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INTRODUCTION

For oviparous animals, survival of fertilised eggs 
is a critical component of reproductive success. Egg
sur vival, in turn, can be strongly affected by a range
of different factors, especially in animals that have
their eggs in constant contact with the surrounding
water. Aquatic eggs are, for example, susceptible to
predation (Leggett & Deblois 1994) and pathogens,
such as bacteria, fungi and water moulds (Phillips et
al. 2008). In terms of the latter, particular attention
has been focused on Saprolegnia and other oomy -
cetes (water moulds) that can cause high levels of
mortality in a wide range of temperate invertebrates,

fish and amphibians, including economically valu-
able species, such as salmonids, sturgeons, shrimp
and crayfish (Ramaiah 2006, van West 2006, Phillips
et al. 2008).

The development and survival of eggs is also heav-
ily dependent on abiotic physiochemical parameters,
especially temperature and salinity (Fonds & Van
Buurt 1974, Hart & Purser 1995, Karås & Klingsheim
1997), as well as gas exchange with the surrounding
water (Zoran & Ward 1983, Rombough 1988). In this
respect, a slightly different set of conditions may be
optimal for egg development rate, as opposed to egg
survival, as shown for example in the greenback
flounder Rhumbosolea tapirina (Hart & Purser 1995).
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Nevertheless, both the development and survival of
eggs can cause significant challenges for marine spe-
cies occupying brackish water environments, such as
the Baltic Sea, that have salinity levels markedly
below those found in the oceans (Thorsen et al. 1996,
Karås & Klingsheim 1997, Nissling & Dahlman 2010).
Besides the direct effects on egg metabolism and
development, abiotic factors can also have indirect
effects on egg survival by influencing growth and
infection capacity of egg pathogens. For example,
water moulds that infect aquatic eggs grow faster in
higher temperatures (Gomez-Mestre et al. 2006), but
are sensitive to higher levels of salinity, with sodium
chloride being sometimes used to inhibit water
mould growth in egg hatcheries (Edgell et al. 1993,
Marking et al. 1994, Rasowo et al. 2007). More gener-
ally, the negative effects of pathogens on eggs and
larvae are likely to be context-dependent, with the
impact being more severe in the presence of abiotic
stressors (Kiesecker & Blaustein 1995, Kiesecker et
al. 2001, Ruthig 2008, Sagvik et al. 2008).

The density at which eggs are developing can also
be an important factor for their development and sur-
vival. In particular, egg density may affect infection
and predation susceptibility, as well as the abiotic en -
vironment of the eggs. For example, clustered eggs
of the wood frog Rana sylvatica can be subjected to
higher temperatures and, hence, develop faster than
more sparsely distributed eggs (Waldman 1982,
Waldman & Ryan 1983), whereas eggs of R. cascadae
laid within, or close to, large communal egg masses
are more likely to become infected by the pathogen
Saprolegnia ferax than those laid away from other
egg masses (Kiesecker & Blaustein 1997). Neverthe-
less, regardless of taxa, very few studies have tried to
assess egg performance when egg clustering or den-
sity has been experimentally manipulated. In one
such study, Ruthig (2008) did not find an effect of
cluster manipulation on egg mortality in southern
leopard frogs R. sphenocephala. In contrast, Green
(2003) found that a markedly higher proportion of
eggs of the smooth newt Triturus vulgaris hatched
when they had been separated from each other by
1 cm compared to when the eggs were in physical
contact. Furthermore, all eggs that failed to hatch in
Green’s (2003) experiment were infected with water
moulds. One possible mechanism for the latter pat-
tern of egg survival (and infection rate) is that fungi
and oomycetes readily infect infertile, damaged or
dead eggs and then ‘vegetatively’ grow hyphae (fila-
ments) that can suffocate and kill healthy eggs within
reach of the hyphae (Smith et al. 1985, Robinson et al.
2003, Morreira & Barata 2005). In other words, at

lower densities, viable eggs of both fish (Smith et al.
1985, Thoen et al. 2011) and amphi bians (Robinson et
al. 2003, Morreira & Barata 2005) may be less prone
to being attacked by pathogen growth from adjacent,
unviable eggs. Finally, we also note that parental
care of eggs, when present, can modify the immedi-
ate surroundings of the eggs, for instance in terms of
predation rate (Mappes et al. 1995, Klug et al. 2005),
infection risk (Tilley 1972, Knouft et al. 2003, Boos et
al. 2014), improved ex change of gases and metabolic
products (Zoran & Ward 1983, Payne et al. 2002,
2004), and possibly even egg density (Klug et al.
2006, Lehtonen & Kvar ne mo 2015a).

In this study, we focused on a brackish water popu-
lation of a small fish, the sand goby Pomatoschistus
minutus. Sand gobies are commonly found under a
variety of different salinities across their geographic
range (Miller 1986), from oceanic conditions to salin-
ities below 3 ppt in the Northern Baltic Sea (Wieder-
holm 1987). Sand goby males provide egg care,
which is relevant because the patterns of egg infec-
tion and survival in such species may help to explain
the common but poorly understood aspect of parental
behaviour, filial cannibalism (i.e. consumption of own
offspring, see Lehtonen & Kvarnemo 2015a). Inter-
estingly, the level of filial cannibalism differs be -
tween goby populations experiencing different envi-
ronmental conditions, such as salinity (Lehtonen &
Kvarnemo 2015a and references therein).

We addressed gaps in current knowledge — as well
as contradictory previous findings — with regard to
the effects of egg density on egg performance. In par-
ticular, we experimentally manipulated egg density
(as opposed to assessing only naturally occurring vari-
ation in density) and measured its effect on both egg
infections and egg survival (until the eye-spot stage)
under different environmental conditions, name ly low
and high salinity. The chosen salinities represent lev-
els that are found within the geographical range of
our model species, and are known to influence the oc-
currence and spread of pathogenic water moulds. We
also controlled for the potentially confounding effect
of male care effort by rearing the eggs artificially. Fi-
nally, to better understand the spreading patterns of
egg infections, the eggs were assessed on multiple oc-
casions during the egg development time.

MATERIALS AND METHODS

The study was carried out in June 2014 at the Tvär-
minne Zoological Station on the Finnish coast of the
Baltic Sea (59° 50.7’ N, 23° 15.0’ E). To acquire fer-
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tilised eggs for the experiment, we first collected
male and female sand gobies near the field station.
This was done using dip nets and a hand-trawl, i.e. a
small bottom trawl with 4 mm mesh size that 2 wad-
ing persons dragged at slow walking speed in shal-
low water to catch small benthic fish, such as sand
gobies. After gobies were transported back to the
field station, they were separated by sex and main-
tained in holding aquaria of various sizes between 45
and 100 l (length: 60−80 cm, width: 25−40 cm, water
depth: 25−35 cm). The aquaria were kept under nat-
ural light conditions and supplied with natural brack-
ish water (salinity: 5.5 ppt). Water was pumped from
a nearby bay and then flowed through the aquaria.
An adjustable overflow system kept the water level
constant. Before the onset of the experiment, the go-
bies were fed ad libitum with live mysid shrimp
Neomysis integer and occasionally supplemented
with frozen chironomid larvae. Each male used for
fertilising eggs for the experiment (see following
paragraphs) was then placed individually in a flow-
through tank measuring 70 × 25 × 25 cm (length ×
width × water depth) with a 4 cm layer of fine sand as
substrate. To offer the male a resource for nest-build-
ing (i.e. excavating sand under an object and cover-
ing it with sand; see Japoshvili et al. 2012), we also
added into each tank a halved clay flowerpot (diame-
ter 6.5 cm), the inner surface of which was covered
with a transparent plastic film (Fig. 1A). After the
male had completed building a nest, 2 females that
were ripe with eggs were added into the tank.
During spawning, sand goby females attach their ad-
hesive eggs in a monolayer on the ceiling of the nest,
and hence in our set-up, the eggs were attached to
the film we had placed in the nest (Fig. 1A). Once the
females (in some cases only 1 of them) had spawned,
they were both removed. Within 36 h after the first
eggs had been laid, the film with the eggs was re-
moved from the nest and manipulated according to
the following experimental treatments.

To assess how egg density affects egg survival and
susceptibility to infections under different salinities,
we included 2 treatments in the experiment, both
with 2 levels: (1) egg density (levels: non-manipu-
lated and reduced density) and (2) salinity (levels:
low and high salinity). The total number of replicates
in each of the 4 treatment combinations was as fol-
lows: non-manipulated density + low salinity, n = 17;
reduced density + low salinity, n = 18; non-manipu-
lated density + high salinity, n = 19; reduced density
+ high salinity, n = 20. We started new replicates in a
fashion that kept the number of concurrent replicates
of each treatment roughly the same and the differ-

ence between any 2 treatments in the count of con-
current replicates never exceeded 2.

To manipulate egg density, we made 20 to 25 par-
allel cuts, at 2.5 to 3 mm intervals, in the plastic film
(Fig. 1A), before it was used to cover the inner sur-
face of the nesting resource (i.e. halved flowerpot), as
described above. After the eggs had been laid on the
film, it was removed and cut into 2 pieces, with the
larger of the 2 having approximately (according to a
visual estimation) twice the number of eggs com-
pared to the smaller one. In the reduced density
treatment, every second pre-cut thin strip of the
larger piece was removed (Fig. 1B), resulting in a
reduced egg density but a similar number of eggs
(~1000) as on the smaller piece. In the non-manipu-
lated egg density treatment, the smaller piece was
handled in an otherwise similar fashion, but the egg
density was left unaltered (Fig. 1C). In all but the first
12 replicates (2 to 4 per treatment combination;
 ntotal = 74), both of the 2 pieces of film that originated
from the same egg clutch were used in the experi-
ment (by exposing them to the same salinity level),
giving a more powerful paired design. This arrange-
ment was accounted for in the statistical analyses
(see section below). In all replicates, the piece of egg-
bearing film, prepared in the above fashion, was then
hooked to a string. This allowed it to be positioned
submerged, but close to the surface, in a 1 l container
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Fig. 1. Schematic presentation of egg density manipulation.
(A) Adhesive eggs were laid onto a thin plastic film, pre-cut
into ≤3 mm strips, covering the inner surface of the nest (i.e.
the ceiling of a halved clay flowerpot placed on fine sand at
the bottom of 45 l flow-through aquaria). After this ‘primary’
film was removed from the nest following spawning, it was
cut into 2 pieces, one of which was assigned into (B) the
reduced density treatment, and the other one into (C) the
non-manipulated (i.e. control/higher) density treatment. A
similar number of ‘head’ and ‘tail’ secondary pieces were as -
signed to the 2 treatments over the course of the experiment
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filled with water. Only 1 piece of film was placed into
each container. The containers, in turn, were placed
into larger tanks, with 6 containers in each tank. The
tanks had a water level slightly below the rim of the
containers and were provided with continuous
through flow of water from the sea (see above for
details). With this design, the water in the tanks and
containers did not mix, but the temperature in both
followed the natural temperature variation in the sea
(ca. 11 to 15°C during this study).

To manipulate salinity, each 1 l container with eggs
on a piece of film had either natural brackish water
from the sea (low salinity treatment, salinity: ~5.5 ppt)
or natural water from the sea to which 12 g l−1 of
 commercially available sea salt (‘Instant Ocean’,
Spectrum Brands) had been added (high salinity
treatment, salinity: ~15 ppt). The eggs were then in -
cubated in the containers until they were 8 d old and,
hence, in an advanced stage of development (Fonds
& Van Buurt 1974, Kvarnemo 1994, Lehtonen &
Kvarnemo 2015a). During this time, water in the in -
cu bation containers was replaced every second day,
with the clean replacement water matched to the
salinity level of the treatment.

We photographed the eggs (using an Olympus
XZ-1 digital camera) first immediately prior to the
start of incubation in containers (see above), and then
2, 4, 6 and 8 d after the eggs had been laid. We used
the photo graphs to assess the following 3 response
variables: (1) the proportion of eggs developing to
the eye-spot stage, (2) the proportion of healthy-
looking eggs, and (3) the emergence of visible signs
of infection.

To measure variable 1, the proportion of eggs that
had developed until the eye-spot stage, we counted
the total number of eggs in the replicate and the
number of eggs that had developed to the eye-spot
stage from the photograph that was taken at the end,
i.e. on Day 8, of each trial. To visually present the
result (see Fig. 2), the number of eggs with eye-spots
was divided by the total number of eggs, giving the
proportion of eggs that had developed to the eye-
spot stage. For the statistical analysis, however, the
numbers of eggs with and without eye-spots were
used as a combined response variable. The presence
of 2 eye-spots in an egg was used as an indicator of
its successful development to an advanced stage, be -
cause the eyes of a sand goby embryo become clearly
visible only a couple of days before the egg is ready
to hatch (Fonds & Van Buurt 1974, authors’ pers.
obs.). We note that water mould infections are known
to induce early hatching in some taxa (Morreira &
Barata 2005, Gomez-Mestre et al. 2006). However,

we did not observe any hatching before the end of
the experiment in any of the treatments.

To measure variable 2, the proportion of eggs that
appeared healthy (i.e. without visible signs of impair-
ment) at the end of the experiment, we counted the
number of eggs that appeared infected or damaged
(sensu Lehtonen & Kvarnemo 2015a) from the photo-
graph taken on Day 8. Subtraction of this number
from the total number of eggs, in turn, gave the num-
ber of healthy-looking eggs. As above, the propor-
tion of healthy eggs (the number of healthy-looking
eggs divided by the total number of eggs) was used
to illustrate the result (see Fig. 3), whereas the actual
numbers of infected and healthy eggs were used in
the analysis.

Lastly, to measure variable 3, the number (count) of
days from the start of the incubation to the finding of
visible signs of egg infection (i.e. milky overgrowth
and/or hyphae of water moulds; see Lehtonen &
Kvar ne mo 2015a), we visually inspected all photo-
graphs taken during the egg development period
(Days 2, 4, 6 and 8). Water moulds found growing on
the eggs were likely to be from the genus Saproleg-
nia (as indicated by visual inspection), and they have
earlier been shown to be important pathogens of
sand goby eggs (Lehtonen & Kvarnemo 2015a,b).
The date of the earliest photograph with infected
eggs was noted and used both to illustrate the result
(see Fig. 4) and in the analysis.

Statistical analyses

The 3 response variables, 1, 2 and 3, were analysed
separately. In each of the 3 cases, we applied a gen-
eralised mixed model with the density treatment
(reduced vs. non-manipulated) and salinity level (low
vs. high) as fixed effects, and ‘egg clutch ID’ as a ran-
dom effect to account for the fact that 1 egg clutch
was, in most cases (see above section), used for 2 dif-
ferent replicates (1 per density treatment). To ac -
count for overdispersion (see e.g. Zuur et al. 2013) in
variables 1 and 2, we translated the models from a
binomial distribution to lognormal-Poisson distribu-
tion by including an individual-level random vari-
able (Elston et al. 2001) into each model. For the
number of days before the first signs of infection (3),
we applied a generalised mixed model with Poisson
distribution, after checking that the data was not
overdispersed (Zuur et al. 2013). In all 3 cases, we
assessed whether the complete model could be refit-
ted without its interaction term, using χ2 tests with
p > 0.05 as the cutting point. We used R 3.1.0 soft-
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ware (R Development Core Team) for the analyses
and the ‘lme4’ statistical package for running the
generalised mixed models.

RESULTS

The survival of eggs until the eye-spot stage varied
between 0.1% for eggs with non-manipulated density
in low salinity and 31% for eggs with reduced density
in high salinity (Fig. 2). We found that the high
salinity and reduced density treatments re sulted in a
higher egg survival until the eye-spot stage, with a
more pronounced density effect (in relative terms) in
low salinity (Fig. 2), as indicated by a significant in-
teraction between salinity and density (generalised
mixed model: χ2 = 5.854, df = 1, p = 0.015).

The proportion of healthy-looking eggs that did not
have any signs of infection ranged from 4.5% in low
salinity with non-manipulated density to 80% in high
salinity with non-manipulated density (Fig. 3). The
interaction between salinity and density was signifi-
cant (generalised mixed model: χ2 = 4.170, df = 1, p =
0.041): reduced density was associated with a lower
number of healthy eggs in high salinity, whereas the
effect of density acted in the opposite direction in low
salinity (Fig. 3).

Regarding the first signs of infection, we simplified
the model by removing the interaction between salin-
ity and density (generalised mixed model: χ2 = 0.387,
df = 1, p = 0.53) and then the density effect (χ2 = 1.075,

df = 1, p = 0.30). The final model showed a highly sig-
nificant effect of salinity (z = 4.525, p < 0.001). The
first signs of infection were visible earlier in low than
in high salinity, independent of density (Fig. 4).

DISCUSSION

The results of this study suggest that the effect of
density on egg performance is context-dependent. In
particular, we found that egg density interacted with
salinity to impact egg performance. First, egg sur-
vival was higher in the reduced egg density treat-
ment and this density effect was (in relative terms)
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more pronounced in low salinity compared to high.
As with egg survival, we expected the level of infec-
tions to be lower under reduced egg density (see
Lehtonen & Kvarnemo 2015a). However, while the
difference between the 2 density treatments was to -
wards the anticipated direction under low salinity,
the pattern was actually the opposite under high
salinity conditions, with the proportion of healthy-
looking, non-infected eggs being highest in the treat-
ment that combined non-manipulated (i.e. high) egg
density and high salinity.

The context-dependency of density effects can
help to explain earlier conflicting results on the ef -
fects of egg density, such as those seen with regard to
egg clustering in amphibians (Kiesecker & Blau stein
1997, Green 2003, Ruthig 2008). Similarly, in fish,
especially in sand gobies, earlier studies have
yielded results on the effects of egg density that, at
first, may seem contradictory (Klug et al. 2006, Nore-
vik Andrén & Kvarnemo 2014, Lehtonen & Kvarnemo
2015a). In the light of the current results, however,
these previous assessments have probably provided
correct views of egg density effects under their par-
ticular sets of conditions, such as under specific salin-
ity environments (Klug et al. 2006, Norevik Andrén &
Kvarnemo 2014), in the presence (as opposed to
absence) of parental care (Klug et al. 2006, Norevik
Andrén & Kvarnemo 2014), and when only natural,
non-manipulated variation in egg density had been
considered (Norevik Andrén & Kvarnemo 2014,
Lehtonen & Kvarnemo 2015a). In contrast, the results
of the current study (which manipulated both salinity
and egg density levels in the absence of parental
care) predict that any inhibitory effects of a reduced
egg density on susceptibility to egg infections can
even be reversed in environments that inhibit micro-
bial infections (e.g. Saprolegnia), as here repre-
sented by a higher salinity level. In particular, under
such conditions, factors other than infections are
likely to be important drivers of egg survival, as will
be discussed below. Before that, however, we will
consider the potential reasons for why the extent of
infection was actually higher in the reduced egg den-
sity under high salinity conditions.

We propose that one important reason for the vari-
ability in density effects could have been a difference
in the spreading mechanisms of key egg pathogens
(i.e. water moulds and fungi) under different envi-
ronments, such as low and high salinity. In particular,
spores of pathogenic water moulds are expected to
colonise mainly infertile, dead or damaged eggs
(Robinson et al. 2003, Morreira & Barata 2005, Thoen
et al. 2011). In environments that are favourable for

the growth of these pathogens, they spread predom-
inantly by the growth of hyphae (filaments) that are
also able to kill healthy eggs (as de scribed by Smith
et al. 1985, Thoen et al. 2011). Especially under such
conditions, a lower egg density is expected to reduce
the spread of infection (Lehtonen & Kvarnemo
2015a). In contrast, in conditions that suppress the
growth of water moulds and fungi, as in the high
salinity treatment of our experiment, vegetative
growth of the pathogens is inhibited, and the domi-
nant infection mode is likely to be a direct infection
by spores attacking the weakest eggs. A difference
in the infection mechanism is also supported by our
observation that the first visible signs of infection
were apparent markedly earlier in low than in high
salinity. Overall, our results suggest that in high
salinity conditions, a higher egg density may actually
result in a lower infection risk per egg. Perhaps an
increased exposure to water movement between
eggs in the reduced density treatment may have re -
sulted in a more effective infection by spores of path-
ogenic water moulds and fungi, which only became
detectable when the conditions inhibited the growth
of hyphae. Besides water moulds and fungi, the suc-
cession and spread mechanisms of other pathogens,
such as bacteria and viruses, may conceivably also
differ between environments that differ in conditions
affecting colonisation and local spread or growth.

As argued above, a decreased potential for local
growth of infections in high salinity (and reduced
density) is likely to provide a partial explanation for
the observed patterns of egg survival (see also Lehto-
nen & Kvarnemo 2015a). However, the reversed pat-
tern for the proportion of infected (versus healthy)
eggs in the high salinity environment suggests that
there are also additional mechanisms that are impor-
tant drivers of egg survival. One such potential
mechanism is that a lower egg density is likely to in -
crease the availability of oxygen for individual eggs,
resulting in their higher survival, as suggested by
Klug et al. (2006). In our study, egg survival in many
replicates was at its highest on the edges of egg
batches, which is in accordance with this possibility.
However, it seems likely that oxygen demand can, at
best, provide yet another partial explanation for the
observed survival differences, as neither Klug et al.
(2006) nor Lissåker et al. (2003) found manipulated
oxygen levels to affect egg survival. Furthermore, in
the current study, we found a strong positive effect of
salinity on egg survival (see also Lehtonen & Kvar ne -
mo 2015a), although solubility of oxygen in water is
lower in high than in low salinities (Benson & Krause
1984). Other mechanisms that could also conceivably



Lehtonen & Kvarnemo: Fish egg density and salinity

contribute to the increased survival under a reduced
egg density, especially on the edge of egg batches,
include more efficient removal of carbon dioxide and
other waste products, and a lower rate of debris accu-
mulation. This should be true for all sparsely distrib-
uted eggs, as compared to more tightly packed ones.
In many respects, eggs on the edge were subject to
the lowest ‘density’ in all of our treatments. Hence,
the highest egg survival on the edges of egg batches
may be attributed to any of the general density ef -
fects discussed above.

Although we excluded the effects of parental
behaviour in the current study, our results neverthe-
less have important implications in the context of
parental egg care. In this respect, in addition to max-
imising egg and juvenile survival, decreasing the
spread of infections can also be an important compo-
nent of parental care, as demonstrated by species
that excrete antimicrobial substances to protect their
eggs (Gomez-Mestre et al. 2006, Giacomello et al.
2008, Little et al. 2008). In the current study, the
increased egg survival associated with the reduced
egg density suggests that egg density alterations,
resulting from egg removal by a parent, may be ben-
eficial for the remaining eggs, as earlier suggested by
Klug et al. (2006) and, more recently, by our own
research (Lehtonen & Kvarnemo 2015a). In addition
to such density effects, selective removal of dead or
damaged eggs is likely to result in a lower infection
rate among the remaining eggs, as has earlier been
suggested, for example, for the mountain dusky sala-
mander Desmognathus ochro phaeus (Tilley 1972,
Forester 1979). Furthermore, besides the effect of
density on infections being the opposite in the 2
salinities, we also found that the overall egg survival
was much higher in the high salinity treatment. The
results therefore suggest that the role of selective fil-
ial cannibalism is likely to be more important in envi-
ronments that are favourable for pathogen growth
(here: low salinity) than when the growth of patho-
gens is suppressed (here: high salinity). Such an
interpretation is in accordance with earlier goby
studies that have consistently found lower levels of
filial cannibalism when the study has been con-
ducted in high salinity environments (Lehtonen &
Kvarnemo 2015a and references therein). Similarly,
in the flagfish Jordan ella floridae, nest preparation
be haviour by the egg-tending male had a greater
positive effect on hatching success in freshwater
compared to brackish water (i.e. higher salinity) con-
ditions (Hale 2008). More generally, such environ-
ment-dependent differences in the optimal parental
care strategy suggest that species adapting to envi-

ronments of lower, or decreasing, salinity levels —
such as those in the Baltic Sea (Wikner & Andersson
2012) — also need to be able to adjust their parental
care behaviours (e.g. filial cannibalism) in relation to
changes in the environment. The extent to which
individuals within populations facing significant
environmental challenges are flexible in parental
(and other key) behaviours is still poorly known (for
some initial considerations on the topic, see e.g. St
Mary et al. 2001, Järvi-Laturi et al. 2008, Wong &
Candolin 2015).

To conclude, the results of the current study are in
accordance with the prediction (Lehtonen & Kvarne -
mo 2015a) that suppression of the spread of egg
 in fections can be an important aspect of parental
care activities, especially of filial cannibalism, which
reduces egg density. However, the current results
also suggest that a lower density per se is probably
not efficient in slowing the spread of infections. A
low egg density, nevertheless, provides additional
benefits to the developing eggs, with these density
effects being context-dependent, as made evident by
the different degrees of density effects on survival in
low and high salinity conditions. The findings can
also help to understand the challenges that many
populations face in changing environmental condi-
tions, especially with regard to salinity and nesting
opportunities. In this respect, a rapidly in creasing
number of populations need to adjust to such chang-
ing environmental conditions, for instance when ani-
mals are relocated to new areas (e.g. invasive goby
species; Kornis et al. 2012) or as a consequence of cli-
mate change (Stigebrandt & Gustafsson 2003).
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