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ABSTRACT: We predict estuaries to be hotspots of hybridisation between migratory marine and
estuary-restricted species, although hybridisation rates may vary in space and time, reflecting the
dynamic nature of estuaries and potentially widespread but erratic dispersal of marine taxa. Within
estuaries, genotype frequencies may reflect past hybridisation events, with genetically intermediate
and backcrossed individuals contributing to persistent hybrid swarms. In southeastern Australia,
hybridisation has occurred between estuarine black bream Acanthopagrus butcheri and marine yel-
lowfin bream A. australis, but it is unclear whether this reflects a contemporary process. We recently
found that, within lakes and lagoons at the southern range limit of A. australis, hybrids were abun-
dant and A. butcheri extremely rare, and surprisingly, we detected hybrids within a small sample of
fish from the Gippsland Lakes, an estuary 250 km further south. In the present study, we compare the
genotypic composition of the contemporary Gippsland Lakes population of Acanthopagrus spp. with
the historical composition revealed by analysis of museum specimens. The genetic makeup of sam-
ples varied little over time, with ancestral A. butcheri virtually absent, and most introgressed individ-
uals matching expectation for later-generation hybrids or A. butcheri backcrosses, suggesting that
the lakes have supported persistent hybrid swarms. At each sampling time, the samples were genet-
ically diverse, as measured by mean number of alleles per locus, which ranged from 8.2 to 9.2, and
expected heterozygosity (H,), which ranged from 0.66 to 0.70; however, we detected little allelic dif-
ferentiation (Fst = 0.003) across sampling times. Our data imply that introgressed populations of
Acanthopagrus spp. are more widespread and persistent than previously predicted.
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INTRODUCTION

For migratory marine and estuary-restricted taxa
(i.e. taxa that complete their entire life cycle within
estuaries) with overlapping spawning times, the
opportunity for primary hybridisation to occur, and for
hybrids to persist, may depend upon the reproductive
(gametic) compatibility of the parental species,
together with a range of factors including ocean-
current movements, estuary-entrance channel open-
ing, and hybrid fitness and behaviour. Given the often
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erratic nature of ocean currents (Ridgway 2007) and
variability in the accessibility of estuarine habitat
(Jones & West 2005, Rustomji 2007), primary hybridis-
ation within estuaries may therefore be rare, although
once hybrid individuals are produced, introgressed or
hybrid swarms may persist beyond the normal contem-
porary distribution of parental taxa. Indeed, persistent
introgressed swarms may form if viable, and inter-
fertile hybrids and backcrosses remain and inter-breed
within estuaries (Roberts et al. 2010a,b). Such systems
have rarely been investigated, but the intermittently
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closed and open lakes and lagoons (ICOLLs) of the
southeast Australian coast support populations of
estuary-restricted black bream Acanthopagrus butch-
eri Munro, in which hybridisation may be mediated by
variable ocean-current flow and a range of anthro-
pogenic impacts.

On the southeast coast of Australia, hybridisation has
occurred between the migratory marine yellowfin
bream Acanthopagrus australis Gunther and the
estuary-restricted A. butcheri within the area repre-
senting the southern range limit of A. australis and the
northeastern range limit of A. butcheri (Rowland 1984,
Roberts et al. 2009). In this area of sympatry in south-
ern New South Wales (NSW), A. australis introgression
has made a considerable contribution to the genotypes
of Acanthopagrus spp., occupying 5 ICOLLs (Roberts
et al. 2010a). However, very little is known about the
longer-term, multi-generational persistence of such
introgressed swarms of Acanthopagrus spp. Fortu-
nately, the high incidence of fish specimens archived
within museum collections and the stability of DNA
within preserved biological material such as scales and
otoliths provide the opportunity to test for temporal
variability in the genotypic composition of fish popula-
tions (Wandeler et al. 2007, Nielsen & Hansen 2008,
Hansen et al. 2009).

Intriguingly, our initial broad-scale survey of estuar-
ine and coastal Acanthopagrus spp. populations
(Roberts et al. 2009) revealed the presence of a small
number of introgressed bream within the Gippsland
Lakes; a large, complex set of interconnected coastal
lakes and lagoons 250 km south of the area of our
earlier intensive sampling of adults and recruits
(Roberts et al. 2010a) and an area considered beyond
the normal southern range limit of Acanthopagrus
australis (see Fig. S1 in the supplement at www.
int-res.com/articles/suppl/m421p199_supp.pdf). Never-
theless, within this region, the East Australian Current
(EAC) provides predominantly southward but erratic
water movements (Nilsson & Cresswell 1980, Bowen et
al. 2005) that may cause infrequent migration of A.
australis beyond its accepted range limit. Indeed, A.
australis effectively forms a panmictic population over
its east coast distribution, with genetic homogeneity
reflecting the active dispersal of adults to spawn and
the southwards dispersal of larvae by the EAC
(Roberts & Ayre 2010). Thus, within the Gippsland
Lakes, opportunities for primary hybridisation in-
volving A. australis and A. butcheri seem likely to be
rare and we would expect introgressed bream to be
ephemeral, unless inter-fertile introgressed bream per-
sist and inter-breed within the lakes. In the present
study, we use a set of museum specimens to describe
the genotypic composition of the Gippsland Lakes
population of Acanthopagrus spp. over a 60 yr period.

These data will allow us to determine whether levels of
introgression are comparable to those seen further
north in the area of sympatry (Roberts et al. 2009,
2010a) and to test the prediction that the population
represents a stable introgressed swarm of Acanthopa-

grus spp.

MATERIALS AND METHODS

Species distribution. Acanthopagrus butcheri occurs
within coastal lakes and lagoons from central NSW to
Western Australia, including Tasmania. Within NSW,
A. butcheri is known to hybridise with A. australis,
which inhabits a range of habitats encompassing off-
shore reefs and the surf zone of coastal beaches, as
well as estuaries, from northern Queensland to ap-
proximately the border of NSW and Victoria (see
Roberts et al. 2009, 2010a and references therein for
relevant background).

Specimens and genetic analyses. Contemporary
specimens consisted of 2 samples of fin clips (from
1996-97 and 2000, total n = 114) stored in DMSO-
saturated salt solution (DMSO 20 % v/v, 0.25 M EDTA,
saturated with NaCl; pH 8.0). The museum specimens
(or 'historical samples’) consisted of dried scales from
fish caught in 1941 and 1943 (n = 133), and subse-
quently archived at room temperature in envelopes
within the Arthur Rylah Research Institute for Environ-
mental Research (Victorian Department of Primary
Industries), Heidelberg, Victoria, Australia.

To extract DNA, a scale (or a <5 mm? fin clip) was
placed in a sterile 1.5 pl tube containing 5% chelex
resin in 500 pl of sterile distilled H,O and 15 nl of Pro-
teinase K (10 mg ml™?!), and heated at 65°C for 12 h.
Before the supernatant was used directly in PCR, the
solution was vortexed for 10 s, heated at 100°C for
5 min, and centrifuged at 12000 x g for 7 min. We
genotyped all 247 samples using 6 microsatellite mark-
ers described in Roberts et al. (2009). We conducted
multiple independent DNA extractions and performed
PCR and genotyping for a randomly selected subset of
both contemporary and historical samples to ensure re-
peatability of our results. Overall, the average (+SE)
proportion of missing genotypes per locus was consis-
tently low for all samples (1941: 0.02 + 0.01; 1943:
0.01 £ 0.01; 1996-97: 0.03 + 0.01; 2000: 0.03 + 0.02).

Temporal changes in allele frequencies could reflect
not only the effects of hybridisation but also other pro-
cesses, including genetic drift and genetic exchange
with other genetically distinct Acanthopagrus butcheri
populations (Chaplin et al. 1998). Distinguishing
among these possibilities requires detailed descrip-
tions of allelic diversity and comparison to alleles
known to be present within the parental populations of
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A. butcheri and A. australis. We therefore tested for
homogeneity of allele frequencies among collections
(1941, 1943, 1996-97 and 2000), and calculated stan-
dard measures of genetic diversity for each year, i.e.
number of alleles per locus, and observed and
expected heterozygosity (using POPGENE, Yeh et al.
1999). We estimated allelic richness (the standardised
number of alleles per locus [n = 40 sample!]) for each
year. Weir & Cockerham's (1984) formulation of
Wright's (1969) F-statistics were used to estimate
genetic differentiation among years (FSTAT, Goudet et
al. 1996). The estimates were based on allele frequen-
cies for individual loci and as an average across loci.
Bootstrapping and jackknifing procedures across loci
were used to estimate standard errors. We tested the
statistical significance of heterozygous deficits and
heterozygote excesses for each locus and overall using
Exact tests implemented in GENEPOP (Raymond &
Rousset 1995).

We tested for the presence of hybrids by performing
an admixture analysis (using the program STRUC-
TURE; Falush et al. 2003) incorporating our previously
identified ‘reference collection' of pure species in the
analysis (see also Roberts et al. 2010a). For this analy-
sis, we used only the data from the 4 microsatellite loci
that we had shown previously had the greatest power
to distinguish hybrids and indeed display almost fixed
differences between the 2 parental species (Roberts et
al. 2009). To statistically test for differences in the over-
all genotypic composition of Acanthopagrus spp.
among years, we compared the distribution of q-values
(i.e. the inferred proportion of A. butcheri ancestry) for
all pairwise comparisons using a Kolmogorov-Smirnov
test (implemented in the program PAST; Hammer et al.
2007). We performed factorial correspondence analysis
(FCA) (in GENETIX 4.03, Belkhir et al. 2002) on the
overall pooled sample of historical and contemporary
fish with the previously categorised fish of our refer-
ence collection (Roberts et al. 2009, see also Roberts et
al. 2010a) to simply visualise the genetic similarity of
hybrids to pure A. butcheri.

RESULTS

Contrary to the expectation that levels of genetic
diversity would vary between the samples of historical
and contemporary Acanthopagrus spp., the average
number of alleles per locus (+SE) was remarkably sim-
ilar across all 4 collections (range: 8.2 + 1.2t0 9.2 £ 0.8),
as was allelic richness (range: 7.4 + 1.0 to 8.1 + 1.2 alle-
ses per locus) and expected heterozygosity (~0.70). We
detected 3 and 4 rare private or ‘ghost’ alleles (i.e. alle-
les that were present in the historical but not the con-
temporary sample) within the 1941 and 1943 samples

respectively, and similarly, we recorded 3 rare alleles
in each contemporary sample that were not in
either historical sample (data presented in Table S1 in
the supplement at www.int-res.com/articles/suppl/
m421p199_supp.pdf). However, each of these private
or ‘ghost’ alleles has previously been detected in con-
temporary estuarine Acanthopagrus spp. populations
in southeastern Australia, and such minor variation in
the occurrence of rare alleles would be expected as a
consequence of sampling variation (Roberts et al. 2009,
2010a, D. G. Roberts unpubl.). Tests for homogeneity
of allele frequencies revealed statistically significant
differences for just 2 loci, pAb2B7 and Acs1* (Fig. 1).
Not surprisingly, genetic subdivision across the 4 sam-
pling times was not statistically significantly different
from zero (Fst = 0.003 + 0.002; 95 % CI: 0.000 to 0.007).

Admixture analysis, using a g-threshold of 0.05 to
distinguish pure species and introgressed or hybrid
bream, revealed that a high percentage of both the
contemporary and historical samples were intro-
gressed rather than pure ancestral Acanthopagrus
butcheri (95 to 99 %) (Fig. 2). This same pattern was
evident even when we used an extremely relaxed (-
threshold of q = 0.2; the percentage of hybrids in each
year ranged from 69 to 80% of all fish genotyped
(Table S1 in the supplement). Analysis of the distribu-
tion of g-values for all pairwise comparisons among
samples did not reveal statistically significant differ-
ences (Kolmogorov-Smirnov tests: p > 0.05), suggest-
ing that the proportion of introgressed bream has not
changed over 60 yr. Moreover, all samples included
fish with genotypes characteristic of complex, later-
generation hybrids and backcrosses. In all cases, how-
ever, q-values were skewed by the greater similarity
of hybrids to A. butcheri rather than to A. australis
(Fig. 2). The greater similarity of introgressed bream
and A. butcheri is most easily displayed using an FCA
plot of the genetic similarity of our Gippsland Lakes
sample and our reference collections of pure species
(Roberts et al. 2009) (Fig. 3).

DISCUSSION

Our longitudinal survey of the frequency of Acan-
thopagrus butcheri x A. australis hybrids highlights,
through the first such study with fish, the importance of
historical museum collections in describing the genetic
composition of populations through time (Wandeler et
al. 2007) and the stability of a hybrid swarm. Impor-
tantly, our data show that, despite potentially infre-
quent contact between the 2 parental species, the
Gippsland Lakes Acanthopagrus spp. population is
genotypically complex, and genotype frequencies are
surprisingly stable. Samples from 69, 67, 14 and 10 yr
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Fig. 1. Acanthopagrus spp. Allele frequencies at 6 microsatellite loci for 4 samples (collected at different times: 1941, 1943,
1996-97 and 2000) caught within the Gippsland Lakes. The p-values are from tests of homogeneity of allele frequencies among
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Fig. 2. Acanthopagrus spp. Estimates of ancestry for Acanthopagrus spp. within the Gippsland Lakes based on 4 relatively diag-

nostic microsatellite loci, for 4 collection times (1941, 1943, 1996-97 and 2000). Data are presented as the inferred proportion of

A. butcheri ancestry (average q; = 95 % ClIs). Based on the estimate of ancestry, each individual was classified as A. australis (q; <

0.05), A. butcheri (q; 2 0.95) or hybrid (0.05 < g; < 0.95). Individuals were ranked based on their inferred proportion of A. butcheri

ancestry (i.e. value of q;), from lowest g; to highest q;. Note that the x-axis scale varies among sampling times, reflecting different

sample sizes. We varied the g-value used to distinguish pure species and hybrids, with no substantive difference to our
conclusions (see Table S1 in the supplement at www.int-res.com/articles/suppl/m421p199_supp.pdf)
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Fig. 3. Acanthopagrus spp. Factorial correspondence analysis
based on the 4-locus microsatellite genotype of contemporary
(V) and historical (V) Acanthopagrus spp. within the Gipps-
land Lakes (enclosed within grey circle). A genetic reference
collection of A. australis (O) and A. butcheri (®) (Roberts et al.
2009) was included in the analysis. Fish within the reference
collection that cluster inside the black circle were A. butcheri
from outside the described range of A. australis and were
therefore expected to be beyond the range of hybridisation
(refer to Roberts et al. 2009)

ago displayed strikingly similar allelic and genotypic
composition, and in each case appeared to represent
later-generation hybrids or A. butcheri backcrosses
that were most similar to the estuary-restricted A.
butcheri.

Our data clearly demonstrate that introgression has
impacted Acanthopagrus butcheri populations occur-
ring beyond the accepted range of A. australis and this
has been a consistent phenomenon for at least 60 yr.
Taken at face value, our conclusions clash with the
earlier findings of Farrington et al. (2000) who used
allozyme data and Burridge et al. (2004) and Burridge
& Versace (2007) who used microsatellite data to
describe the genetic structure of what they considered
to be populations of A. butcheri within the Gippsland
Lakes. However, those authors unsurprisingly as-
sumed that Gippsland was beyond the range of A. aus-
tralis and that hybrids were a rare phenomenon con-
fined to ICOLLs in southern NSW (see Rowland 1984).
More recently, L. W. Farrington (unpubl. data) geno-
typed a subsample of the historical fish surveyed here
and inferred that slightly higher levels of diversity in
contemporary samples could reflect effects of hybridis-
ation.

Most models that seek to predict the dynamics of
hybrid zones assume relatively stable distributions of
parental taxa in areas of contact, and relatively con-
stant environmental conditions within the habitat sup-
porting hybrid individuals (Barton & Hewitt 1985). In

the present case, however, Acanthopagrus australis
is highly mobile, only occasionally expected to be
resident within estuaries, and estuaries themselves
represent a characteristically variable environment.
Moreover, the Gippsland Lakes occur beyond the
recognised contemporary range limit of A. australis,
suggesting that frequent genetic input from A. aus-
tralis is unlikely, which, together with the broad range
of apparently later-generation hybrid or backcrossed
genotypes detected, suggests the presence of a persis-
tent hybrid swarm. Indeed, it is possible that bream
populations within these southern Australian lakes
and lagoons are the result of ancient hybridisation
events, which set up introgressed swarms that have
remained stable.

Clearly, additional large-scale geographical surveys
are needed to fully resolve the spatial extent of Acan-
thopagrus spp. hybrid swarms. Further longitudinal
surveys that determine both genotypes and otolith
microchemistry may provide the best opportunity to
study the dynamics of hybridisation and introgression
in this Acanthopagrus spp. system. By subjecting sam-
ples of bream to both genotyping and sectioning of
otoliths, it should be possible to compare the fitness of
introgressed and parental bream in terms of growth
rates, longevity and age-specific fecundity. Moreover,
analysis of otolith microchemistry could potentially
determine the mobility (Elsdon et al. 2008 for review)
of pure A. butcheri and introgressed bream and so
indicate whether the geographic spread of A. australis
alleles (introgression) depends entirely on contact and
inter-breeding between A. australis and A. butcheri or
if it involves allopatric introgression resulting from the
migration and inter-breeding of introgressed bream
and A. butcheri. Otolith microchemistry can poten-
tially be used to determine whether A. butcheri and
the genotypically diverse array of introgressed bream
spend periods of their life in the ocean (providing the
opportunity for dispersal) and may indicate if bream
have moved between (chemically) different estuaries
(e.g. Elsdon & Gillanders 2006, Arai & Goto 2008,
Bradbury et al. 2008, Kuroki et al. 2008, Vasconcelos et
al. 2008).
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