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INTRODUCTION

Seagrass meadows are important habitats and
feeding areas for many organisms and support fish-
eries production around the world (Heck et al. 2003,
Orth et al. 2006, Unsworth & Cullen 2010). Sea-
grasses are, however, in decline globally due to the
cumulative impacts of disease, declining water quali -
ty, dredging, overfishing, invasive species and global
climate change (Waycott et al. 2009). Many of these
stressors increase algal growth, which can lead to

blooms of epiphytic and drift algae and reduce both
growth and productivity of seagrasses (Hughes et al.
2004, Baden et al. 2010). Herbivores that remove epi-
phytic or drift algae have a positive effect on seagrass
by increasing light availability, which improves pho-
tosynthetic capacity (Hughes et al. 2013, Whalen et
al. 2013). Herbivores that graze directly on seagrass,
on the other hand, can have negative, positive or
variable effects (Heck & Valentine 2006). For exam-
ple, heavy grazing that removes substantial biomass
can fragment meadows (Fourqurean et al. 2010),
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whereas lighter grazing can stimulate growth and
productivity (Valentine et al. 1997, Christianen et al.
2012). Grazers may also have a more variable influ-
ence on seagrass by selectively removing particular
species, which can alter the composition of seagrass
assemblages (Preen 1995, Burkholder et al. 2012). In
order to effectively manage seagrass ecosystems and
their accompanying services, it is imperative that
studies seek to quantify the functional importance of
different  grazers.

Our understanding of grazing effects on seagrass is
complicated by the diversity of herbivores, which in-
clude macrograzers (i.e. dugongs, manatees, turtles
and waterfowl) and mesograzers (i.e. fish and inverte-
brates) (Heck & Valentine 2006). It is also further com-
pounded by substantial variation in grazing rates and
the role of different grazers in different parts of the
world (see reviews by Hughes et al. 2004, Heck &
Valentine 2006, Valentine & Duffy 2006). Grazing
studies from different locations and latitudes have
ten ded to focus on different groups of grazers. Tro -
pical and subtropical studies emphasise the impor-
tance of direct grazing on seagrass by fish, urchins,
and turtles (e.g. Kirsch et al. 2002, Alcoverro &
Mariani 2004, Verges et al. 2011, Christianen et al.
2012), whereas temperate zone studies (with a strong
focus on northern Europe) emphasise the role of in -
ver tebrate mesograzers (i.e. crustaceans and gastro -
pods), which feed on ephemeral and epiphytic algae
and rarely consume seagrass directly (e.g. Hillebrand
et al. 2000, Moksnes et al. 2008, Svensson et al. 2012). 

Until the end of the 20th century, most studies of
epiphyte−grazer interactions were re stricted to
cooler temperate waters (Heck & Valentine 2006),
but there is a growing body of work on tropical and
subtropical seagrasses (e.g. Klumpp et al. 1992,
Peterson et al. 2007, Drury McCall et al. 2009, Myers
& Heck 2013). However, seagrass grazing has not
been widely studied on the east coast of Australia,
with the exception of studies on large macrograzers
(i.e. turtles and dugong) (e.g. Preen 1995, Brand-
Gardner et al. 1999, Aragones & Marsh 2000, Kuiper-
Linley et al. 2007). The focus of seagrass studies in
this region has instead been on the effects of
eutrophication and sedimentation (e.g. Carruthers et
al. 2002, Waycott et al. 2005); with an emphasis, in
subtropical waters, on understanding the effects of
turbidity and nutrient processing (e.g. Abal & Denni-
son 1996, Udy & Dennison 1997, Longstaff & Denni-
son 1999). It is now widely appreciated, however,
that the impacts of eutrophication commonly interact
with the effects of grazing in seagrass ecosystems
(Baden et al. 2010, Hughes et al. 2013, Whalen et al.

2013). It is logical, therefore, to expect that grazing
might be important for seagrass development on the
east coast of Australia, but this hypothesis has not yet
been tested.

We conducted a field experiment to evaluate the
role of different grazers in structuring seagrass and
epiphyte dynamics in Moreton Bay, eastern Austra lia.
Moreton Bay contains extensive seagrass (dominated
by Zostera muelleri) (Roelfsema et al. 2013), supports
abundant and diverse seagrass grazers (Tibbetts &
Connolly 1998), and receives high nutrient loads from
the adjacent urbanised catchment (Leigh et al. 2013).
This situation is now typical in eastern Australia
(Wolanski 2014), and this location was selected so
that results would be relevant to other subtropical
bays in the region. Based on the results of subtropical
studies from elsewhere (Kirsch et al. 2002, Burkholder
et al. 2012, Myers & Heck 2013), we hypothesized
that: (1) large mesograzers (i.e. adult fish) would
dominate direct grazing of seagrass and that experi-
mental exclusion would increase seagrass growth,
cover, shoot density and shoot height, and (2) small
mesograzers (i.e. amphipods and juvenile shrimp)
would dominate grazing of epiphytes and that experi-
mental exclusion would increase epiphyte biomass.

MATERIALS AND METHODS

Quantifying the roles of different herbivores

The contribution of mesograzers to seagrass and
epiphyte dynamics was quantified using a manipula-
tive exclusion experiment. The experiment was con-
ducted over the austral summer (2012−2013) to max-
imize herbivore abundance and, therefore, herbivory
in the study area. Given the difficulty in maintaining
large numbers of exclusion cages over long periods
of deployment, the experiment was restricted to a
single location, Waterloo Bay (27°15’ S, 153°15’ E), in
western Moreton Bay. This location was selected
because it receives high nutrient loads (Gibbes et al.
2014) (mean concentrations over the study period:
total nitrogen 0.37 mg l−1; total phosphorus 0.05 mg
l−1), has abundant mesograzers (see Table S1 in the
Supplement at www.int-res.com/articles/suppl/ m511
p083_supp.pdf) (Skilleter et al. 2005), and supports a
high coverage (80%) of homogeneous Zostera muel-
leri, which is typically free from drift algae (Skilleter
et al. 2005, Maxwell et al. 2014).

The experiment included 70 plots of seagrass: 10
control plots that did not exclude herbivores (Treat-
ment 1), 40 herbivore exclusion cages (Treatments 2
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to 5), and 20 procedural control cages (Treatments 6
to 7) (Table 1), which were monitored immediately
prior to deployment of cages and then weekly for
5 wk. Ten replicate quadrats were assigned to each
treatment. The 4 herbivore exclusion treatments ex -
cluded different types and sizes of herbivores. Exclu-
sion quadrats consisted of a single cage made from
a steel frame (length × width × height: 0.5 × 0.4 ×
0.28 m), which was covered in monofilament mesh on
the sides and top surfaces, but not on the bottom (fol-
lowing Olds et al. 2012). Cages were anchored to the
substrate using pegs and weights to prevent organ-
isms from moving under the frame. 

Quadrats that did not exclude any grazers (Treat-
ment 1) had a base, but no frame or mesh. Cages that
excluded grazers (Treatments 2 to 5) were fitted with
monofilament mesh of variable sizes (6, 3 and 1 cm,
see Table 1) to permit access by grazers of different
sizes. Cages that excluded all grazers (Treatment 5)
had a 1 cm mesh and were also treated with the
insecticide carbaryl (Poore et al. 2009, Cook et al.
2011, Whalen et al. 2013). The insecticide was de-
ployed in slow-release bricks in the field, which were
formed by incorporating carbaryl into dental plaster
(Poore et al. 2009). The chosen cage dimensions and
mesh sizes were informed by previous exclusion
studies (Cook et al. 2011, Planes et al. 2011). Ten
replicates of each of 2 types of pro cedural control
cages (Treatments 6 and 7, with 3 and 1 cm mesh
sizes, respectively) were also deployed for the dura-
tion of the study, to control for potential caging arti-
facts. These controls, which had mesh on only half of
each side, permitted grazers to access seagrass and
epiphytes, but exerted similar effects to completely
mesh-covered cages on light and water motion. 

Treatment plots were interspersed over seagrass at
the study area and were separated by at least 2 m to
prevent the insecticide from affecting the other cages
(Whalen et al. 2013). To minimize potential confound-

ing effects of cages on light and water motion, the
roofs and walls of cages were cleaned weekly to re-
move accumulated debris and algae (following Planes
et al. 2011). The effect of excluding different grazers
on seagrass and epiphyte dynamics was examined by
quantifying seagrass growth, cover, shoot density,
shoot height and epiphyte biomass in all treatment
quadrats. The total number of seagrass shoots and
percentage of each quadrat covered by each species
was recorded by a single observer (Duarte & Kirkman
2001). Average shoot height was measured by grasp-
ing a large handful of seagrass leaves, ignoring the
tallest 20% (Duarte & Kirkman 2001), and measuring
the height from the sediment to the top of the remain-
ing 80% of leaves. This technique was repeated 5
times in each quadrat and the mean shoot height was
calculated. Seagrass growth was quantified using the
pin-hole method (Zieman 1974, Westera & Lavery
2006). Three different shoots in each exclusion cage
were marked using a needle at the start of the experi-
ment; these were then harvested at the completion of
the experiment (i.e. after 5 wk) and growth was
measured as the distance from the upper section of
the leaf sheath to the pin-hole mark. Epiphyte bio-
mass was quantified as the dry weight of epiphytes
scraped from seagrass blades (Kendrick & Lavery
2001). Ten Z. muelleri leaves were collected from
each quadrat each week, washed gently to remove
inorganic material, and epiphytes were then removed
with a razor and oven-dried at 60°C for 48 h. To pre-
vent the weekly collection of seagrass (for epiphyte
sampling) from affecting the other seagrass variables,
Z. muelleri leaves were only collected from one quar-
ter of each quadrat. This sector was not included
when quantifying the other seagrass variables.
Weekly measurements of seagrass and epiphyte vari-
ables were taken quickly, and where possible
through the exclusion mesh, to limit both the duration
and extent of disturbance to caged treatments.
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Treatment Mesh size of cage cover Permitted access Excluded access 
number

1 Uncaged (control) All grazers None
2 6 cm Mesograzers Macrograzers
3 3 cm Medium mesograzers Macrograzers, large mesograzers
4 1 cm (no insecticide) Small mesograzers Macrograzers, large and medium mesograzers
5 1 cm (with insecticide) No grazers All grazers
6 3 cm (partial cover; procedural control) All grazers None
7 1 cm (partial cover; procedural control) All grazers None

Table 1. Summary of herbivore exclusion treatments: mesh size of cage cover and the type and size of grazers manipulated by
each treatment. Macrograzers: turtles, dugong, waterbirds; large mesograzers (>3 cm body depth): adult fish; medium meso-

grazers (1–3 cm): juvenile fish, shrimp, prawns; small mesograzers (<1 cm): amphipods, juvenile shrimp and prawns
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The insecticide carbaryl is a tested and effective
deterrent of arthropods in seagrass, but has negligible
effects on other taxa including algae (e.g. Poore et al.
2009, Cook et al. 2011, Whalen et al. 2013). To ensure
its effectiveness in this study we quantified the back-
ground density of arthropods in the seagrass mea dow
prior to commencing the experiment (inside five 0.5 ×
0.4 m quadrats). Arthropod densities were then quan-
tified on 3 occasions after cage deployment (at 1, 7
and 14 d). To minimize disturbance to experimental
treatments, all arthropods were collected care  fully by
hand from inside five 0.5 × 0.4 m cages containing the
insecticide, and from inside 5 replicate 0.5 × 0.4 m
quadrats, which were haphazardly placed in the sea-
grass meadow (at least 2 m from any other quadrat).
The insecticide was replaced every 7 d.

Quantifying herbivore abundance

The abundance, size and identity of mesograzers in
the seagrass meadow was quantified at the end of the
cage exclusion experiment using a small seine net
(6 × 2 m with a 2 mm mesh) and small quadrats
(0.5 m2), (Skilleter et al. 2005, Cook et al. 2011, Davie
2011). Nektonic mesograzers were collected from 5
replicate seine net samples. Nets were hauled for
25 m parallel to the shoreline with a constant mouth
width of 4 m, sampling a total area of 100 m2 for each
haul (Skilleter et al. 2005). Benthic mesograzers were
collected from 5 replicate and haphazardly placed
quadrats (Cook et al. 2011).

Data analysis

The effect of excluding different grazers on sea-
grass and epiphyte dynamics was evaluated using
generalized linear mixed models (GLMMs) with rep -
eated measures (Venables & Dichmont 2004). Analy-
ses examined changes in epiphyte biomass, seagrass
cover, shoot density and shoot height in different
exclusion treatments over time (exclusion treatment
and time were fixed orthogonal factors). Post hoc
least significant difference (LSD) tests were used to
interrogate significant results and determine which
exclusion treatments differed over time. Data did not
require transformation as assumptions of GLMMs
were met.

To test whether seagrass growth differed among
exclusion treatments, data were analysed with 1-way
Analysis of Variance (ANOVA). The assumption of
homoscedasticity was met.

RESULTS

Roles of different herbivores

Seagrass and epiphytic algae were both influenced
by the exclusion of herbivores but responded in dif-
ferent ways depending on which grazers were ex -
cluded. The biomass of algal epiphytes on seagrass in
Treatment 5, from which all herbivores were ex-
cluded, increased rapidly (from ~0.03 to 0.10 g per
blade), and differed from all other treatments after
1 wk (Fig. 1, Table 2, Table S2 in the Supplement).
Epiphyte biomass remained low (~0.01 to 0.03 g per
blade) in all other treatments, including the control
cages, and did not differ among treatments (Fig. 1). In
Treatment 5, the insecticide used removed all arthro-
pod mesograzers within 24 h of deployment and this
effect was maintained throughout the experiment.
The density (mean ± SE) of arthropod mesograzers
was 90 ± 27 ind. m−2 before the experiment; zero in
Treatment 5 during the experiment; and 104 ± 23 ind.
m−2 elsewhere in the meadow during the experiment.

Seagrass cover in both Treatments 4 and 5 in -
creased gradually over time (from ~75 to 85% and
from ~80 to 90%, respectively), and was greater than
all other treatments after 5 wk of deployment (Fig. 1,
Tables 2 & S3 in the Supplement). Seagrass cover did
not differ among the other 5 treatments (Fig. 1). Shoot
height also increased over time in both Treatments 4
and 5 (from ~11 to 14 cm and from ~9.5 to 14.5 cm, re-
spectively), and was greater than in all other treat-
ments after 3 wk of deployment (Fig. 1, Tables 2 & S4
in the Supplement). Shoot height remained fairly low
and constant (6 to 10 cm) in the other 5 treatments,
and did not differ among them (Fig. 1). Shoot density
followed the same trend of rising over time in both
Treatments 4 and 5 (from ~90 to 100 shoots per 0.2 m2

and from ~85 to 110 shoots per 0.2 m2, respectively),
and was greater than in all other treatments after
3 wk of deployment (Fig. 1, Tables 2 & S5 in the Sup-
plement). Shoot density varied among the other 5
treatments, but was generally lower in Treatment 1
than in Treatments 2 or 3 (Fig. 1). Seagrass growth
was constant (approximately 1cm in length) and did
not differ among treatments (Table 2).

Herbivore abundance

The herbivore assemblage was dominated by 3
sizes of mesograzers: (1) small mesograzers (prim -
arily amphipods), which were only excluded from
Treatment 5; (2) medium mesograzers (i.e. juvenile
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fish, shrimp and prawns), which were excluded from
Treatments 4 and 5; and (3) large mesograzers (i.e.
adult fish), which were excluded from Treatments 3,
4 and 5. Small mesograzers were dominated by
amphipods (Fig. 2). Medium mesograzers were dom-
inated by eastern trumpeter Pelates sexlineatus, fan-
bellied leatherjacket Monacanthus chinensis and
tiger prawns Penaeus esculentus (Fig. 2). Large
meso grazers were not common, but were dominated
by fan-bellied leatherjackets, dusky leatherjackets
Paramonacanthus otisensis and yellowfin bream

Acanthopagrus australis (Fig. 2). Dugongs and tur-
tles frequent the area but were not observed during
the experiment, nor was there evidence of recent
feeding by macrograzers.

DISCUSSION

Herbivory is an important process in seagrass eco-
systems (Heck & Valentine 2006), but we know little
about the role of mesograzers in the Indo-Pacific

region. Our results show that meso-
grazers do indeed affect seagrass−
epiphyte dynamics in this region, and
demonstrate that different mesograz-
ers can exert different functional
effects on subtropical seagrass and
epiphytes. The exclusion of small
arthropod mesograzers correlated
with a 233% increase in epiphyte bio-
mass on seagrass leaves over 5 wk. In
contrast, the exclusion of medium-
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Fig. 1. Temporal (weekly) changes in epiphyte and seagrass variables (mean ± SE) under each herbivore exclusion treatment.
See Table 1 for descriptions of treatments (T1–T7, mesh size of cage cover in parentheses, +I: with insecticide, PC: procedural
control). Ellipses show the results of least significant difference (LSD) post hoc tests: overlapping ellipses encompass groups of
one or more means in each week that were not significantly different from each other (p > 0.05) ; lack of overlap identifies 

groups of means that were significantly different

Factor df Epiphyte Seagrass Shoot Shoot Seagrass 
biomass cover height density growth

E 6 <0.001 0.011 <0.001 <0.001 0.065
T 5 0.334 <0.001 <0.001 <0.001 NA
E×T 30 <0.001 <0.001 <0.001 <0.001 NA

Table 2. Summary of results (p-values) of generalized linear mixed model
(GLMM) and ANOVA analyses of temporal changes in epiphyte and seagrass
variables in response to herbivore exclusion treatments. df: degrees of free-

dom; E: experimental treatment; T: time; NA: not applicable
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sized mesograzers correlated with increases in sea-
grass cover (up to 10%), shoot height (up to 53%)
and shoot density (up to 29%). These results provide
strong support for our second hypothesis (i.e. that
small arthropod mesograzers would regulate sea-
grass epiphytes), but do not support our first hypoth-
esis (that large fish mesograzers would affect sea-
grass dynamics).

The response of seagrass epiphytes to the exclu-
sion of small arthropod mesograzers (and not to the
exclusion of larger herbivores) suggests that these
organisms (primarily amphipods and small shrimp)
were largely responsible for regulating epiphytes on
seagrass blades. This finding concurs with the results
of several recent studies in the USA and Australia,
which have examined the impact on seagrass epi-

phytes of experimental removal of herbivorous
arthro pods. For example, Myers & Heck (2013),
Whalen et al. (2013) and Cook et al. (2011) all deter-
mined that the removal of small arthropod meso -
grazers (also primarily amphipods) leads to large in -
creases in the biomass of seagrass epiphytes (i.e. up
to 70% over 10 wk, 447% over 3.5 wk and 25% over
7 wk, respectively in the 3 studies).

With greater epiphyte loads it would seem logical
to expect a concomitant reduction in seagrass bio-
mass (Myers & Heck 2013), but this does not always
occur (Cook et al. 2011). Our results show that after
5 wk the increased biomass of epiphytes had not
negatively affected seagrass growth. This was possi-
bly influenced by the short duration of the experi-
ment and the tolerance of Zostera muelleri to low
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light conditions. For example, Abal et al. (1994) de -
monstrated experimentally that Z. muelleri can sur-
vive for at least 55 d at just 5% of surface light inten-
sity. However, rather than declining when subjected
to higher epiphyte loads, seagrass cover, shoot height
and shoot density all increased following the exclu-
sion of small arthropod mesograzers. In fact, the
response of seagrass was identical in both treatments
that excluded medium-sized mesograzers (i.e. Treat-
ments 4 and 5, with and without insecticide). This
suggests that small arthropod mesograzers regulate
seagrass epiphytes in the study area but exert little
direct influence on seagrass. This result also indi-
cates that the observed epiphyte loads have little
effect on the above-ground properties of seagrass,
and emphasizes that direct consumption by small
and medium-sized mesograzers may be more impor-
tant than previously recognized.

The positive response of seagrass variables to the
exclusion of medium-sized mesograzers (in treat-
ments both with and without insecticide) indicates
that small fish and invertebrates may play an impor-
tant role in regulating seagrass dynamics. Indeed,
fish and invertebrates are recognized as important
direct grazers of seagrass in the Indo-Pacific region
(e.g. Alcoverro & Mariani 2004, Unsworth et al. 2007)
and elsewhere (e.g. Armitage & Fourqurean 2006,
Gullström et al. 2011, Verges et al. 2011), but the
majority of studies have focused on the effects of
large fish and urchins. Our results show that seagrass
cover, shoot height and shoot density increased when
the access of small fish and invertebrates was
restricted, which suggests that seagrass may have
been released from the top-down regulation by her-
bivores within this group. Eastern trumpeter, leather-
jackets, juvenile yellowfin bream and tiger prawns
were the dominant medium-sized meso grazers in the
seagrass meadow. These species can be important
seagrass grazers (Table S1), but they are largely
omnivorous and many also directly consume the
arthropod mesograzers (i.e. amphipods and small
shrimp) that appear to regulate seagrass− epiphyte
dynamics in the study area (e.g. Warburton & Blaber
1992, O’Brien 1994, Sanchez-Jerez et al. 2002, Had-
wen et al. 2007). This omnivory adds a level of com-
plexity to seagrass food webs that complicates both
the trophic relationships among herbivores (particu-
larly since smaller herbivores can be come predators
with age) and their functional impact in seagrass eco-
systems (Heck et al. 2000, Moks nes et al. 2008).
These effects can be further compounded by changes
to seagrass food webs, which result from the cascad-
ing impact of harvesting higher order consumers

(Baden et al. 2012, Hughes et al. 2013). However, the
rapid increase in seagrass epiphyte loads with exclu-
sion of small arthropods suggests that these meso-
grazers are naturally abundant in the study area and
may experience little top-down regulation by preda-
tors (sensu Tibbetts & Connolly 1998, Skilleter et al.
2005).

The potential broad importance of seagrass meso-
grazers has typically been overlooked on the east
coast of Australia. Our findings demonstrate that
mesograzers can indeed be key herbivores in sub-
tropical seagrass ecosystems in the region. This study
was, however, restricted to a single location in west-
ern Moreton Bay, which was known a priori to
receive relatively high nutrient loads (Burfeind &
Udy 2009, Leigh et al. 2013, Maxwell et al. 2014) and
support abundant fish and invertebrate mesograzers
(Skilleter et al. 2005). This type of urbanized sea-
scape is now common in subtropical bays in eastern
Australia (Wolanski 2014) and our results are, there-
fore, of broad relevance across this region. The
apparent lack of importance of large fish grazers and
macrograzers (i.e. dugong and turtle) in this experi-
ment is, however, likely to reflect the relatively low
abundance of these organisms in the study area.
Larger herbivorous fish and macrograzers do occur
in western Moreton Bay, but are more abundant in
eastern Moreton Bay and in local marine reserves,
where their role as direct seagrass grazers is prob -
ably greater (Kuiper-Linley et al. 2007, Olds et al.
2012). It will be important, therefore, to evaluate the
combined roles of both mesograzers and macrograz-
ers in locations that support more extensive popula-
tions of large herbivorous fish, turtles and dugong,
such as marine reserves (Pillans et al. 2007, Olds et
al. 2012) or recognised dugong and turtle aggrega-
tion areas (Brand-Gardner et al. 1999, Lanyon 2003).

Herbivory is clearly an important process in sea-
grass ecosystems. It affects seagrass−epiphyte dyna -
mics and can offset the impacts of eutrophication.
Our findings highlight the role that mesograzers play
in regulating epiphytic algae in subtropical Indo-
Pacific seagrass meadows. We demonstrated empiri-
cally that different mesograzers can exert different
functional effects on seagrass and seagrass epi-
phytes. The different functions performed by meso-
grazers have important implications for seagrass
growth and productivity, and the capacity of seagrass
to cope with disturbance. It will be important, there-
fore, to quantify the response and different functional
effects of seagrass herbivores to eutrophication and
the implementation of management actions aimed at
improving seagrass health and productivity.
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