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INTRODUCTION

The role of Marine Protected Areas (MPAs) is to
serve conservation purposes and maximize ecologi-
cal services (Freire & Garcia-Allut 2000, Apostolaki
et al. 2002). However, MPAs are often designed with-
out adequate information on how the ecosystem
works, thus failing to meet the objectives for which
they were implemented (Roberts et al. 2003). Model-
ling spatial distributions of the exploited species can
help stakeholders and managers to decide where to
place MPAs and the type of management strategies
that are most viable for the species of concern, e.g.
protection of certain life stages of specific species or
overall enhancement of multiple fisheries (Sumaila

et al. 2007, Elith &  Leathwick 2009). An accurate
knowledge of fish ecological niches is also useful to
predict the spatial distributions of target species and
can help to better understand the effects of changing
environmental conditions on these distributions
(Guisan & Thuiller 2005, Ramírez-Bastida et al.
2008). Habitat models have been widely used for
either terrestrial or aquatic species thanks to devel-
opment of statistical tools, such as generalized lin-
ear models (GLMs), generalized additive models
(GAMs) and random forests and boosted regression
trees (Guisan & Zimmermann 2000, Breiman 2001,
Elith & Leathwick 2009). In particular, GLMs have
been used successfully to predict the mean response
of various species to environmental factors, and are
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flexible as they can be applied to data that are not
necessarily normally distributed, such as those col-
lected during scientific trawl surveys (McCullagh &
Nelder 1989).

This study focuses on the Gulf of Lions, located
along the French coast in the northwestern Mediter-
ranean Sea, a marine biodiversity hotspot that is
 subject to various anthropogenic pressures, such as
pollution, fishing and climate changes (Bethoux et al.
1990, Caddy et al. 1995, Bianchi & Morri 2000, Myers
et al. 2000, Mittermeier et al. 2005, Coll et al. 2010). A
wide continental shelf extends to 200 m depth and
ends with an abrupt slope eroded by several subma-
rine canyons. This area is one of the most productive
in the Mediterranean Sea owing to a number of
hydrographic features, including the Rhone River
run-off, frontal activities due to the geostrophic cir-
culation and wind-driven upwelling cells (Millot
1990). The continental slope and submarine canyons
may constitute a refuge from exploitation for large
individuals of several commercial species, as these
areas are less accessible to bottom trawlers. This may
explain why the Gulf of Lions is still the host of a high
level of biodiversity, despite the intense fishing effort
there since the mid-20th century, resulting in growth
overexploitation of several species, such as hake
Merluccius merluccius, red mullet Mullus barbatus
and horned octopus Eledone cirrhosa (Aldebert 1997,
Papaconstantinou & Farrugio 2000, Gaertner et al.
2007, GFCM 2011).

Previous analyses in the Gulf of Lions highlighted
that demersal fish communities are distributed
mainly along a depth gradient (from the coastal zone
to the upper slope) and also along a longitudinal gra-
dient, in association with benthic macrofauna and
substratum (Gaertner et al. 1999, 2002, Gaertner
2000). These studies, however, employed multivari-
ate techniques, which do not include species distri-
bution modelling. 

The present study investigated the habitat of 10
demersal species in the Gulf of Lions and predicted
their spatial distribution in abundance using a GLM
approach incorporating 4 environmental variables
(temperature, sediment, light penetration and ben-
thos macrofauna) as explanatory factors (McCullagh
& Nelder 1989). The inter-annual stability of the spa-
tial distributions of the 10 species in May and June
(Morfin et al. 2012) makes it relevant to investigate
their temporally persistent habitats. From predicted
maps of species densities (ind. km−2), we examined
the possibility of defining a MPA for the 10 species,
using a MARXAN procedure (Ball & Possingham
2000). MARXAN is one of the most widely used soft-

ware products for conservation  planning. It is a
 stochastic optimization procedure that identifies,
from a set of candidate sites, a subset of sites which
are characterized by some particular biodiversity
 features, while attempting to minimize the cost of
their inclusion in an MPA (McDonnell et al. 2002).
This cost can be related to social, economical, or eco-
logical features, or a combination thereof.

MATERIALS AND METHODS

Species data

Species data were collected during the Interna-
tional Bottom Trawl Survey in the Mediterranean Sea
(MEDITS) conducted every year in May and June
from 1994 to 2010. For the Gulf of Lions, 65 fixed
sampling stations that have been sampled since 1994
were chosen, using a random stratified design (see
Fig. 1 and Bertrand et al. 2002). Trawling was carried
out for periods of 30 min (to 200 m depth) or 1 h (from
200 m depth) in daylight following a standardized
protocol (Fiorentini et al. 1999). Catchability and
accessibility were assumed to be constant over the
whole area, though the sites located on the slope
were known to be less accessible to the trawl, while
adults of several species, like Merluccius merluccius,
are more abundant in deeper areas. To counterbal-
ance the lower accessibility of the trawl, the MEDITS
Group doubled the sampling duration in deeper
waters (>200 m; Bertrand et al. 2002 for more
details). Each catch content was sorted by species,
counted and weighed.

Since the inception of the MEDITS survey, 300 dif-
ferent species have been identified in the Gulf of
Lions. However, many are rare or low in abundance,
which makes a habitat model irrelevant for them
(Mérigot et al. 2007). Therefore, we only considered
the species present in at least 20% of the hauls and
that are properly selected by the fishing gear. Fur-
thermore, we focused on exploited species and
selected species in different trophic and taxonomic
(decapods, cephalopods, elasmobranchs, fish) posi-
tions (Bănaru et al. 2012, Morfin et al. 2012). This
selection led us to retain the following 10 species:
European hake Merluccius merluccius, Atlantic
horse mackerel Trachurus trachurus, Mediterranean
horse mackerel Trachurus mediterraneus, grey
gurnard Eutrigla gurnardus, red gurnard Aspitrigla
cuculus, Norway lobster Nephrops norvegicus, red
mullet Mullus barbatus, horned octopus Eledone
 cirrhosa, small-spotted catshark Scyliorhinus canic-
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ula and elegant cuttlefish Sepia elegans. Although
both Trachurus species are pelagic, we considered
that they were properly sampled by the MEDITS
gear, as their distributions matched those observed
during the pelagic acoustic survey PELMED, carried
out in the same region.

Environmental variables

Following previous studies on fish habitat and data
availability, we considered the following 5 environ-
mental variables: depth, biological zones, bottom
temperature, sediment type and benthos type (John-
son et al. 2013).

Depth data were obtained by a digital elevation
model from data provided by the SHOM (Service
Hydrographique et Océanographique de la Marine).
In the study area the depth distribution is highly
skewed, owing to the presence of the wide continen-
tal shelf and the abrupt slope (Fig. 2). As a first trial,
a logarithm transformation combined with polyno-
mial terms appeared then necessary to establish a
relationship with species distributions. However,
predictions out of the range of observed depths were
very sensitive to the polynomial fit. They were also
very uncertain in the shelf-edge area where very few
large depth observations were made. While bathy -
metry is one of the most used factors in demersal fish
niche models, the causal link between depth and
demersal species is hardly a direct one. Depth is
more likely the driving factor of many other biologi-

cal and physical processes which directly contribute
to define demersal fish habitat.

We thus considered biological zones as an alterna-
tive to bathymetry. Biological zones were modelled
by the EuseaMap project and defined by the percent-
age of light penetration at the bottom, as a function of
bathymetry and turbidity (Cameron & Askew 2011).
The ‘infra-littoral’ zone was allocated to values of up
to 1% of light penetration, the ‘circa-littoral’ zone to
values between 1 and 5%, and the ‘bathyal’ zone to
values >5%. These thresholds (1 and 5%) are known
to impact photosynthetic activity and the presence of
different kinds of algae that induce different biotopes
(Cameron & Askew 2011). From a statistical point of
view, the relationships with species distributions will
be easier to establish as the coverage of the different
zones is balanced in the study area.

Bottom temperature was measured in situ during
the survey by an onboard SCANMAR device from
1996 to 2010. We used a variance decomposition
method (empirical orthogonal functions) to demon-
strate the high inter-annual temporal stability of
 bottom temperature. The averaged values over the
time period represented 78.2% of the total variance
of the bottom temperature (for details see Fig. S1 in
the Supplement at www.int-res.com/articles/suppl/
m547p219_supp.pdf). These results legitimate the
use, in this study, of averaged values of the bottom
temperature over the whole period at each site.

A seabed sediment map was obtained from the
EuSeamap project, which collated sediment data
from various sources and built a map at 250 m resolu-
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Fig. 1. Study area and sampling sites. Map of the Gulf of Lions and the 65 sampling sites (identified by crosses) during the
whole MEDITS survey (1994−2010). The positions of the sites were set by a stratified sampling scheme, according to 

bathymetry (contour lines in grey, in meters)

http://www.int-res.com/articles/suppl/m547p219_supp.pdf
http://www.int-res.com/articles/suppl/m547p219_supp.pdf
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tion, with 4 sediment types: ‘gravel’, ‘sand’, ‘muddy-
sand’, ‘sandy-mud’ and ‘mud’ (Cameron & Askew
2011). As only one site is associated with the ‘sand’
class, gravel and sand classes were included in the
same ‘coarse sand’ class for statistical purposes.

Benthos macrofauna is an important factor for the
habitat of demersal fishes (see e.g Gaertner et al.
1999). Data on benthic species were collected by the
MEDITS survey in 2000−2002, 2004 and 2006, and
grouped into 15 categories. To reduce the number of
classes, we performed a cluster analysis, which led to
the retention of 3 main benthos groups. The 3 groups
were dominated by mantis shrimp and tunicates, and
mostly differed by their overall abundance, whatever
the type of fauna, rather than by their species compo-

sition. Group 1 is the most abundant, while Group 3
is the least abundant. Nonetheless, Group 2 is the
most abundant in sea urchins and polychaetes, and
Group 3 is the most abundant in Cnidaria, crabs and
crinoids (Fig. S2 in the  Supplement).

Model formulation and calibration

Relationships between species count data and
environmental variables were analysed following a
GLM approach. In the present analysis, the retained
variables of interest were the number of individuals
per species and site summed over the 17 yr, as Morfin
et al. (2012) have shown that the spatial distributions
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Fig. 2. External variables. Spatial distributions of the envi-
ronmental factors considered for modelling species distribu-
tions. The ‘biological zones’ variable was chosen instead of
bathymetry in the habitat models. Variables are displayed
on a 2’ × 2’ scale. Infra: infra-littoral; Circa: circa-littoral; 1, 2
and 3: benthic groups used (see Fig. S2 in the Supplement)
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of those species studied were highly stable over time.
The corresponding trawled surface (in km2) was
accounted for in the model as an offset. For count
data, Poisson and negative binomial (NB) distribu-
tions are natural choices. Still, for all species the Pois-
son distribution appeared to be clearly inappropriate
according to the inspection of the residuals. We thus
developed NB models with a logarithm link function
to approach linearity and maintain model predictions
within a range of values consistent with the original
data (Guisan & Zimmermann 2000). Nonetheless,
non-linearities were detected between the log ex -
pectancy of the response variable and the bottom
temperature (the only continuous covariate). The
bottom temperature (BT) was thus tested using first-,
second- and third-order polynomial terms, to reflect
a potential optimum (second degree) in the response
of species abundance to temperature, and a skewed
form of the response around the optimum (third
degree). The interactions between temperature and
biological zones were also tested, resulting in 92 can-
didate models.

To detect potential multicollinearities whose inter-
action and polynomial terms are often the source, the
generalized variance inflation factor (GVIF) was
used (Montgomery & Peck 1982, Fox & Monette
1992). As a rule of thumb, multicollinearity may be
problematic (increasing the parameter variances and
raising interpretation difficulties) when the GVIF1/2df

is >2 (Fox & Monette 1992). This problem was solved
for polynomial terms by orthogonalizing them, but
multicollinearities were still found for interaction
terms.

Models were implemented using R (R Develop-
ment Core Team 2011). The ‘glm.nb’ function of the
MASS library was used for adjustment and predic-
tion (Venables & Ripley 1994).

Model selection

Two criteria were used to select models, a cor-
rected Akaike information criterion (AICc) and a
prediction performance index estimated by cross-
validation. The necessary bias correction of the AIC
for small sample size was estimated by a Gaussian
approximation. In addition, AIC-based selection
may result in overfitted models and/or in inappro-
priate promotion of complex hypotheses (Burnham
& Anderson 2003). Cross-validation procedures
have been proposed to overcome this problem and
estimate how accurately a predictive model will
per form in practice (Geisser 1975, Efron & Tibshi-

rani 1993). Though less robust than the ‘k-fold’
cross-validation procedure, leave-one-out (Loo)
cross- validation was chosen to keep enough data in
the ‘training’ sample (Arlot & Celisse 2010). Predic-
tion performance was then measured by the per-
centage of mean absolute error (PMAE), i.e. MAE
divided by mean abundance, on the data left out. A
value >1 indicates that the average prediction error
is higher than the average abundance. Both selec-
tion procedures, AICc and Loo, were applied for
comparison purposes, but we used models selected
by Loo for the species distribution predictions (see
‘Model evaluation’) as the criterion is based on pre-
diction performance.

Model evaluation

Species distribution models were evaluated using
residual analysis and deviance estimates. The stan-
dardized deviance residuals were used to check the
model adequacy. Furthermore, plots of these residu-
als against fitted values and each explanatory vari-
able allowed the identification of unexpected pat-
terns in the deviance. The proportion of deviance
explained by the predictors was also calculated to
assess the explanatory power of the model.

To quantify and visualize the impact of the contin-
uous explanatory bottom temperature variable, mar-
ginal effects were estimated by the average of abun-
dance predictions from the selected model for several
fixed values of this variable. The uncertainty around
the fitted values of the response variable was esti-
mated by a bootstrap procedure (Efron & Tibshirani
1993, McCullough 1994).

Species distribution maps

Predictions of species abundance were calculated
from habitat models selected by the Loo procedure,
as linear combinations of the explanatory variables
on a 2’ × 2’ grid (Table 1). Species distributions over
the Gulf of Lions were thus built using maps for each
of the 4 predictor variables to predict each species’
habitat (Fig. 2). The maps of benthos groups and bot-
tom temperature were not available over the whole
study area and were thus interpolated. Bottom tem-
perature was interpolated on the prediction grid by
ordinary kriging (Matheron 1963, Cressie 1993). As
the benthos is a categorical variable, values were
predicted using Voronoï polygons (each pixel was as-
sociated with the group of the nearest observed site).



MARXAN analysis

MARXAN is an optimization algorithm which
implements an objective function to minimize,
including a penalization term for not achieving the
conservation target and the cost of the reserve. The
planning units were created by dividing the study
area into 2’ × 2’ squares, and the target objectives
were species distribution maps predicted by GLMs.
The biodiversity target was formulated to ensure that
at least 20% of abundance of each species was repre-
sented in a protected area network. This threshold
was proposed at the 2002 Earth Summit and advo-
cated as the minimum amount of each habitat to be
represented in marine reserves (IUCN World Parks
Congress 2003). Reserve area was used as a surro-
gate for the cost of the planning units, based on the
assumption that the larger the reserve, the more
costly the implementation and management. As the
optimal solution may be highly fragmented, a
penalty for the total boundary length of the reserve
(boundary length modifier) was included to get the
best compromise between the total area of the con-
servation system and its compactness (Stewart &
Possingham 2005).

MARXAN uses a stochastic optimization algorithm
(simulated annealing), which enables the detection
of approximated solutions within a reasonable amount
of time. Depending on the spatial distribution of each
species and the form of the cost function, near-
 optimal solutions can be more or less difficult to
detect. To ensure that the algorithm finds stable solu-
tions, we computed 1 million iterations and repeated
the procedure for 500 different initial values. The
number of times each planning unit was included in
the resulting solutions among the 500 runs is a meas-
ure of how essential any particular unit is to forming
a comprehensive system. Finally, we displayed the
best solution and selection frequency among the 500
runs for the scenarios with and without a boundary
length penalty.

RESULTS

Model evaluation and interpretation

For all species, graphics of deviance residuals ver-
sus fitted values did not display any special pattern
and <5% of the values were found outside the 95%-
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Species Selected model Ex Dev PMAE 
(number of parameters) (%) (%)

Hake BZ + T + T2 + BENT + BZ*(T + T2) (12) 59.3 33
(Merluccius merluccius) BZ + T + SUB + BZ*T (10) 61.5 46

Atlantic horse mackerel BZ + T + BENT (7) 46.5 58
(Trachurus trachurus) BZ + T + SUB + BZ*T (10) 76.3 63

Mediterranean horse mackerel BZ + T + SUB (8) 48.8 69
(Trachurus mediterraneus) BZ + T + T2 + T3 + BZ*(T + T2 + T3) (13) 72.2 72

Grey gurnard BZ + T + T2 + SUB + BENT + BZ*(T + T2) (15) 86.5 40
(Eutrigla gurnardus) BZ + T + T2 + BENT + BZ*(T + T2) (12) 85.2 40

Red gurnard SUB + BENT (7) 31.6 115
(Aspitrigla cuculus) BZ + T + BENT + BZ*T (9) 54 1513

Norway lobster BZ + T + T2 + BENT + BZ*(T + T2) (12) 87.2 78
(Nephrops norvegicus) BZ + T + T3 + SUB + BZ*T3 (12) 89.6 79

Red mullet BZ + T + T2 + SUB + BENT + BZ*(T + T2) (15) 81.1 64
(Mullus barbatus) BZ + T3 + SUB + BENT + BZ*(T3) (12) 79.2 72

Horned octopus BZ + T + T2 + SUB (9) 61.3 30
(Eledone cirrhosa) BZ + T + T2 + BZ*(T + T2) (9) 66.4 31

Small-spotted catshark T + SUB + BENT (8) 46.7 75
(Scyliorhinus canicula) T + T2 + T3 + SUB (8) 49.3 79

Cuttlefish BZ + T + T2 + T3 + BENT (9) 76.5 47
(Sepia elegans) BZ + T + T2 (6) 75.6 49

Table 1. Summary of selected models for the 10 demersal species, using binomial negative regressions. For each species, first
line shows results from the model selected by the leave-one-out (Loo) cross-validation procedure; the second line (in italics)
shows results from the model selected according to AICc. Predictors are biological zone (BZ), bottom temperature (T),
 substrate (SUB) and benthos (BENT). Asterisks between predictors indicate interactions between model predictors. Ex Dev:
percentages of deviance explained by the covariates; PMAE: percentage of mean absolute error calculated by cross-

validation, an indicator of model prediction power



Morfin et al.: Habitats of 10 demersal species

confidence interval (Fig. S3 in the Supplement at
www.int-res.com/articles/suppl/m547p219_ supp. pdf).
Quantile-quantile plots displayed no significant de -
parture of deviance residuals from normal distribu-
tion, except for red gurnard (Fig. S4 in the Supple-
ment). Deviations at extremities were observed for
several species; however, the normality of error is not
a condition of GLM quality but simply a description
of model behaviour. Variograms of deviance residu-
als presented some auto-correlation structure for 3
species: hake, catshark and octopus (Fig. S5 in the
Supplement). For the 2 mackerels, the spatial struc-
ture was only present with the model selected by
Loo.

Several differences were detected between models
selected by Loo and AICc. However, no general rule
can be established, except that for the same level of
complexity the factors selected by AICc explained
slightly higher percentages of deviance (on average
67.4 and 70.9% respectively; Table 1). Overall the
percentages of explained deviance were substantial,
ranging from 31.6% (for red gurnard) to 89.6% (for
the Norway lobster) and correlated with the number
of parameters, varying from 6 to 15. Although no
 significant linear correlation was detected between
covariates, there were some redundancies that make
it impossible to distinguish the part of deviance
explained by each covariate. That is why the sum of
deviance explained by each covariate separately
may be much greater than the total explained
deviance, e.g. Norway lobster is strongly associated
with the 2 biological zones and the bottom tempera-
ture (Table 2). However, these results highlight that
the factors that were not selected by both selection
procedures generally explained very low percent-
ages of deviance, except in 2 cases. Depending on
the model selection, a strong association was estab-
lished between red gurnard distribution and temper-
ature or substrate type and between Norway lobster

and benthos type and substratum. For a given spe-
cies, the factors selected by both procedures dis-
played the same marginal effects. We thus focused
on these factors for model interpretation.

The biological zone variable was systematically
selected, except for small-spotted catshark and red
gurnard. This factor explained 31.2% of species dis-
tribution deviance on average, with a maximum of
80.8% for Norway lobster. Cuttlefish was strongly
associated with the circa-littoral zone; Norway lob-
ster with the bathyal zone. The 7 other species were
associated with both circa-littoral and infra-litorral
zones (Fig. S6 in the Supplement).

Apart from red gurnard, the bottom temperature
was always selected in the models and also ex -
plained an important amount of the deviance: 36.3%
on average and up to 69% for the Norway lobster.
Densities of the 2 species of horse mackerel and cut-
tlefish increased linearly with temperature (Fig. 3).
The densities of hake and small-spotted  catshark dis-
played an optimum around 13.5°C, while horned
octopus and grey gurnard displayed an  optimum
around 14°C (Fig. 3). For Norway lobster, densities
were decreasing with temperature.

Sediment type explained 9.4% of the deviance on
average, with a maximum of 43.1% for red mullet. It
was selected for all species expecting cuttlefish. Red
gurnard, red mullet and horned octopus were
 associated with coarse sand; catshark was associated
with muddy sand bottom; hake and Atlantic horse
mackerel were associated with sandy mud bottom;
Norway lobster and Mediterranean horse mackerel
were associated with muddy bottoms (Fig. S7 in
the Supplement).

Benthos groups explained 6.7% of the deviance on
average, with a maximum of 50.7% for Norway lob-
ster. Group 2 was referential because species were
ordered in abundance, though each group displayed
some differences in species composition (see ‘Materi-
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Species Biological zones (BZ) Temperature (T) Substratum Benthos Interaction BZ*T

Hake 20.7/20.9 2.7/2.0 NA/9.4 1.8/NA 32.0/25.7
Atlantic horse mackerel 42.0/43.0 10.2/10.4 NA/3.7 3.4/NA NA/27.4
Mediterranean horse mackerel 33.9/35.0 18.6/34.6 2.8/NA NA NA/25.7
Grey gurnard 19.3/23.7 3.0/3.7 2.0/NA 5.3/6.7 55.7/56.0
Red gurnard NA/5.0 NA/14.2 30.0/NA 14.7/15.0 NA/16.1
Norway lobster 70.8/71.6 56.2/63.0 NA/39.8 50.7/NA 8.2/6.0
Red mullet 14.8/14.7 1.3/0.3 42.8/43.1 11.6/11.7 10.1/22.5
Horned octopus 37.9/38.3 22.5/22.7 4.7/NA NA NA/6.4
Small-spotted catshark NA 35.1/41.0 8.8 10.0/NA NA
Cuttlefish 65.8 48.6/44.8 NA 3.5/NA NA

Table 2. Proportion of deviance explained by each covariate included in both selected models (Loo/AICc). NA: covariate not 
included in the model. For scientific names of species see Table 1

http://www.int-res.com/articles/suppl/m547p219_supp.pdf
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als and methods’). Red mullet, red gurnard and cat-
shark were associated with low benthos abundance
level; grey gurnard and Atlantic horse mackerel, to
an intermediate level; and hake and Norway lobster,
to a high level (Fig. S8 in the Supplement).

The predictive power of models was measured by
PMAE, a value >1 indicating a poor predictive capac-
ity. Except for red gurnard (PMAE = 115%), the 9
other species models selected by Loo showed satis-
factory predictive performance (PMAE = 30−75%;
Table 1). The species distribution maps were thus
predicted using the models selected by Loo.

Species distribution maps

Mapping model predictions over the Gulf of Lions
highlighted, as expected, different spatial patterns
across species (Fig. S9 in the Supplement). Species
found close to the coasts were horse mackerels, cut-
tlefish and red mullet. Atlantic horse mackerel was
also found on the west side of the slope; and red mul-

let in the west central part of the shelf. In contrast,
Norway lobster was distributed on the eastern side of
the shelf and over the whole slope (the greatest pre-
dicted values being obtained in the  western sector of
the slope). Hake, grey gurnard and octopus were
mostly found on the central shelf,  octopus being more
abundant on the western side, while hake was more
abundant on the eastern side.

Prediction uncertainty was measured by the coeffi-
cient of variation (CV) of predictions, a value >1 indi-
cating considerable uncertainty in prediction. CV
values were generally <1, with median values rang-
ing from 0.16 (for horned octopus) to 0.71 (for Nor-
way lobster), reflecting overall good predictions. Fur-
thermore, CV values were consistent with the index
of prediction performance, PMAE, as median values
of CV decreased with increasing PMAE (Table 1).
The poorest predictions (CV > 1) appeared to be due
to the values of explanatory variables outside the
range used to calibrate the models. These values cov-
ered 2% of the 10 maps and were mostly detected on
the eastern side of the slope and on the western side
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Fig. 3. Marginal response in
species density de pending
on bottom temperature, as
predicted by the model se -
lec ted by the Loo proce-
dure. Red gurnard case is
not shown as the Loo selec-
tion procedure did not se -
lect bottom temperature for
this  species. Distributions of
the marginal response were
estimated by bootstrap; so -
lid lines display the means
and dashed lines the 10 and
90% quantiles. For scien-
tific names of species see 

Table 1
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of the shelf, where temperature was not directly
measured, but interpolated by kriging. In those
areas, kriged values were significantly higher than
observed values. The predictions of which CV values
were >1 were discarded for MARXAN analysis.

MARXAN analysis

Among 500 runs using different initializing values,
we looked at the best solution and the frequency of
selection of each planning unit (note that the penalty
for not achieving the conservation targets in the
objective function was set to the minimum value
where all conservation targets were met). Without
any boundary length constraint, the set of planning
units selected was highly scattered over the whole

area, reflecting both the sparsity of some species dis-
tributions, e.g. grey gurnard, and the differences
between species distributions, e.g. Norway lobster
versus cuttlefish, the former being offshore, while the
latter is coastal (Fig. S9).

The weight allocated to the boundary length
penalty (named boundary length modifier [BLM])
was set in order to get the best trade-off between the
boundary length and the total area of the reserve
 system (Fig. S10 in the Supplement). The more opti-
mal planning design solution according to the BLM
(0.25) occupied 16.4% of the study region and was
composed of 7 disjointed zones (Fig. 4, second line of
the right column). This solution includes the 3.2% of
planning units selected >80% of the time and the
67% selected >50% of the time. Among the 7 zones,
1 located on the west coast was preferential habitat
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Fig. 4. Marine Protected
Area design MARXAN
outputs, i.e. the minimum
set of areas containing
20% of each species abun-
dance. Results ac cor ding
to 3 dif ferent compacity
constraints are displayed:
BLM (boundary length
modifier) = 0 corresponds
to no compacity constraint
at all; BLM = 0.25 is the
best trade-off between
area and boundary length;
BLM = 1 is the most com-
pact solution whose area
covered less than 20% of
the study area (Fig. S4 in
the Supplement). For each
BLM value, the best solu-
tion (right panels) and the
selection frequency of each
planning unit (left pan-
els) among 500 runs are 

displayed
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for the 2 mackerels, grey gurnard, horned octopus
and cuttlefish, while, on the middle of the coast, only
both mackerels and cuttlefish were found. The tiny
coastal zone a little further east was dominated by
cuttlefish, red mullet and Mediterranean horse
mackerel. The last zone on the coast is the eastern
area, where hake and horned octopus were abun-
dant. The 2 zones in the middle of the shelf corre-
sponding to sandy bottom patches were particularly
important, as all species except the 2 mackerels and
cuttlefish were found in abundance (Fig. 2). The last
zone located on the slope was the only area where
the most preferential habitat of Norway lobster and
some other species overlapped. Furthermore, they
in cluded the main types of physical habitats present
in the Gulf of Lions in similar proportions, i.e. all the
biological zones, the full range of bottom tempera-
tures, all the sediment types and the 3 benthos
groups.

DISCUSSION

In this study we characterized habitats and pre-
dicted distributions for 10 demersal species in the
Gulf of Lions, using a GLM approach. The selected
species distribution models showed good explanatory
power, as the percentages of explained deviance
were high for all species. Their predictive capabilities
were also satisfying, except for red gurnard. For this
species, the model performance was probably af-
fected by the fact that its highest abundance was ob-
served at the only sandy site. This strong association
could not be clearly detected, as we had to combine
this site with gravel bottom sites in the same ‘coarse-
sand’ category, for statistical significance.

We compared the results from 2 different model
selection procedures, Loo cross-validation and AIC.
Overall, results were quite similar. In theory, the for-
mer should be preferred for predictive models, while
the latter should be preferred for explanatory mod-
els. Still, there is no rule of thumb to choose a model
selection procedure, and our goal was to highlight
the uncertainty that it may involve. Unexpectedly,
the AIC-based procedure did not systematically
select models with a higher explanatory power than
the cross-validation procedure. While we tested sev-
eral degrees of polynomials for temperature, we kept
fixed the number of classes for categorical variables.
Thus, models including 4 classes of sediment type
were systematically more penalized than the oth-
ers. Thus any interpretation of identified habitat
 factors and the exploitation of predicted maps should

be treated with caution if these aspects were
 investigated.

While stable spatial auto-correlation patterns were
previously observed for these 10 species, for 7 of
them (Atlantic and Mediterranean mackerel, red and
grey gurnard, red mullet, Norway lobster and cuttle-
fish), no spatial structure was found in the residual of
the fitted models (Morfin et al. 2012). Such a result
suggests that auto-correlation patterns found for
those species were probably due to habitat prefer-
ences that are spatially auto-correlated rather than
intra-specific population dynamics. The 3 other
 species (hake, catshark and horned octopus) were
those for which models displayed the lowest percent-
ages of explained deviance, suggesting that the
remaining auto-correlation in the residuals may be
explained by external factors not included in the
model. As this is not straightforward to implement for
binomial negative distribution, the residual spatial
auto-correlation has not been handled by the model.
For these species, model outputs should be inter-
preted with greater care, as they may bias the
 influence of other factors.

Searching for significant relationships between
species abundance and measured habitat variables
has been criticized for ascribing coincidental correla-
tions or indirect relationships to direct causal links
(Guisan & Thuiller 2005). However, insufficient
knowledge still remains on factors influencing mar-
ine species, which makes it difficult to test and vali-
date prior assumptions about causal relationships.
Consequently, correlative approaches that make few
or even no prior assumptions about underlying
causal relationships are considered legitimate when
attempting to understand the complex interactions
between fish populations and their environment
(Valavanis et al. 2004). Those correlations can in turn
be used as the basis for subsequent hypothesis-
 driven studies aiming to determine demersal fish
habitat requirements. However, model outputs must
be interpreted with caution when the sampling
design cannot be totally controlled and balanced. For
instance, the range 13−13.5°C was only observed in
the bathyal zone, where the relationship between
temperature and the log of species abundance was
positive for several species, while it was negative in
other ranges. In this case, interactions may be only
statistics and reflect the non-linearity of the relation-
ship between temperature and the log of the
response variable, instead of a variation in the effect
of temperature depending on biological zones.

Geographical predictions using GLM require that
explanatory variables are known over the whole
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area. In practice, this is rarely the case, and explana-
tory variables need to be previously predicted over
the whole area, as we did for temperature by kriging.
This is another source of uncertainty which is not
integrated in species predictions. For example, bot-
tom temperature was slightly overestimated in the
bathyal zone, resulting in spurious high densities for
Atlantic horse mackerel and small-spotted catshark.
However, the distribution of the same 10 fish species
performed by kriging (i.e. by direct spatial interpola-
tion of the abundance, see Morfin et al. 2012) are
very similar as those obtained in the present study
(i.e. through habitat modeling). Such a result is pri-
mordial, as it validates the pertinence of our
approach and the external factors chosen.

Biological zone and bottom temperature were the
main factors explaining species distributions. These
factors are strongly related to depth, which has often
been reported to be the main gradient along which
faunal changes occur when studying shelf and
upper-slope demersal assemblages (Johnson et al.
2012). In the Bay of Biscay and the Celtic Sea, juve-
niles of red gurnard and hake were primarily associ-
ated with bathymetry and secondarily with bottom
temperature and salinity (Persohn et al. 2009). Juve-
niles of many demersal species occur predominantly
within the inshore soft bottoms along the coast (Bar-
tolino et al. 2008, Carlucci et al. 2009), where some
ecological processes that enhance their survival take
place (Kaiser et al. 1999). Accordingly, much of the
essential marine fish habitat is in shallow coastal
waters, even though some deep habitats such as
rocky submarine canyons may constitute natural
refuges for large individuals of demersal species
(Yoklavich et al. 2000). However, the ecological
 relevance of the bathymetry is not demonstrated for
these species, as associations with depth may hide
preferences for other physical factors or prey avail-
ability (Murawski & Finn 1988). In our case, bottom
temperature is not necessarily a proxy for depth, as it
was not correlated with bathymetry inside each bio-
logical zone. We used biological zones rather than
bathymetry, as the distribution of the latter is highly
skewed in the Gulf of Lions, which made difficult to
model it and led to less satisfactory models (accord-
ing to both model selection criteria) than the models
using biological zones.

These results also revealed substrate and benthos
as substantial drivers of demersal species distribu-
tions. The benthos variable was introduced because
it constitutes the base diet of most of the species con-
sidered, but it may also be a proxy for other pro-
cesses, as benthic macrofauna are more sensitive to

some environmental factors (e.g. depth, sediment
type, salinity, pollution,…) than demersal fishes (Fer-
raro & Cole 2007, Nicolas et al. 2007). As some of
these variables have already been introduced into
the model, the interpretation of this factor is not
straightforward.

The high percentages of explained deviance in
most habitat models indicate that the 4 habitat factors
used in this study were sufficient to explain most spe-
cies distributions. However, some additional factors
could be included in our models, such as salinity,
organic carbon flux, prey resources, pollution and
fishing pressure (Sanchez-Vidal et al. 2009, Coll et al.
2012, Johnson et al. 2012). As the species considered
here are all generalist feeders and it is not possible to
include overall potential prey abundance as a covari-
ate in such models, prey availability should be meas-
ured by some indicators (Quéro & Vayne 1997). Data
on other factors were not yet available at fine resolu-
tion during our study.

Distributions of the species studied here were
highly stable over the whole period from 1994 to 2010
(Morfin et al. 2012). This makes relevant the present
study goal of determining species habitat that per-
sisted over time. The strong association demonstrated
in this analysis between averaged species abundance
and temporal rather stable external factors (substrate,
bottom temperature and biological zones) would cer-
tainly still be important in habitat models, including
temporal variability. Despite strong temporal stability,
Morfin et al. (2012) also documented a positive rela-
tionship between species occupancy area and total
abundance over 17 yr. According to the MacCall
basin theory, habitat selection is density dependent to
some degree. At low abundance, individuals occupy
the most suitable habitat, whereas they are expected
to spread to  marginal (sub-optimal) habitats when
abundance increases because of intraspecific compe-
tition for food and/or space (Fretwell & Lucas 1969,
MacCall 1990). The results of the present paper
demonstrate that the spatial distributions of species
are strongly associated with environmental factors.
Furthermore, these associations were established
from data averaged over the time period and are thus
independent of temporally variable habitats. There-
fore, it is more likely that the spatial expansion of spe-
cies at high abundance is due to a density-dependent
process, as expected under the MacCall basin theory,
rather than to spatio-temporal variations in some key
environmental variables. Therefore, we can expect
that the deviance explained by these factors in tem-
poral models would be lower if the density-dependent
process were not taken into account.
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We performed a first quantitative analysis to inves-
tigate the potential relevance of an MPA in the Gulf
of Lions, using MARXAN procedure (Ball & Possing-
ham 2000). Our goal was to determine the minimum
set of areas containing at least 20% of the abundance
of each of the 10 target species, which is obviously
more complicated than for one given species (Fro-
mentin & Lopuszanski 2014). The first solution
obtained without any boundary length constraint
was a set of areas highly scattered over the whole
Gulf of Lions, reflecting the sparsity of some species
distributions as well as the differences between spe-
cies distributions. Such a solution was obviously not
operational in terms of management. Once increas-
ing the compactness of the protected areas by
increasing boundary length, we obtained more ‘man-
ageable’ solutions. The design realising the best
compromise between total area and compactness
covered 15.6% of the study region and was com-
prised of 7 disjointed zones. As this design was still
very sparse, we also considered a higher compact-
ness constraint, which produced 3 distinct zones cov-
ering 17% of the study area (Fig. 4, third line of the
right column). The importance of coverage is partly
due to the horned octopus, whose minimum area
(including 20% of its distribution) alone represents
12% of the study area. The high coverage appears to
be due more to the sparsity of this species than to the
variability between species distributions. The conser-
vation objective should probably be lowered, as this
region is highly exploited and closing 20% of the
fishing grounds would probably be regarded as
unacceptable by some stakeholders. Some choices
and compromises at the ecological/scientific level,
but also at economic and political levels, would be
required (Sumaila et al. 2007, Yates & Schoeman
2013). Although this is beyond the scope of the pres-
ent study, assessing the potential benefits of a MPA
should also consider the effects of the redistribution
of fishing effort outside the MPA and the spatial
dynamics of the main species (Apostolaki et al. 2002).

As the surveys were only carried out in May and
June, this study can hardly tackle seasonal issues.
This period was selected as it is a recruitment period
for many species. This might be problematic, as all
species, except Norway lobster, make ontogenic
migrations, which may induce seasonal variability.
For many species, juveniles migrate between coastal
and bathyal zones according to seasons, as nurseries
are located in both areas (GFCM 2010). Adults of
hake, the most documented species, migrate to the
middle of the shelf to spawn over the entire year, the
spawning peak being in winter and early spring.

Nevertheless, too little information is available on
species distributions in the Gulf of Lions during the
other periods of the year. However, it would be inter-
esting to perform the same analysis on juveniles and
adults separately to identify nursery and spawning
areas. The potential habitat data of young-of-the
year individuals of hake determined by Druon et al.
(2015) are consistent with our results (temperature
range and bottom type). Colloca et al. (2015) investi-
gated the overlap of several demersal species nurs-
eries, using spatial models. Although the overlap
covered an overly large area according to fishing
activity, such an approach deserves further attention.
The study of adult distributions requires models
 fitted to zero-inflated data, as adult specimens are
observed at a very low proportion of sampled sites
(Heilbron 1994).

Finally, this analysis indicates that designing an
MPA network for several species of interest in the
Gulf of Lions is not straightforward and deserves
more dedicated investigations. Furthermore, several
sources of uncertainties were highlighted through
the analysis (model selection, predictions, optimiza-
tion algorithm), which could lead to spurious conclu-
sions. The Bayesian framework is well adapted to
uncertainty propagation, and new advances in inte-
grating map uncertainty in MPA design software are
on their way (Carvalho et al. 2011, Kujala et al. 2013).
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