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INTRODUCTION

Global warming, due to anthropogenic emissions
of greenhouse gases, is now unequivocal, and the
various scenarios of the Intergovernmental Panel on
Climate Change (IPCC) all predict significant in -
creases in atmospheric and oceanic temperatures
during the course of the next century (IPCC 2014).
Many environmental parameters such as precipita-
tion, wind, ice extent and sea level are affected,

which, in turn, impact all levels of marine and terres-
trial biodiversity (e.g. Botkin et al. 2007, Cheung et
al. 2009, La Sorte & Jetz 2010). In this context, there
is an urgent need to identify the consequences of cli-
mate change on ecosystems, particularly how alter-
ations in environmental drivers may lead to changes
in the movements, distribution and habitat selection
of animals. Such findings are crucial to understand
species’ exposure, sensitivity and adaptability to cli-
mate change (Nathan et al. 2008, Foden et al. 2013).
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Rising air and sea surface temperatures affect phe-
nology (Walther et al. 2002, Parmesan 2006, Rosen-
zweig et al. 2008), migration patterns (Cotton 2003)
and food web structure (Alheit et al. 2009). The geo-
graphical distribution of a species is determined by
optimal biotic and abiotic characteristics, which may
be altered in response to climate change. As a conse-
quence, range shifts, both in latitude and altitude,
have been recorded for many terrestrial (Parmesan &
Yohe 2003, Parmesan 2006, Chen et al. 2011) and
marine organisms (Perry et al. 2005, Beaugrand et al.
2009, Weimerskirch et al. 2012).

Although distributional change is a key topic in
studies of climate change effects on plankton and fish
(Hays et al. 2005, Perry et al. 2005), it has re ceived
much less attention in seabirds (Sydeman et al. 2012).
Few attempts have been made to predict the evolu-
tion of oceanic habitats of seabirds in re sponse to
global warming (but see Peron et al. 2012, Grémillet
et al. 2015, Russell et al. 2015). However, the life his-
tory characteristics of seabirds make them particu -
larly vulnerable to such environmental changes. All
are central-place foragers when breeding (Weimer-
skirch et al. 1994), many perform long-range seasonal
migrations (Robinson et al. 2007), and most are highly
K-selected with typically a long life span, long gener-
ation time and low reproductive output (Durner et al.
2009). One of the only studies predicting the evo -
lution of a seabird habitat modelled the effects of dif-
ferent climate warming scenarios, as defined by the
IPCC, on the position of suitable foraging areas of
king penguins Aptenodytes patagonicus from Crozet
Island (Southern Indian Ocean; Peron et. al 2012). To
our knowledge, no such studies are available for trop-
ical seabirds, presumably as a consequence of the
natural complexity of tropical systems.

Seabird distribution is influenced by different fac-
tors such as physical features (bathymetry, sea sur-
face temperature, sea height anomalies, wind speed),
prey availability and intrinsic behaviour (Grecian et
al. 2012, Thaxter et al. 2012). After breeding, most
seabird species perform long-distance migrations
(Guilford et al. 2009, Egevang et al. 2010, Pinet et al.
2011). As the non-breeding period is of major impor-
tance for the population dynamics of seabirds (Chas-
tel et al. 1995, Barbraud & Chastel 1999), identifying
non-breeding foraging areas is a key priority for sea-
bird conservation (Piatt et al. 2007, Le Corre et al.
2012, Oppel et al. 2012). It is therefore essential to
improve our knowledge of seabird habitat use during
the inter-breeding period, and to understand the role
of environmental conditions in determining seabird
movements and distribution.

Here, we studied the non-breeding, at-sea distri-
bution of a tropical seabird species, Barau’s petrel
Pterodroma baraui, and its evolution under different
climate warming scenarios as defined by the IPCC.
Barau’s petrel is an Endangered endemic seabird of
Réunion Island (55.33° E, 21.07° S), with an estimated
population of about 8000 breeding pairs (Le Corre et
al. 2002). The species forages in the south west Indian
Ocean during the breeding season (Pinet et al. 2012)
and migrates eastward to the central and eastern
Indian Ocean during the non-breeding season (Pinet
et al. 2011). The goals of this study were to (1) inves-
tigate inter-annual changes in the species’ wintering
habitats, (2) develop species distribution models
(SDMs) in order to define the oceanographic features
that characterize its winter habitats and (3) predict
the future distribution of suitable habitats during the
wintering period under the various scenarios of the
IPCC.

MATERIALS AND METHODS

Tracking data

Both published and unpublished tracking data
were used to describe the current wintering distribu-
tion and to model future habitats of adult Barau’s
petrels during the austral winter. Barau’s petrels
breed annually between September and April and
perform long-distance migration to overwinter in the
central and eastern Indian Ocean during the non-
breeding period (Pinet et al. 2011, 2012). The pre-
breeding phase (display, mating and pre-laying exo-
dus) typically takes place in September to October,
followed by incubation, and most chicks hatch be -
tween mid-December and mid-January. Chick-rear-
ing ends in April, and all birds leave the colony and
the entire western Indian Ocean until early Septem-
ber (Pinet et al. 2011, 2012). Global Location Sensing
(GLS) loggers were deployed and recovered during 3
years on distinct birds at La Vallee des deux miches,
a study colony of Barau’s petrels located on Grand
Bénare mountain, Réunion Island (altitude 2500 m).
Between February and April 2008, 12 GLS loggers
(Mk14; developed by the British Antarctic Survey
[BAS], Cambridge) were deployed on breeding adult
Barau’s petrels, all of which were recovered between
September and December 2008. Nine additional GLS
loggers were deployed on breeding adults between
November 2008 and March 2009, and recovered
between September and December 2009. These data
were previously published by Pinet et al. (2011). An
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additional 12 GLS loggers (Mk15; developed by the
BAS) were deployed in December 2011, and recov-
ered in November 2012 to investigate inter-annual
variability. For a more detailed description of the
study area and the methods used to deploy and re -
cover the GLS, and to calculate geolocation of birds,
see Pinet et al. (2011).

SDM process

Data preparation

The number of tracked bird locations was broadly
balanced within each study year. The number of
locations varied by 14, 15 and 11% (for 2008, 2009
and 2012, respectively). For each study year, we per-
formed kernel analysis on the wintering area of all
individuals using the adehabitat package (Ca lenge
2006) within the R environment (R Development
Core Team 2015), with a smoothing parameter (h) of
2° to match geolocator accuracy (BirdLife Interna-
tional 2004). We considered the 50% kernel density
contours (k50) to represent the core areas of activity
(Catry et al. 2009).

Environmental data were selected according to
their biological relevance and availability. Both static
(bathymetry, BATHY, m) and dynamic data were
downloaded from NOAA Coastwatch (http://coast
watch. pfel.noaa.gov/coastwatch/CWBrowserWW 180.
jsp). Dynamic data include chlorophyll a concentra-
tion (CHLA, mg m−3), sea surface temperature (SST,
°C), primary productivity (PP, mg C m−2 d−1), sea sur-
face height deviation (SSH, cm), wind speed (WIND,
m s−1), geostrophic zonal currents (CZ, cm s−1) and
geostrophic meridional currents (CM, cm s−1). We
used weekly data for CHLA, SST and PP and daily
data for SSH, WIND, CZ and CM. Daily data were
then averaged on a weekly basis. For each dynamic
variable, weekly data corresponding to the dates of a
given trip were averaged. Environmental maps were
re-interpolated on a grid of 2 × 2° to match the GLS
data resolution. We subsequently calculated the spa-
tial gradients of BATHY, SST, CHLA, WIND, PP and
SSH (BATHYG, SSTG, CHLAG, WINDG, PPG,
SSHG, respectively) using the slope function from
the SDMTools package (VanDerWal et al. 2014).

Prior to modelling, strongly correlated (coefficient
of correlation > 0.8) predictors were identified by
estimating all pairwise Spearman rank correlation
coefficients. High correlation was found between
CHLA and PP, and between CHLAG and PPG. Thus,
we excluded PP and PPG from further analyses. We

decided to use CHLA rather than PP because CHLA
is a direct measure obtained from satellite imagery,
whereas productivity is a calculated product
(Behrenfeld & Falkowski 1997).

Ensemble modelling and evaluation

We used an ensemble model based on the aggre-
gation of several models. This method improves the
fit and robustness of the final model, limiting bias
for each model while also avoiding overfitting of
the final model (Araújo & New 2007, Marmion et
al. 2009, Thuiller et al. 2009). For each year, an
ensemble model was created with bird presences
inside the core area and pseudo-absences, defined
as localisations where absence is probable but
uncertain. Pseudo-absences were randomly selected
outside the core area within the maximum range
achieved by the population each year, in the tropi-
cal Indian Ocean (limits: 40 to 120° E, 60° S to
20° N). This random selection was repeated 20
times so as not to affect the model results. Thus 20
datasets, combining a selection of pseudo-absence
and presence data in the core area, constitute a set
of initial data for the model. These datasets were
then divided randomly into 2 parts; one was used
to build the model (80% of the dataset) and the
other to evaluate the model (20% of the dataset).
This was repeated 10 times so that the random
selection did not affect the results (Thuiller et al.
2009). Each of these datasets was then added to the
environmental variables to build an ensemble
model. True skill statistics (TSS), sensitivity and
specificity were then calculated to evaluate the
quality of the models. Sensitivity is the proportion
of ob served presences that were correctly predicted
as presence and specificity is the proportion of
observed pseudo-absences that were correctly pre-
dicted as absences. The TSS is a composite index,
specially designed for ecological studies, that takes
into ac count sensitivity and specificity. TSS is not
sensitive to prevalence, contrary to the kappa
index (Allouche et al. 2006). To our knowledge,
TSS has never been used on ensemble modelling of
suitable habitat distribution of seabirds. Oppel et
al. (2012) are among the few who have modelled
seabird distribution with an ensemble model, but
they used the area under the receiver operating
characteristic curve (AUC) to assess model accu-
racy. Here we se lected TSS be cause both TSS and
AUC provide highly correlated results and TSS is a
simple and intuitive measure (Allouche et al. 2006).
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TSS has been used to assess the accuracy of
ensemble models on other species and, in particu-
lar, on landbirds (Coetzee et al. 2009, Barbet-
Massin & Jiguet 2011). According to Coetzee et al.
(2009), TSS > 0.8 is good to excellent and Thuiller
(2013) considered TSS > 0.87 to be very high to
excellent.

To build our ensemble models, we chose 9 methods
derived from statistics and artificial intelligence.
These methods (see Elith et al. 2006, Prasad et al.
2006, Hegel et al. 2010) were generalised linear mod-
els (GLMs; McCullagh & Nelder 1989), generalised
additive models (Wood & Augustin 2002), multiple
adaptive regression splines (Friedman 1991), random
forest (Breiman 2001, Cutler et al. 2007), generalised
boosting model, artificial neural network, classifica-
tion tree analysis (Breiman et al. 1984), flexible dis-
criminant analysis and maximum entropy (Phillips &
Dudik 2008, Elith et al. 2011).

Then the 9 models were assembled with a
weighted average. The weight assigned to each
model was proportional to the quality of the model as
measured by the TSS. Only models with a TSS > 0.80
were selected.

All non-significantly correlated environmental
variables were first included into the models so as to
determine which variables were related to bird dis-
tribution. Then, we selected only the most important
variables (see next section) to model bird distribution
in order to provide the most parsimonious models. A
global ensemble model, including the 3 years of
tracking data and only the most important variables,
was then built. All models were built with the bio-
mod2 package (Thuiller et al. 2009) in R software.

Importance of variables and characteristics of
suitable habitat

Variable importance was estimated with the vari-
ables_importance function in the biomod2 package.
This procedure uses Pearson correlation between the
standard predictions and predictions where the vari-
able of interest has been randomly permutated. This
was realized 5 times. The score was calculated as 1
minus the correlation. Median scores of the 5 runs
were then calculated (Thuiller et al. 2009). Higher
values indicate a greater influence of the variable on
the model, and values of 0 assumed no influence of
that variable on the model. This process was realized
with all variables.

For each year, values of the most important variables
wereplottedagainst theprobabilityofpresence,which

definedahabitat suitability index in thetropical Indian
Ocean (limits: 30° to 120° E, 30° S to 20° N).

Prediction of future distribution of suitable habitat

Available data

Since 2013, climate change models have been clas-
sified according to 4 scenarios called representative
concentration pathways (RCPs) and developed under
the Coupled Model Inter-comparison Project 5
(CMIP5). Each scenario defines a specific trajectory
of greenhouse gas emission and subsequent radiative
forcing. RCPs are named according to their radiative
forcing predicted for 2100 (in W m−2). Higher
radiative forcing indicates higher global warming.
RCP 2.6 is a ‘peak-and-decline’ scenario; its radiative
forcing level first reaches a value of around 3.1 W m−2

by mid-century, and returns to 2.6 W m−2 by 2100.
This is the only scenario to produce an increase in
temperatures of <2°C. RCP 4.5 and RCP 6.0 are ‘sta-
bilization’ scenarios in which total radiative forcing is
stabilized shortly after 2100, without overshoot, re-
spectively at 4.5 and 6 W m−2. RCP 8.5 is the most ex-
treme scenario, displaying a continuous rise in radia-
tive forcing, at the current pace, and leading to a
value of about 8.5 W m−2 in 2100 (IPCC 2014).

Any scenario necessarily includes subjective ele-
ments and is open to various interpretations. CMIP5
combined all climate projections developed by the
 different modelling groups. We decided to use a mean
of all these projections (available at http:// climexp.
knmi.nl/) because ensemble predictions are often
closer to observed data than any individual model.
Among the variables of interest for our seabird habitat
models, only SST was predicted by the ensemble cli-
mate change model. SST data were available on a grid
of 1.25 × 1.25°. We re-interpolated them on a grid of 2 ×
2° with the ‘lowres’ function (adehabitatMA package;
Calenge 2006) to match our tracking resolution data.
Monthly SST predictions were available, and the me-
dian of the 6 wintering months for each year was cal-
culated. Bathymetry, which is a static variable, was
also available. SST and bathymetric gradients were
calculated with the slope function from the SDMTools
package (VanDerWal et al. 2014). WIND is predicted
by some agencies, but these predictions show very im-
portant year-to-year variations (see  ‘Discussion’ and
Figs. S1−S4 in the Supplement, available at www. int-
res. com/ articles/ suppl/  m550p235_ supp. pdf). Because
of this lack of consistency, we decided not to include
WIND in our predictive global model.

http://www.int-res.com/articles/suppl/m550p235_supp.pdf
http://www.int-res.com/articles/suppl/m550p235_supp.pdf
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Ensemble modelling and forecasting

An ensemble model with the most important vari-
ables (see ‘Results’) was built first (hereafter named
‘reference global model’). We then built an ensem-
ble model with only the variables available for pre-
diction (SST, BATHY, SSTG and BATHYG; named
‘predictive global model’). The reference model pro-
vided a reference quality score to evaluate the loss
of information when using only available variables
for prediction.

Ensemble models were built with 2008, 2009 and
2012 tracking data. For each of the environmental
variables, and for all pixels of the study area, we
calculated the median of the values of the 3 studied
years. Pseudo-absences were selected as explained
previously. All steps to build ensemble models were
conducted similarly for each year. To
provide future distributions, for each
scenario, multi-model mean SST pre-
dictions, bathy metry, gradients of SST
predictions and gradients of bathy -
metry predictions were used. Future
distributions were predicted for the
short (year 2020), medium (year 2050)
and long term (year 2100), allowing
us to investigate long-term trends in
response to marine habitat changes.

All statistical analyses were per-
formed within the R environment (R
Development Core Team 2015).

RESULTS

Characterization of wintering areas
and wintering phenology

The overall wintering distribution of
tracked birds in the core area (50%
contour) was around the Ninety East
Ridge between 78−97° E and 11−21° S
in 2008, 75−91° E and 12−19° S in 2009
and 79−97° E and 14−22° S in 2012
(Fig. 1). The spatial overlap of winter-
ing core areas varied from 25 to 89%
between years, with a maximal over-
lap for 2008 and 2009, and a minimal
overlap for 2009 and 2012. No signifi-
cant inter-annual differences were
observed in the mean date of arrival
and departure from the wintering area
(Table 1).

Suitable habitat modelling of the wintering areas

Model performance and explicative variables

Suitable habitat models for Barau’s petrel yielded
very good performance (TSS > 0.97). The models of
the 3 years predicted the presence of petrels per-
fectly (sensitivity = 100%) and their absence cor-
rectly (specificity > 97%).

The variables which best explained the probability
of petrel presence in 2008 were WIND (0.29) and SST
(0.25), followed by CHLA (0.19) (Table 2). In 2009,
SST (0.33) and CHLA (0.28) were the 2 main con-
tributing factors (Table 2). WIND (0.77) and SST
(0.44), had the greatest influence on the model in
2012, as in 2008 (Table 2). Finally, the 3 variables
selected in our annual model were those that had the
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Fig. 1. Wintering core areas (50% kernel density) of Barau’s petrels Pterodroma
baraui tracked in 2008 (n = 12; red polygons), 2009 (n = 9; green polygon) and
2012 (n = 13; yellow polygon) in the Indian Ocean (limits: 30 to 120° E, 40° S to
10° N). The orange diamond indicates the Barau’s petrel breeding colony at Réu-
nion Island (55.33° E, 21.07° S). Background map represents bathymetry (m)

Year               Arrival date                  Departure date                 Residence 
                      (date ± days)                    (date ± days)                     time (d)

2008             16/04/08 ± 12                   26/08/08 ± 11                    133 ± 20
2009             13/04/09 ± 12                   21/08/09 ± 14                    132 ± 15
2012              10/04/12 ± 5                    15/08/12 ± 15                    128 ± 14
Mean               13/04 ± 10                        21/08 ± 13                       131 ± 16

F2,31                     1.1638                               2.3889                            0.3359
p                          0.3256                               0.1084                            0.7173

Table 1. Timing of the wintering period of Barau’s petrels Pterodroma baraui
tracked in 2008 (n = 12), 2009 (n = 9) and 2012 (n = 13). Mean ± SD of dates and
residence times for the 3 years are given and compared using 1-way ANOVA. 

Dates are given as dd/mm/yy
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higher influence on the probability of presence
over the 3 years; all other variables showed
almost no contribution.

For each year, a parsimonious ensemble
model with only 3 variables (WIND, SST, CHLA)
correctly predicted the habitats suitable for
Barau’s petrels. Indeed, the TSS and specificity
of these models were reduced by <4%, com-
pared to complete models, and the sensitivity
was not reduced.

Characteristics of suitable habitats

Suitable habitats in 2008, 2009 and 2012 were
characterized by specific values of CHLA, SST
and WIND (Figs. 2−4, respectively). Adult
Barau’s petrels tended to select cool (SST range:
24−27.5°C), oligotrophic areas (CHLA range:
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                                                                          2008   2009  2012

Bathymetry, BATHY                                        0.02    0.07   0.05
Sea surface height, SSH                                  0.01       0        0
Wind speed, WIND                                          0.29    0.02   0.77
Chlorophyll a concentration, CHLA               0.19    0.28   0.04
Sea surface temperature, SST                         0.25    0.33   0.44
Zonal currents, CZ                                           0.01       0      0.01
Meridional currents, CM                                    0         0        0
Gradients of bathymetry, BATHYG                  0       0.01   0.01
Gradients of sea surface height, SSHG             0         0      0.01
Gradients of wind speed, WINDG                     0         0        0
Gradients of chl a concentration, CHLAG     0.02    0.05   0.01
Gradients of sea surface temperature, SSTG 0.08    0.05   0.15

Table 2. Importance of each environmental variable in the predic-
tion of ensemble models during wintering of Barau’s petrels Ptero-
droma baraui tracked in 2008, 2009 and 2012. Indexes of variables
range in importance from 0 (no influence of that variable on the 

model) to 1 (a large influence of that variable on the model)
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Fig. 2. Chl a concentration (CHLA) according to the pre-
dicted probability of Barau’s petrel Pterodroma baraui pres-
ence for (a) 2008, (b) 2009 and (c) 2012. Probabilities of pres-
ence are predicted by ensemble models with only the most
important variables (WIND, CHLA and sea surface tempera-
ture, SST) for each year. Boxplots represent the distribution
of CHLA values in the tropical Indian Ocean (limits: 30 to
120° E, 30° S to 20° N). Red dashed lines and green dot-
dashed lines represent median CHLA in the tropical Indian
Ocean and in suitable areas, respectively. Boxplots: mid-
point: median; box limit: 1st and 3rd quartiles; whiskers: min. 

and max.; circles: outliers
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Fig. 3. Sea surface temperature (SST) values according to
the predicted probability of Barau’s petrel Pterodroma ba-
raui presence for (a) 2008, (b) 2009 and (c) 2012. Probabili-
ties of presence are predicted by ensemble models with only
the most important variables (WIND, chl a [CHLA] and SST)
for each year. Boxplots represent the distribution of values of
SST in the tropical Indian Ocean (limits: 30 to 120° E, 30° S to
20° N). Red dashed lines and green dot-dashed lines repre-
sent median SST in the tropical Indian Ocean and in suitable 

areas, respectively. Boxplots: see Fig. 2
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0.05− 0.14 mg m−3) with stronger than average winds
(Figs. 2, 3 & 4).

CHLA in the tropical Indian Ocean has a very clear
seasonal cycle every year with a peak in austral win-
ter and the lowest values in austral summer (Fig. 5).
Although CHLA in the core area of suitable winter-
ing habitats of Barau’s petrels was lower than in
other regions of the Indian Ocean over the same
period, it is of interest to note that it was at its maxi-
mum when the petrels were present. SST also
showed a seasonal cycle every year, with lower val-
ues in austral winter and higher values in austral
summer (Fig. 6).

Future suitable wintering habitat 

Loss of information by using available variables

As already explained, TSS, sensitivity and speci-
ficity of the reference global model were equal to
0.98, 100% and 97.6%, respectively, and TSS, sensi-
tivity and specificity of the predictive global model
were equal to 0.95, 100% and 94.7%, respectively.
This indicates that our models are powerful with a
loss of less than 3% of TSS, sensitivity and specificity.

Predicted wintering areas

Our predictive global model produced 3 spatially
distinct regions of suitable habitat for wintering
Barau’s petrels (Fig. 7). The western most area
(between 50 and 75° E) corresponds partially to the
current at-sea distribution of adult Barau’s petrels
when breeding, whereas the central area is situated
around the Ninety East Ridge where adults currently
migrate after breeding. The third, and eastern-most
area, is situated between 100 and 115° E and is also
sometimes used during winter (Pinet et al. 2011). In
the future, these suitable areas are predicted to shift
in position and to be reduced in size, according to the
4 scenarios of climate change (Figs. 8 & 9, see below).

Changes in suitable habitat

The climate change scenarios RCP 2.6, RCP 4.5 and
RCP 8.5 predicted a decrease in the size of the suit-
able habitat, by about 33, 19 and 5%, respectively
(Fig. 9a). All identified a westward shift of the suit-
able habitat (Fig. 9b). RCP 4.5, RCP 6.0 and RCP 8.5
also predicted a southward shift, of about 3°, 5° and
7°, respectively (Fig. 9c). The most optimistic climatic
scenario (RCP 2.6) predicted a northward shift of 2°
until 2020 and stagnation until 2100 (Fig. 9c). Over-
all, at the end of the 21st century, the suitable habitat
is predicted to decrease in size, and to shift westward
and southward.

DISCUSSION

This study is one of the first to model and predict
the future oceanic habitat suitability for a seabird
species, using current distribution assessed by light-
level geolocation. The ensemble modelling ap -
proach developed in this study has seldom been
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Fig. 4. Wind speed (WIND) values according to the pre-
dicted probability of Barau’s petrel Pterodroma baraui
presence for (a) 2008, (b) 2009 and (c) 2012. Probabilities of
presence are predicted by ensemble models with only the
most important variables (WIND, chl a [CHLA] and sea sur-
face temperature, SST) for each year. Boxplots represent
the distribution of values of WIND in the tropical Indian
Ocean (limits: 30 to 120° E, 30° S to 20° N). Red dashed lines
and green dot-dashed lines represent median WIND in the
tropical Indian Ocean and in suitable areas, respectively. 

Boxplots: see Fig. 2



Mar Ecol Prog Ser 550: 235–248, 2016242
C

H
L

A
 (m

g 
m

–3
)

a

b

c

Date (month–year)

Fig. 5. Temporal variations
of chl a concentration
(CHLA) values in (a) 2008,
(b) 2009 and (c) 2012 in the
core area of suitable win-
tering habi tats of Barau’s
petrels Pterodroma baraui.
Solid bold lines represent
median values, thin solid
lines represent first and
third quartiles, and
dashed lines represent the
extreme values. Boxplots
represent overall CHLA
distribution in the core
area during wintering pe-
riods, and the shaded area
represents the wintering
period for each year. Box-

plots: see Fig. 2

20
22
24
26
28
30

01–2008 03–2008 05–2008 07–2008 09–2008 11–2008 01–2009 Overall

20

22

24

26

28

30

01–2009 03–2009 05–2009 07–2009 09–2009 11–2009 01–2010 Overall

20

25

30

01–2012 03–2012 05–2012 07–2012 09–2012 11–2012 01–2013 Overall

20
22
24
26
28
30

20

22

24

26

28

30

20

25

30

S
S

T 
(°

C
)

a

b

c

Date (month–year)

Fig. 6. Temporal variations
of sea surface tempera-
tures (SST) values in (a)
2008, (b) 2009 and (c) 2012
in the core area of suitable
wintering habitats of Ba-
rau’s petrels Pterodroma
ba raui. Solid bold lines re -
present median values,
thin solid lines represent
first and third quartiles
and dashed lines repre-
sent the extreme values.
Boxplots represent overall
SST distribution in the
core area during wintering
periods, and the shaded
area represents the win-
tering period for each
year. Boxplots: see Fig. 2



Legrand et al.: Barau’s petrel wintering habitat and climate changes

used for seabirds (but see Oppel et al.
2012), al though it has proved its worth
for plants and terrestrial animals (Araújo
et al. 2006, Thuiller et al. 2009). Our
ensemble models performed well to
reproduce the current distribution of our
study species. When selecting only the 3
most important variables (WIND, SST
and CHLA) to build the most parsimo-
nious ensemble models, the quality of
models remained excellent in all cases.
Thus, these 3 variables appear to be
accurate predictors of Barau’s petrel
presence/ absence. Un fortunately, only
SST was predicted by the ensemble cli-
mate change model. WIND is predicted
by some agencies (Institut Pierre-Simon
La place; Atmo sphere and Ocean Re -
search Institute [The University of
Tokyo], National Institute for Environ-
mental Studies and Japan Agency for
Marine-Earth Science and Technology;
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Met Office Hadley Centre) but these predictions
show very important year-to-year variations. Indeed,
WIND is known to be highly variable between
years, and future predictions mirrored this variabil-
ity (see Figs. S2 & S3 in the Supplement). Predic-
tions of WIND values were also highly variable
depending on the scenario (Figs. S2 & S3). Central
moving averages over 10 yr of WIND fluctuated
over time but still showed important inter-annual
variations. These inter-annual variations are more
important than the general long-term trends. Cen-
tral moving averages over 30 yr showed a slightly
continuous increase of WIND in the core area with
scenario RCP 2.6, stagnation with scenario RCP 4.5
and decrease with scenarios RCP 6.0 and RCP 8.5.
Furthermore, the first (in 2029) and the last values
(in 2085) of the time series of WIND were not signif-
icantly different from each other (Figs. S2 & S3).
Because of this lack of consistency, we decided not
to include WIND in our predictive global model. We
added BATHY and BATHYG to our predictive
model because bathymetry is known to interact with
local productivity (Mangh nani et al. 1998). We also
added SSTG be cause gradients of SST are good
indicators of frontal oceanographic zones (Chen et
al. 2003). These 3 variables (BATHY, BATHYG and
SSTG) are reported to be good predictors of seabird
presence and are often used in seabird habitat mod-
elling (Louzao et al. 2011). Indeed, they increased
the performance (TSS) of our model by about 6%.
Finally, the predictive global model was powerful,
with a good TSS (0.95).

The 2 main biases of this study are related to the
nature of the data. Positions inferred from light sig-
nals have an average (±SD) accuracy of 186 ± 114 km
(Phillips et al. 2004). This low precision has little
impact on our predictions, because our predictions
on latitudinal and longitudinal shifts of the wintering
areas of Barau’s petrels are by far much larger than
the resolution of the GLS. The other bias is inherent
to the concept of pseudo-absences. Tracking data do
not provide information on true absences of individu-
als. We have partially overcome this presence−
absence bias through the use of randomly generated
pseudo-absences, which make the model more pow-
erful (Elith et al. 2006). The powerfulness of the dif-
ferent modelling techniques varied widely depend-
ing on how, where, and how many pseudo-absences
were used (Barbet-Massin et al. 2012).

Current wintering habitats of Barau’s petrels

Barau’s petrels consistently used the same winter-
ing area during the 3 years of the study. This high
inter-annual consistency in wintering habitat selec-
tion has already been shown in various seabird spe-
cies such as Arctic terns Sterna paradisaea (Egevang
et al. 2010), Manx shearwaters Puffinus puffinus
(Guilford et al. 2009) and white-chinned petrels Pro-
cellaria aequinoctialis (Péron et al. 2010), among oth-
ers. This suggests that birds learn their migration
strategy during their first years of life, and then
reproduce this pattern annually (see for instance
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Phillips et al. 2005, Yamamoto et al. 2014). The plas-
ticity of such learned behaviour in the face of climate
change is currently very poorly known. Further
investigations involving tracking of young animals
during their first years and repeated tracking (over
multiple years) should be conducted to know how
Barau’s petrels learn their migration pathways and
how adaptable they are to climate changes.

Habitat modelling and characteristics of current
suitable habitat 

The most influential variables for the at-sea distri-
bution of Barau’s petrels were, by order of impor-
tance, WIND, SST and CHLA. This was consistent
over the duration of our study, although in 2009,
WIND had a lower influence than SST and CHLA.
This probably explains the lower performance of the
model for that particular year.

Four major phenomena influence the interannual
variability of the Indian Ocean: the Indian monsoons,
the Indonesian through flow, the Indian Ocean Dipole
(IOD) and the El-Niño-Southern Oscillation (ENSO)
(Saji et al. 1999, Schott et al. 2009, Izumo et al. 2010).
Complex interactions of these 4 phenomena regulate
climate and oceanographic features of the oceanic re-
gion used by wintering Barau’s petrels (e.g. Meyers et
al. 2007, Luo et al. 2010). Positive IOD events cause a
warming of the western Indian Ocean, while cooling
the eastern part. Westward winds also blow stronger
than average during positive IOD events, reversing
surface currents. The Dipole Mode Index (DMI),
which expresses the intensity of the IOD, was positive
for the 3 years of the study but exhibited distinct
levels. Interestingly, DMI was lowest during winter of
2009 (DMI in the winter of 2008, 2009 and 2012: 0.37,
0.06 and 0.39, respectively), implying weaker winds
in the southeastern Indian Ocean, compared to 2008
and 2012. This could explain the lower contribution of
the wind in the habitat suitability model of 2009. How-
ever, the inter-annual variation that we found in the
habitat suitability models should be interpreted with
caution, as our sample sizes were limited for any
given year and were variable between years. More-
over, our sample sizes were quite low, probably mak-
ing the detection of less used wintering areas difficult.

A recent study has demonstrated that winds opti-
mize the movement of wandering albatross Dio me -
dea exulans (Weimerskirch et al. 2012), which
enables individuals to limit the loss of energy during
the flight and may improve foraging success with
positive demographic consequences. Barau’s petrel

likely use wind to move between patches of food in
the wintering area. Therefore, well-oriented wind
may minimize the loss of energy during flight, as for
most albatrosses and petrels.

SST has often been identified as the most influen-
tial environmental feature influencing habitat suit-
ability for numerous species of seabirds (Tremblay et
al. 2009). Seamounts, such as the Ninety East Ridge
where Barau’s petrels currently winter, induce up -
wellings, which may explain the lower SST observed
in this region. Upwellings bring nutrient-rich waters
towards the ocean surface, stimulating primary pro-
duction and promoting the aggregation of micro -
nekton. Furthermore, as surface-feeding predators,
Barau’s petrels frequently sit on the water when for-
aging (Pinet et al. 2012). We hypothesize that birds
develop knowledge of their environment (via sensing
or smelling), as previously suggested (Weirmerskirch
et al. 2007, Kappes et al. 2010).

CHLA is an indicator of standing stock of phyto-
plankton, which is a good proxy of marine productiv-
ity. We expected that birds would select areas with
high CHLA concentrations, as has already been
shown in several other studies (e.g. Péron et al. 2010,
Louzao et al. 2011). Local enrichments due to up-
wellings induced by seamounts, such as the Ninety
East Ridge, create favourable conditions for food web
development (Genin & Dower 2007). In agreement
with Lévy et al. (2007), our study has shown that a pro-
nounced seasonal phytoplankton bloom appears in
the central Indian Ocean during austral winter
(Fig. 5). Interestingly, the wintering of Barau’s petrels
coincides with these winter blooms, suggesting that
individuals could benefit from seasonal enrichments,
which may induce higher prey concentration.

However, other regions of the tropical Indian
Ocean show much higher productivity (particularly
the Somalia and Oman upwellings), yet for unknown
reasons, none of these areas is targeted by adult
Barau’s petrels. Interestingly, a multispecies tracking
study involving 11 tropical seabird species of the
western Indian Ocean (Le Corre et al. 2012, M. Le
Corre unpubl. data) also shows similar patterns: trop-
ical  seabirds, contrary to their temperate and polar
counterparts, do not select rich upwelling areas dur-
ing their non-breeding period. Further investigations
on the foraging ecology, prey availability and energy
needs of tropical seabirds during their non-breeding
period would be necessary to better understand this
paradox.

Barau’s petrels are known to forage predominantly
on surface-dwelling squids during the breeding sea-
son (Danckwerts et al. 2016), and indirect measure-
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ments using stable isotopes and fatty acids suggest
that it may be the same during the non-breeding sea-
son (Danckwerts et al. 2016). However, the links
between the availability and abundance of these
prey and the tropical marine environment is still
poorly known.

Consequences of future changes in suitable
 habitat distribution

All scenarios predicted a shift of suitable habitat by
2100. Thus, the current wintering area of Barau’s
petrels may be less suitable in the future. Barau’s
petrels are endemic and highly philopatric (Pinet et
al. 2011). Endemic species have adapted, on evolu-
tionary scales, to specific conditions making them
extremely sensitive to environmental changes, such
as those brought by climate change (Grémillet &
Boulinier 2009). Thus, we hypothesize that Barau’s
petrels may have difficulties changing their migra-
tion routes and strategies in a rapidly changing
world. Furthermore, according to most IPCC scenar-
ios, the size of the suitable habitat may decrease by
the end of the 21st century. If this happens, the carry-
ing capacity of wintering areas may be reduced,
which may lead to greater intra- and inter-specific
competition for prey. The long-term effects of these
changes on the population dynamics of the species
are currently unknown.

Future research considerations

As long-lived animals, seabirds may experience
various wintering conditions during their lifetime. In
the context of rapid climate change, it would be very
interesting to investigate individual inter-annual
fidelity to wintering areas, to know whether birds can
adapt to a changing environment from one year to
the next (see Yamamoto et al. 2014).

It would be also very interesting to investigate mar-
ine habitat selection and to predict climate-driven
changes in habitat suitability when seabirds are cen-
tral-place foragers, i.e. during the breeding season.
Indeed, this period is crucial for the population
dynamics but is also the most demanding in terms of
individual energy expenditure. Thus climate change
may have a greater impact on seabirds during this
part of their life cycle.

The Indian Ocean is a marine hotspot of biodiver-
sity, with major concentrations of emblematic or eco-
nomically important species such as cetaceans, tur-

tles, sharks, tunas, billfish and seabirds (Le Corre et
al. 2012, Mannocci et al. 2014). Our modelling
approaches could be applied to this set of species to
provide multi-specific predictions of habitat suitabil-
ity and their changes in relation to global warming.
This would be of great help to adapt conservation
plans for the Indian Ocean in response to climate
change.
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