex hauled out at Marion
Island (46° 54’ S, 37° 45’ E). Deployments were made on
known individuals, born and flipper-tagged on the is-
land as part of a long-term mark-recapture investiga-
tion (Bester 1988, de Bruyn et al. 2008). Two types of
satellite-relay data logger (SRDL) were used in this in-
vestigation: 33 SRDL Series 9000 and 24 SRDL-CTD de-
vices. Devices were glued onto the cranial pelage of im-
mobilised animals (for further details see Tosh et al.
[2009]). All SRDLs were programmed to measure pres-
sure every 4 s during each dive of the animal. Only
dives deeper than 6 m were recorded. Detailed dive
data were compressed onboard the instruments, prior
to transmission, using a broken-stick algorithm to pro-
vide 4 dive points reflecting the greatest inflections, as
well as the maximum depth reached within the dive
(Fedak et al. 2001, Boehme et al. 2009). This informa-
tion was relayed via service Argos (Argos 1996), along
with environmental data (SRDL Series 9000 devices re-
corded temperature profiles, while SRDL-CTD devices
recorded temperature and conductivity profiles), and
position estimates calculated from Doppler shift mea-
surements in successive uplinks. All dive and environ-
mental meta-data are available in open access via the
PANGAEA information system (www.pangaea.de).

For the purposes of this investigation we included
data obtained only from animals for which deploy-
ments were made prior to post-moult migrations (as
opposed to post-breeding migrations). Also, only
tracks obtained from animals with measured standard
length data (with the seal in ventral recumbency) and
known ages at the time of deployment were included.
Few mass measurements were available for the study
animals, precluding the inclusion of mass as an indica-
tion of body size. We further removed data obtained
from the largest males and smallest females of known
lengths (males: n = 2; females: n = 3) in order to ensure
substantial overlap in standard lengths between sexes
and remove a possible confounding effect between sex
and standard length (see Results). This resulted in data
being retained from 20 (12 females and 8 males;
Table 1) tracks for this study.

Filtered tracks (see Tosh et al. 2009) were plotted in
Arcview 3.3 (ESRI 1998). Space use and the extent of
movements were calculated using Animal Movement
Analyst (Hoodge & Eichenlaub 1997). Kernel density
estimators based on all locations further than 200 km
from Marion Island were calculated in order to deter-
mine space use probabilities (95% and 50%) for
females and males separately. Minimum convex poly-
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gons (MCPs) were drawn to determine the maximum
extent of movements for both sexes.

Dive analyses. We removed all incomplete (contain-
ing missing values) or unrealistic (containing sequen-
tial time values that are not chronological) dive se-
quences prior to analysis. Due to the compressed
format in which dive data are received, estimating
times spent by animals within various depth layers is
problematic. We therefore used a simple interpolating
algorithm, assuming constant swim speeds and direc-
tions between transmitted dive points, to calculate esti-
mated times spent within various depth layers (100 m
increments from the surface to 1000 m, thereafter
1000–1250 m, 1250–1500 m, 1500–2000 m, and
>2000 m) for each transmitted dive profile (see Mc-
Intyre et al. 2010 for further details). We then identified
the mid-depth value of each depth layer in which an
animal spent the most time during any particular dive
(e.g. if the seal spent the largest amount of time in the
0 to 100 m depth layer, then 50 m). This was referred to
here as the exploited depth.

To account for variation in dive behaviour associated
with differing activity (e.g. foraging, travelling or rest-
ing) we identified individual dives with longer-than-
average bottom times for each track (Bailleul et al.
2008). Accordingly, we calculated bottom time as the
time spent by an animal at depths exceeding 80% of
the maximum depth point for that dive (Lesage et al.
1999, Schreer et al. 2001, Burns et al. 2008). We then
used linear regressions to calculate average bottom

times for dives with given dive durations and maxi-
mum dive depths (Bailleul et al. 2008). The residual
values obtained from these regressions then identified
individual dives as being characterised by longer- and
shorter-than-average bottom times. Dives with positive
residuals (indicating longer-than-average bottom
times) were assumed to suggest increased foraging
effort and were retained for further analysis.

Diel variation in dive behaviour has been docu-
mented for a number of seal species, including south-
ern elephant seals (Jonker & Bester 1994, Campagna
et al. 1995, Bennet et al. 2001, Bajzak et al. 2009). We
therefore classified each dive according to day-stage
(day, night, sunrise, sunset), accounting for spatial
position and season. Local times for each dive were
calculated according to the associated longitude val-
ues of each dive and the appropriate standard time
zone (based on UTC). Seasonal local times of sunrise
and sunset for 2009 (by latitude) were obtained from
the National Oceanic and Atmospheric Administration
(NOAA) (www.srrb.noaa.gov/highlights/sunrise/sunrise.
html). Local-time hour values of dives, season and local
times of sunrise/sunset were then used to classify the
day-stages of individual dives.

To account for the potential influences of sea ice on
individual dive behaviour, we further removed all dive
data collected at latitudes higher than 60° S. Data used
in the models were therefore restricted to dives with
positive bottom dive residuals, completed at latitudes
lower than 60° S.
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Animal Track Sex Year Age (yr) Stdl DDDAY DDNIGHT MDDAY MDNIGHT EDDAY EDNIGHT

BB081 BB081 m 2008 5.3 252 36 ± 12 29 ± 10 732 ± 149 465 ± 219 687 ± 142 439 ± 197
BB128 BB128 m 2008 5.3 293 38 ± 13 26 ± 10 743 ± 148 426 ± 166 723 ± 155 375 ± 147
BB253 BB253 m 2005 2.6 214 24 ± 5 19 ± 4 563 ± 90 457 ± 164 530 ± 90 406 ± 153
BB263 BB263 m 2006 3.7 231 30 ± 5 22 ± 6 684 ± 130 501 ± 175 632 ± 128 445 ± 176
GG335 GG335_2 f 2008 8.3 235 34 ± 12 30 ± 9 556 ± 150 422 ± 120 518 ± 146 388 ± 118
OO021 OO021_2 f 2008 6.3 225 34 ± 8 25 ± 6 546 ± 102 394 ± 92 520 ± 100 355 ± 91
OO052 OO052_1 m 2006 4.6 280 43 ± 13 32 ± 11 722 ± 181 572 ± 261 682 ± 183 526 ± 258
OO086 OO086 m 2005 3.5 260 33 ± 10 23 ± 8 682 ± 194 498 ± 164 615 ± 182 428 ± 155
OO418 OO418 f 2008 6.4 230 28 ± 8 21 ± 6 550 ± 154 367 ± 164 504 ± 145 327 ± 160
PO043 PO043_1 f 2007 8.3 254 18 ± 15 24 ± 23 310 ± 142 332 ± 142 265 ± 142 291 ± 146
RR009 RR009 m 2008 3.2 210 16 ± 14 20 ± 19 310 ± 140 405 ± 203 270 ± 132 360 ± 207
WW058 WW058 f 2008 7.3 244 31 ± 8 24 ± 7 555 ± 178 372 ± 187 510 ± 169 330 ± 178
WW061 WW061 f 2008 7.3 233 33 ± 6 25 ± 5 592 ± 109 407 ± 128 550 ± 106 361 ± 123
YY150 YY150 m 2008 4.2 265 36 ± 14 28 ± 9 638 ± 200 423 ± 179 599 ± 200 373 ± 166
YY189 YY189_1 f 2006 2.5 222 35 ± 6 23 ± 5 625 ± 98 427 ±108 579 ± 97 383 ± 106

YY189_2a f 2007 3.3 224 28 ± 9 20 ± 5 563 ± 102 432 ± 98 524 ± 100 390 ± 100
YY189_3a f 2008 4.3 242 30 ± 10 24 ± 7 522 ± 116 372 ± 97 491 ± 119 334 ± 96

YY193 YY193_2 f 2008 4.3 224 31 ± 10 24 ± 9 502 ± 115 286 ± 128 467 ± 114 254 ± 125
YY264 YY264_2 f 2008 4.4 236 32 ± 10 23 ± 7 497 ± 133 297 ± 125 467 ± 132 260 ± 123
YY348 YY348_2 f 2008 4.4 227 35 ± 10 22 ± 6 571 ± 173 370 ± 185 537 ± 166 329 ± 176

Table 1. Dive characteristics of selected southern elephant seal tracks used in this investigation. Only dives with a positive resid-
ual value resulting from the regression of bottom time as a function of maximum dive depth and dive duration (indicating in-
creased forage effort) were included. Stdl = standard length (cm); DD = dive duration (min); MD = maximum depth (m); ED = 

exploited dive depth (m). Values arepresented as means (±SD) of individual seal averaged values
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Fig. 1. (a) Daily averaged dive locations of the 20 animals (8 males; 12 females) tracked in this study. Minimum convex polygons
(MCPs) of their track data are indicated. Background shading indicates the underlying bathymetry (dark shading = deeper water;
light shading = shallower water) (b) Kernel density estimates of the 20 (8 males; 12 females) southern elephant seal tracks 

included in this investigation
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Statistical analyses and model selection. All para-
meters presented were summarised to daily mean val-
ues per track. This was done to smooth out potential
biases associated with unsuccessful transmissions of
dive profiles (Vincent et al. 2002, Boehme et al. 2009),
and potential biases in the likelihood of successful
transmissions associated with geographic positions
and the orbit of Argos satellites (Argos 1996). Daily
mean values further allowed for modelling of temporal
autocorrelation, using functions that were computa-
tionally too intensive to use on raw data (see below).

Maximum dive depths (MDDAY/MDNIGHT), dive dura-
tions (DDDAY/DDNIGHT) and exploited depths (EDDAY/
EDNIGHT) were compared with linear mixed-effects
models (LMEs). Three covariates were considered in
the models: sex, start age (age of animals at the time
of deployment) and standard length. These were in-
cluded in the models as fixed effects, and individual
tracks as a random effect. Restricted maximum likeli-
hood (REML) estimation was employed in all model
fits, following Bolker et al. (2009).

Autocorrelation plots revealed significant temporal
autocorrelation evident in all models. We therefore
modelled temporal autocorrelation dependencies, by
including autoregressive functions (Pinheiro & Bates
2004, Crawley 2007). Final model covariates were
chosen using backwards selection, starting with the 3
covariates models. We used second order Akaike’s
information criterion (AIC) statistics for small sample
sizes (Burnham & Anderson 2002) to govern initial
model selection, along with various plot types to assess
model fits (Pinheiro & Bates 2004). Hypothesis tests (F
tests) were carried out on the final models to distin-
guish significance of the various fixed effects (Bolker et
al. 2009). Variance components analyses were also car-
ried out on the final mixed-effects models to estimate
the variation explained by random effects (individual)
(Börger et al. 2006, Crawley 2007, Bunnefeld et al.
2009).

Models were run using R version 2.7.1 (R Develop-
ment Core Team 2008). The significance level for all
tests was set at p ≤ 0.05.

RESULTS

Male and female animals in our study travelled in
similar directions from Marion Island, predominantly
to the west and southwest (Fig. 1a). MCPs indicated
substantial overlap in total areas utilised between
sexes. Fifty percent kernel density estimates indicated
less overlap between the sexes, though these areas
were in similar regions (Fig. 1b). Males appeared to
concentrate their movements closer to Marion Island
than did females. Bottom depth estimates (Smith &

Sandwell 1997) of the individual dive locations indi-
cated substantial overlap in bottom depths between
sexes, though males tended to dive in areas with
slightly shallower water depths than females (males:
3523 ± 1622 m; females: 4399 ± 851 m) (Fig. 2).

The 20 tracks resulted in 99 302 dives that were suc-
cessfully transmitted. The filtering process removed
5090 dives, resulting in 94 212 dives remaining for
analyses. Of these, 72 794 dives had calculated bottom
times greater than 0 and were used to calculate bottom
time residuals. After removal of dives located at lati-
tudes higher than 60° S, daily averaging resulted in
2810 ‘dive days’ and 2924 ‘dive nights’.

Start age was not significantly correlated with stan-
dard length (Pearson: r = 0.24, df = 18, p = 0.31), and
standard length was not significantly correlated with
sex (Pearson: r = 0.41, df = 18, p = 0.07) in our study ani-
mals. While backwards selection was employed, mod-
els were always run with all possible combinations of
fixed variables. Models including each of the fixed
variables provided the best fit to the data set for each of
the dive parameters in our study (Table 2).

Maximum dive depths

Males dived to deeper mean maximum dive depths
than females, and both sexes dived to deeper mean
depths during daytime, when compared to night-time
dives (MalesDAY = 663.6 ± 186 m; MalesNIGHT = 466.8 ±
196.58 m; FemalesDAY = 548.5 ± 138 m; FemalesNIGHT =
382.3 ± 140.8 m). Males displayed more variation in
maximum dive depths than females (ANOVADAY:
F1,17230 = 2100.2, p < 0.001; ANOVANIGHT: F1,18514 =
1071, p < 0.001; Fig. 3). Maximum dive depths were
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Fig. 2. Box-and-whisker plot indicating estimated water
depths (Smith & Sandwell 1997) of dive locations recorded for
the selected southern elephant seal tracks in this investiga-
tion. Bold line = median, box = 25th and 75th percentiles,
points = outliers, whiskers = 1.5 times the interquartile range,
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rarely constrained by estimated water depths, and few
evident benthic dives were observed in either sex
(Fig. 4). Sex and standard length significantly affected
maximum dive depths during the day, while sex was
the only fixed effect influencing maximum dive depths
at night in the final models (Tables 2 & 3). Individual
track (random effect) explained 38% of the variance in
the final model for MDDAY and 11.1% of the variance in
the final model for MDNIGHT.

Dive durations

Dive durations (DD) were longer in males than
females, and both sexes dived for longer mean periods
of time during the day than during night-time dives
(MalesDAY = 35.5 ± 2.8 min; MalesNIGHT = 26.2 ±

298

Parameter Model AICc Significant effects RE (%)

DDDAY Sex + start age + stdl 43 569.4 Stdl 29.4
Sex + start age + stdl* 41 460.4 Stdl 16.5

DDNIGHT Sex + start age + stdl 43 522.4 Start age + stdl 19.2
Sex + start age + stdl* 41 835.7 Start age + stdl 12.9

MDDAY Sex + start age + stdl 35 113.9 Stdl 43.7
Sex + start age + stdl* 34 040.3 Sex + stdl 38

MDNIGHT Sex + start age + stdl 37 125.6 Sex 16.3
Sex + start age + stdl* 36 158.8 Sex 11.1

EDDAY Sex + start age + stdl 34 911.1 Stdl 44.4
Sex + start age + stdl* 33 880.9 Sex + stdl 39

EDNIGHT Sex + start age + stdl 36 754.8 Sex 17.9
Sex + start age + stdl* 35 849.1 Sex 12.8

Table 2. Summary of models with best fits. Models without an asterisk (*) are final models prior to the inclusion of an autocorrela-
tion function. Models with an asterisk (*) indicate final models that included an autoregressive autocorrelation function. DD =
dive duration, MD = maximum dive depth, ED = exploited dive depth, stdl = standard length, AICc = second order AIC statistic,

and RE = random effect
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9.5 min; FemalesDAY = 31.8 ± 9.7 min; FemalesNIGHT =
24 ± 7.4 min) (Fig. 5). The best model for DDDAY indi-
cated that standard length was the only significant
fixed effect influencing this parameter (Table 3). A
weak, but statistically significant positive correlation
existed between DDDAY and standard length (Pearson:
r = 0.31, df = 2808, p < 0.001). Both standard length and
start age were identified as significantly influencing
DDNIGHT. Individual track (random effect) explained
16.5% and 12.9% of the variance in the final models
for DDDAY and DDNIGHT respectively.

Exploited dive depths

Exploited dive depths were deeper in males than in
females, and deeper during daytime dives when com-
pared to night-time dives for both sexes (MalesDAY =
622.2 ± 185.8 m; MalesNIGHT = 416.6 ± 186.4 m;
FemalesDAY = 511.2 ± 134.1 m; FemalesNIGHT = 342.5 ±
136.6 m). Males displayed more variation in exploited
dive depths than females (ANOVADAY: F1,17230 =
2020.8, p < 0.001; ANOVANIGHT: F1,18514 = 892.77, p <
0.001; Fig. 6). Best models for exploited depth indi-

cated that sex and standard length significantly influ-
enced exploited dive depths during daytime dives
(Table 3). Sex was identified as the only fixed effect
significantly influencing exploited depths at night.
Individual track (random effect) explained 38.9% of
the variance in the final model for EDDAY and 12.8% of
the variance in the final model for EDNIGHT.

DISCUSSION

This study investigated the effects of sex, size and
age on a number of dive parameters measured in
southern elephant seals from Marion Island. By exam-
ining track and dive data obtained from seals from a
range of sizes (standard lengths) in each sex, we were
able to elucidate the influence of such effects using a
mixed-effects modelling approach.
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Response Fixed effect F df p
variable

DDDAY Intercept 924.124 1,2790 <0.001
Sex 1.131 1,16 0.303
Start age 0.002 1,16 0.969
Stdl 10.909 1,16 0.005

DDNIGHT Intercept 1328.123 1,2904 <0.001
Sex 1.761 1,16 0.203
Start age 6.58 1,16 0.021
Stdl 9.933 1.16 0.006

MDDAY Intercept 651.932 1,2790 <0.001
Sex 4.762 1,16 0.044
Start age 0.018 1,16 0.894
Stdl 4.752 1,16 0.045

MDNIGHT Intercept 1162.961 1,2904 <0.001
Sex 13.609 1,16 0.002
Start age 1.028 1,16 0.326
Stdl 0.234 1,16 0.635

EDDAY Intercept 587.416 1,2790 <0.001
Sex 4.502 1,16 0.05
Start age 0.006 1,16 0.939
Stdl 5.374 1,16 0.034

EDNIGHT Intercept 931.25 1,2904 <0.001
Sex 10.572 1,16 0.005
Start age 1.189 1,16 0.292
Stdl 0.267 1,16 0.612

Table 3. F test results indicating significant fixed effects on
final models. Boldface indicates statistically significant effects
(p < 0.05). DD = dive duration, MD = maximum dive depth,

ED = exploited dive depth
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Fig. 5. Box-and-whisker plots of dive durations recorded for
the southern elephant seal tracks selected for this investiga-
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Sex versus size

Males in our sample undertook longer and deeper
foraging dives than females — dives characterised by
increases in time spent at the bottom of dives. Male
southern elephant seals displayed more variation in
maximum and exploited dive depths than females
(Figs. 3 & 6). Sex was considered a significant effect in
final models for maximum dive depth and exploited
dive depth during day- and night-time. However, sex
did not have a significant effect in final models for dive
duration. Standard length was incorporated in the best
models for all dive parameters. It was identified as
being a statistically significant effect for dive durations
during day- and night-times, as well as maximum and
exploited dive depths during daytime. While the inclu-
sion of standard length improved all final models, it
was not identified as a significant effect for maximum
or exploited depths at night.

These results suggest that differences observed in
dive durations between sexes are likely to be due
largely to increased physiological capability associated
with different body sizes. Swim speed and body mass
have previously been reported to be positively corre-
lated with dive durations in female southern elephant
seals from Macquarie Island (Hindell et al. 2000). Sim-
ilarly, a positive relationship between body mass and
dive durations was reported for underyearling south-
ern elephant seals from the same population (Irvine et
al. 2000).

However, body size (standard length) did not appear
to drive differences observed between sexes in maxi-
mum and exploited dive depths. While sex signifi-
cantly influenced both these parameters for daytime
dives, it was identified as consistently affecting maxi-
mum and exploited dive depths during day- and night-
time dives. This suggests that male and female south-
ern elephant seals target different depth layers and
their associated resources owing to differences in for-
aging strategy, and that dive depths are not merely a
by-product of body size and their associated physiolog-
ical capacity.

We used standard length as a proxy measurement for
body size. While such a measurement was not sufficient
to estimate body condition in the study animals, it was
considered likely to provide an overall indication of
physiological capability over an extended timescale.
Body condition in southern elephant seals is known to
vary substantially during their foraging migrations and
over seasonal timescales (Bennet et al. 2001, Biuw et al.
2007). Such changes in body condition can be expected
to directly influence dive performance owing to
changes in buoyancy associated with blubber gain and
loss. Other seasonal influences on dive performance
have been suggested, including reproductive condition

of females, seasonal fluctuations in basal metabolic
rate, seasonal alterations in oxygen affinity of haemo-
globin and myoglobin, increases in muscle oxygen stor-
age capacity, increases in physical fitness, and seasonal
changes in prey type (Bennet et al. 2001). Such factors
are likely to have resulted in the large variances in dive
parameters reported here and require further investi-
gation. Furthermore, differences in metabolic require-
ments between males and females of similar ages (non-
breeding males provisioning for growth and females for
breeding) (Field et al. 2005a) were likely to have re-
sulted in different body conditions and dive perfor-
mance between sexes.

Influence of age

Dietary shifts associated with age have previously
been described for juvenile and sub-adult southern
elephant seals (Field et al. 2007b, Bailleul et al.
2010). We therefore expected age to exhibit signifi-
cant influences on maximum and exploited dive
depths. Surprisingly, age was only identified as being
a statistically significant fixed effect in one of the
models selected (DDNIGHT), though it was always
included as a contributing effect in the model struc-
tures. Since we selected the sample of animals to
obtain a sufficient overlap in standard lengths be-
tween sexes, the study was limited to individuals of
ages between 2 yr 6 mo and 8 yr 4 mo. We therefore
did not include any dive data from underyearlings or
yearlings — ages at which dietary changes associated
with increased dive capacity would perhaps be most
evident. Indeed, stable isotope ratios indicate that
young males from the Kerguelen Islands show an
increase in foraging trophic level from approximately
3 to 4 yr of age (Bailleul et al. 2010). The exclusion of
very young and older adult animals (this study) prob-
ably also resulted in the lack of correlation between
age and standard length in our study sample.

Individual variation in dive behaviour

Individual variation explained large proportions of
the total variance in many of the final models selected
in this study (11.1 to 39%). The influence of individual
variation declined in all models after inclusion of the
autoregressive correlation functions. Individual track
variation explained more of the model variance for all
daytime dive behaviour models than for night-time
models. Slight increases in variation were evident in
most night-time dive behaviour parameters, when
compared to daytime dive behaviour (Figs. 3, 5 & 6),
though this variation did not appear sufficient to clarify
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the differences in variance explained by individual
tracks between day- and night-time dives.

Individual variation potentially plays a significant role
in the behaviour of various animal taxa (Bolnick et al.
2003) and has previously been reported in dive behav-
iour of southern elephant seals (Field et al. 2001) and
other pinnipeds (Staniland et al. 2004, Chilvers & Wilkin-
son 2009, Kuhn et al. 2009). Individual variation has often
been ascribed to the influence of dive localities and the
associated bathymetry and prey distribution on an indi-
vidual’s behaviour. Our results did not provide support
for any particular explanation for the influence of indi-
vidual variation in our sample. However, while we ac-
knowledge the likely influence of localised conditions
and prey distribution on the dive behaviour of individu-
als, some differences in individual strategy appear to be
evident (T. McIntyre unpubl. data).

The smaller amount of variation explained by the
effect of individual for night-time dive parameters sug-
gests that southern elephant seals perhaps use less
specialised strategies for night-time foraging purposes.
This, in turn, could be the result of prey resources dis-
playing less patchy distributions at night and concen-
trating their activity in shallower water layers (Collins
& Rodhouse 2006, Collins et al. 2008).

Diel variation and diet

Southern elephant seals prey largely on squid and
myctophid fishes (Bradshaw et al. 2003, van den Hoff
et al. 2003), though substantial inter-population and
seasonal differences in diet have been documented
(Bradshaw et al. 2003, Cherel et al. 2008). Compara-
tively little is known about the diet of southern ele-
phant seals hauled out at Marion Island. Diel variation
in all dive parameters measured was evident in the
sample of tracks investigated. Males and females dive
to deeper depths for longer periods of time during day-
time dives than during night-time dives (Figs. 3, 5 & 6).
Such variation suggests that both male and female
southern elephant seals target vertically migrating,
pelagic prey species (Hindell et al. 1991, Jonker &
Bester 1994, Bost et al. 2002), though males evidently
target prey occurring at deeper depths than do females
(Fig. 3). Dive depths were rarely constrained by esti-
mated bottom depths, and few benthic dives were
recorded in our sample. This is not surprising, given
the deep water immediately surrounding Marion
Island, and that seals from this population evidently do
not often target large areas of shallow bathymetry (e.g.
continental shelves). Our results differ from those
reported for other populations, notably Peninsula
Valdés (Campagna et al. 1999), Kerguelen Islands
(Bailleul et al. 2007, Bailleul et al. 2010) and Macquarie

Island (Hindell et al. 1991), where males often forage
benthically over continental and oceanic shelves. The
different foraging strategy reported here for males
from Marion Island highlights the evident foraging
plasticity between populations of this species.

Resource selection and partitioning

The avoidance of intra-specific competition between
sexes, as well as age-classes, has previously been pro-
posed to drive resource partitioning in southern ele-
phant seals (Lewis et al. 2006, Field et al. 2007a, New-
land et al. 2009). While elephant seals from other
populations segregate spatially between the sexes
(Slip et al. 1994, Campagna et al. 1995, Campagna et
al. 1999, Bornemann et al. 2000, Tosh et al. 2009,
Bailleul et al. 2010), animals from Marion Island ap-
pear to largely segregate between the sexes by target-
ing different water depths in oceanic habitats.

Our results suggest that both sex and body length
play important roles in the dive behaviour of southern
elephant seals from Marion Island. Segregation
between the sexes was evident in the vertical depth
layers targeted by animals of either sex — males diving
deeper than females and also evidently exploiting
increased depths. The dive depths obtained and tar-
geted by animals were evidently not constrained by
physiological capacity (associated with body size), but
rather selected by the individual animals. This pro-
vides support for a hypothesis that segregation in dive
depths of southern elephant seals is largely driven by
forage selection and an associated avoidance of intra-
specific competition.

The comparative lack of influence that sex exhibited
on dive durations in this investigation further indicated
that the physical size of animals did not govern the
depths utilised, but rather the amount of time seals
were able to spend at targeted depths. This result sup-
ports previous investigations that highlighted a posi-
tive correlation between body size and maximum dive
durations (Hindell et al. 2000, Irvine et al. 2000).

CONCLUSION

We presented results from mixed-effects models to
elucidate the effects of sex, age and size on the dive
behaviour of a highly sexually dimorphic mammal, the
southern elephant seal. While individual variation
accounted for substantial portions of variance in the
models, differences in maximum and targeted depths
were always influenced by sex and only partly influ-
enced by body length. Conversely, dive durations were
always influenced by body length, while sex was not
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identified as a significant influence. These results sup-
port previous investigations in which physiological
capability associated with size was hypothesised as
being a limiting factor on dive durations (Hindell et al.
2000, Irvine et al. 2000). However, our results suggest
that sexual segregation in vertical depth use (i.e. max-
imum and exploited dive depths) by southern elephant
seals is largely a result of forage selection and not a
result of size differences between sexes. This provides
support for resource partitioning between sexes and
the potential avoidance of intra-specific competition in
this species (Field et al. 2007a). Furthermore, inter-
population differences in sexual segregation (i.e. by
using different water depths in pelagic habitats or by
utilising different spatial foraging habitats) highlight
the plasticity in forage strategies of southern elephant
seal populations.
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