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INTRODUCTION

Marked intraspecific genetic structure exists in
various marine mammal species (Palsbøll et al.
1995, Hoffman et al. 2009, Alfonsi et al. 2012,
Fontaine et al. 2014, Louis et al. 2014). This may
be caused by historical or present environmental

variation (Fon taine et al. 2010, Jackson et al. 2014,
Hobday et al. 2015), food availability, food prefer-
ence and habitat use (Foote et al. 2011, Louis et al.
2014). Anthropo genic activities also have direct
effects on the intraspecific genetic diversity of, for
instance, hunted or by-caught marine mammal
species (Mendez et al. 2010, Palsbøll et al. 2013,
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8000 years ago. These data, added to positive expansion signals, suggest that MCR haplogroups
correspond to ancestral maternal  lineages, isolated in different grey seal refugia during the last
ice age and prior to the expansion of the species in the North Atlantic and the separation between
the East Atlantic and the Baltic Sea ESUs.
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Ruegg et al. 2013). Fidelity to particular geographic
sites used for breeding, feeding, or as migratory
routes also shapes population structure. Natal
philopatry (defined as fidelity to birthplace) and/or
fidelity to feeding sites are well known in different
species of actively swimming large marine verte-
brates (Palsbøll et al. 1995, Bowen & Karl 2007,
Jorgensen et al. 2010, Baker et al. 2013). Often,
females tend to be more philopatric, while males
can travel long distances for breeding or for aging,
thus leading to higher differences between popu-
lations in the maternally inherited mitochon drial
DNA (mtDNA) when compared to bi-parentally
inherited nuclear DNA (Bowen & Karl 2007, Baker
et al. 2013). In some species, males may also ex -
hibit site fidelity (Louis et al. 2014). Female philo -
patry and male-mediated gene flow are often
encountered in pinnipeds. Southern elephant seals
Mirounga leonina (Fabiani et al. 2003), walruses
Odobenus rosmarus (Andersen et al. 1998) and
harbor seals Phoca vitulina (Burg et al. 1999) show
greater population structure for mtDNA than for
nuclear DNA markers.

The ability of long-distance travel has been de -
monstrated in the grey seal Halichoerus grypus (e.g.
Vincent et al. 2005), which is widely distributed in
the North Atlantic Ocean and in the Baltic Sea
(Härkönen et al. 2007, Klimova et al. 2014). Philo -
patric behavior has also been reported (Pomeroy et
al. 2000, 2001). Three geographically isolated evolu-
tionarily significant units (ESU), presenting differen -
ces in body size, breeding periods and DNA polymor-
phisms, are assumed to exist (1) in the northwestern
North Atlantic along the Canada and north USA
coasts, (2) in the Baltic Sea and (3) in the eastern part
of the North Atlantic from Iceland to the European
mainland and British Isles coasts (Bonner 1981, Bos -
kovic et al. 1996, Klimova et al. 2014).

Subfossil remains confirm the occurrence of the
grey seal 5000 years ago (ya) along the European
mainland and, in particular, in the southernmost part
of its range (Brittany coast in northwest France,
Pailler et al. 2004, Härkönen et al. 2007). The species
declined and almost disappeared be cause of hunting
before the second part of the 20th century along the
European mainland (Härkönen et al. 2007). Breeding
sites reappeared at the end of the 1970s on the Dutch
and German coasts and sub sequently in northwest
France in the Molène and Sept-Iles archipelagos
(Duguy & Hussenot 1991). Today, east Atlantic grey
seals can mainly be found along the UK coast and in
the Wadden Sea. Breeding colonies can be found
along the mainland from the Molène archipelago in

the south to the Kola peninsula (Russia) in the north
(Vincent et al. 2005, Härkönen et al. 2007).

Previous studies in the Baltic Sea and in neigh -
boring Atlantic waters have highlighted contrasting
patterns between nuclear and mitochondrial loci
(Allen et al. 1995, Graves et al. 2009, Fietz et al.
2013, Klimova et al. 2014). Both markers suggested
genetic exchanges between adjacent colonies in
the eastern part of the UK or in the Baltic Sea (Fietz
et al. 2013, Klimova et al. 2014). On a larger scale,
genetic differentiation has been observed between
geographically distant colonies (e.g. the colonies of
northwest Scotland and northeast England) with
mitochondrial but not with microsatellite markers
(Klimova et al. 2014). On the other hand, a larger
influence of the habitat type, rather than geograph-
ical closeness, has been demonstrated in the gen -
etic diversity of the major histocompatibility com-
plex immune system gene family (Cammen et al.
2011). All these studies supported a major influence
of the fidelity to pupping sites in the shaping of
grey seal populations.

In northwest France, satellite-tracking studies have
demonstrated grey seal movements from the Iroise
Sea to the British colonies, and several authors have
therefore suggested the existence of a meta-popula-
tion at the scale of an area extending from the west
coast of France to the southwest British Isles (Vincent
et al. 2002, 2005, Gerondeau et al. 2007, Härkönen et
al. 2007).

Here, we genetically analyzed a sample of 222 in -
dividuals collected by the seal care center of Océano -
polis (Brest, France) and by the French Stranding
Network (Pelagis, UMS 3462, CNRS, Université de la
Rochelle, France) since the 2000s (see Fig. 1). We
performed the first genetic study of the grey seal
around the coast of Brittany in northwest France, with
a special emphasis on maternally inherited mtDNA.
We then placed this French population in a wider
geographic context, including previously published
data from other European and Baltic colonies (Graves
et al. 2009, Fietz et al. 2013, Klimova et al. 2014, van
Bleijswijk et al. 2014).

MATERIALS AND METHODS

Specimen and sample collections

This study used samples from 222 grey seals. Of
these, blood samples were obtained from a total of
168 juvenile grey seals stranded alive along French
coasts between 2002 and 2012, which were all taken
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in and nursed by the Laboratoire d’Etude des Mam-
mifères Marins (LEMM) at a care center localized at
Océanopolis, Brest, France (Fig. 1; Table S1 in the
Supplement at www.int-res.com/ articles/ suppl/   m566
p217 _ supp. pdf). For each grey seal, blood samples
were collected for veterinary use and sub samples were
kept at −20°C for later genetic ana lyses (Table S1).
Samples were named ‘Hgc’ followed by a number
corresponding to a care center identification number
(Hgc 227 to 460 in as cending chronological order but
not necessarily successive). Additionally, 54 dead
stranded grey seals (juveniles and adults) were biop-
sied in the framework of the French Stranding
 Network (described in Jung et al. 2009), and skin and
muscle samples were used for this study (Table S1).
These samples were called ‘Hgs’ followed by a
 number.

DNA extraction, PCR amplification 
and sequencing of MCRs

Total DNA was extracted from blood and tissue sam-
ples using the DNeasy Blood and Tissue Kit (Qiagen)
following the manufacturer’s recommendations. Puri-
fied DNA was eluted in Tris HCl-EDTA buffer (pH 7.5)
and stored at −20°C. The quality of the extracted DNA
was checked by agarose gel electro phoresis, and DNA
concentrations were determined using a NanoDrop
100 spectrophotometer (Thermo Scientific). Pinniped-
specific primers LMCRHgem and HMCRHgem were
used to amplify a 692 bp fragment of the mitochondr-
ial control region (MCR) using the conditions de -
scribed in Alfonsi et al. (2013). PCR products were
purified using the MinElute PCR Purification Kit
(Qiagen) and sequenced (GATC Biotech) in the pres-
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Fig. 1. Location of sampled stranded grey seals on the French coast (black dots) and other European colonies (arrows) 
compared in this study

http://www.int-res.com/articles/suppl/m566p217_supp.pdf
http://www.int-res.com/articles/suppl/m566p217_supp.pdf
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ence of one of the PCR primers. Each haplotype was
sequenced at least once in both directions. The Gen-
Bank accession numbers are from KT247900 to
KT247933 (Table S2 in the Supplement).

Sequence analyses

Sequences were manually edited and aligned with
Geneious Pro v.7.1 (Biomatters; Kearse et al. 2012) to
produce Dataset_1. To estimate saturation of the MCR,
comparison of uncorrected pairwise genetic distan -
ces and model-corrected genetic distance (Tamura-
Nei [TrN]; see ‘Bayesian analysis of population diver-
gence’ for model choice) was used as proposed by
Philippe et al. (1994) on our total MCR dataset.

All sequences were compared to those available in
GenBank using BLAST (Altschul et al. 1997). A total
of 186 haplotypes of 350−435 bp in length (Table 1)
from grey seals sampled from 10 different colonies of
the northeast Atlantic (Monach Islands, North Rona,
Orkney Islands, Isle of May, Farne Islands and Faroe
Islands, described in Klimova et al. 2014), North Sea
(Netherlands; van Bleijswijk et al. 2014) and the
Baltic Sea (Estonia, Stockholm Archipelago and Gulf
of Bothnia; Fietz et al. 2013) were discernible (Fig. 1).
This Dataset_2 had a 317 bp common region and was
composed of 276 haplotypes (Table 1). As Klimova et

al. (2014) made available the sequence data per spe -
cimen, we were able to calculate genetic differentia-
tion indices.

We also constructed Dataset_3 by grouping our
sequences plus those from the Baltic Sea. All these
haplotypes overlapped on a 399 bp fragment.

Data analyses and mitochondrial haplogroup
characterization

For each dataset, the number of haplotypes (Nh),
number of polymorphic sites (k), haplotype diversity
(H ) and nucleotide diversity (π) were determined us-
ing DnaSP 5.10 software (Librado & Rozas 2009). This
program was also used to estimate Fu’s Fs (Fu 1996)
and Tajima’s D (Tajima 1989) to assess changes in
population sizes such as expansions or bottlenecks. To
analyze and illustrate the relationships among haplo-
types, median-joining networks were constructed
with the number of mutations as distances using Net-
work 4.6 software (www.fluxus-engineering.com).

For Dataset_1 (French samples), mitochondrial
haplo groups were first detected on the haplotype
network and confirmed using (1) a nonmetric multi-
dimensional scaling (nMDS) approach to graphically
represent genetic distances among haplotypes, (2) a
hierarchical cluster analysis, performed with the free
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Colonies or region No. of Length GenBank Total No. of References
haplotypes (bp) accession no. of haplotypes 

nos. specimens (l = 317 bp)

French Atlantic coasts
Northwest France (Brittany) 34 493 KT247900 to −933 222 33 This study

North Sea
Netherlands 14 374 KM053398, −399, −402, 98 13 van Bleijswijk et al. 

KM066993, −995, −998, (2014)
−003, −012, −017, −023, 
−027, −059, −067, −081

Northeast Atlantic
Monach 134 350 KJ769328 to −461 28 15 Klimova et al. (2014)
North Rona 48 15
Orkney Islands 1245 104
Isle of May 54 11
Farne Islands 49 15
Faroe Islands 31 11

Baltic Sea
Estonia 38 435 KF483184 to −221 36 21 Fietz et al. (2013),

Klimova et al. (2014)
Stockholm Archipelago 28 14
Gulf of Bothnia 39 24

Table 1. GenBank references of grey seal MCR sequences used for comparisons at the north European scale by geographic lo-
calization (Dataset_2). For the east Atlantic and Baltic Sea, ‘colonies’ are defined according to Klimova et al. (2014). 

All Orkney Islands colonies (13; Klimova et al. 2014) were grouped as 1 colony
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open-source R v.3.1 (R Core Team 2014), using the
Analyses of Phylogenetics and Evolution (APE) and
Modern Applied Statistics with Sand (MASS) libraries
for distance matrix and nMDS, respectively, and (3)
as clades on BEAST trees (see next subsection). For
Dataset_3, haplogroups were characterized on the
BEAST tree (see next subsection) and on the haplo-
type network. The haplogroups were also identified
on the network constructed with all the available
European data (Dataset_2; see Fig. 2).

Possible correlations between mtDNA haplogroups
and biological (sex and age of animals), chronologi-
cal (year of stranding) or geographical (place of
stranding) parameters were tested using a χ2 test.

Genetic differentiation among groups and among
colonies was tested using a χ2 test based on haplo-
type frequencies (Hudson et al. 1992) and the nearest-
 neighbor statistic (Snn) index based on a sequence
distance matrix (Hudson 2000). Random permuta-
tions (n = 1000) were used to assess the statistical sig-
nificance of Snn (Hudson 2000).

Bayesian analysis of population divergence

Bayesian estimation of divergence time between
mtDNA haplogroups and between French and Baltic
Sea MCR haplotypes was done using BEAST v.2.1.3
(Drummond & Bouckaert 2015). The relevant muta-
tion rate for grey seals varies depending on the
authors. Boskovic et al. (1996) used a standard rate of
mtDNA evolution, probably not appropriate for grey
seals, and which can lead to an overestimation of
time. Klimova et al. (2014) used a mutation rate of
2.75 × 10−7 substitutions per site per year, evaluated
for the MCR of the Steller sea lion (Phillips et al.
2009), and determined times of divergence in better
accordance with nuclear DNA-based studies (Graves
et al. 2009). No other improved evaluation of the
mutation rate, specific to the grey seal, is presently
available. A strict clock with a rate of 2.75 × 10−7 sub-
stitutions per site per year was therefore imposed.

Akaike’s information criterion (AIC) (Akaike 1973),
implemented in Modeltest v.3.7 (Posada & Crandall
1998), was used to determine the evolutionary model
that best fit the data (TrN + I and TrN + I + G, where
G is the shape parameter of the gamma distribution
and I is the proportion of invariable sites). Three coa-
lescent models for 3 priors were tested (constant size,
expansion and logistic growth). Analyses were per-
formed with 10 million generations, sampling every
1000 generations with 10% discarded as burn-in.
Posterior parameter distributions were examined

using Tracer v.1.6 to ensure that effective sample site
(ESS) values were above 200 for all of them. Bayes
factors (BFs) were then calculated in Tracer to ascer-
tain the best-fit population model.

RESULTS

MCR polymorphisms and haplogroup 
characterization in the French sample

Analysis of the 222 samples (168 Hgc and 54 Hgs)
allowed the determination of 222 MCR sequences of
493 bp each. No significant genetic differences were
observed between Hgc and Hgs (χ2 = 32.01, df = 33,
p = 0.52; Snn = 0.64, p = 0.64). Consequently, all
sequences were grouped into Dataset_1 for  further
analyses. No saturation of the MCR was ob served
according to the relationships between un corrected
and model-corrected (TrN) genetic dis tance (slope =
0.97, data not shown). Haplotype and nucleo tide
diversities were calculated (Table 2), and 34 haplo-
types were observed, as defined by 37 polymorphic
sites (Table S2 in the Supplement at www. int-res.
com/ articles/ suppl/ m566 p217 _ supp. pdf). Values of
Tajima’s D and Fu’s Fs were both negative, and only
Fu’s Fs was significant (D = −0.95, p > 0.10; Fs =
−11.09, p = 0.008).

The haplotype network captured 4 haplogroups,
each of which was separated by at least by 3 muta-
tions, named haplogroups F1, F2, F3 and F4 (Fig. S1
in the Supplement). The nMDS analysis (Fig. S2), a
hierarchical cluster analysis (data not shown), and
the phylogenic analysis performed using BEAST (see
‘Mitochondrial haplogroup divergence time’ below),
all confirmed the haplogroup separation. No signifi-
cant correlation was observed between haplogroup
members and the age or sex of the animals, nor with
the year or the place of stranding (all χ2 tests with p >
0.05).

221

Samples n l k Nh H π

Hgc 168 493 35 31 0.92 0.0081
Hgs 54 493 24 16 0.91 0.0076
Dataset_1
(Hgc and Hgs) 222 493 37 34 0.92 0.0080

Table 2. mtDNA diversity statistics from grey seals stranded
alive (juvenile, Hgc) and dead (juveniles and adults, Hgs) in
northwest France. n: sample size, l: sequence length (bp), k:
no. of polymorphic sites, Nh: no. of haplotypes, H: haplotype 

diversity, π: nucleotide diversity

http://www.int-res.com/articles/suppl/m566p217_supp.pdf
http://www.int-res.com/articles/suppl/m566p217_supp.pdf
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Larger geographic-scale analysis

The MCR sequences determined during this
study (no. of specimens = 222, Nh = 34) and those
from north European and Baltic Sea grey seals (no.
of specimens = 1656, Nh = 186; Graves et al. 2009,
Fietz et al. 2013, Klimova et al. 2014, van Bleijswijk
et al. 2014; Table 1) overlapped on a 317 bp frag-
ment. The truncated alignment of 317 bp in volved
the loss of 1 MCR_Fra haplotype, 2 haplotypes from
the Isle of May and 3 haplotypes from the Orkney
Islands colonies. This Dataset_2 was composed of
1878 sequences and revealed 155 different haplo-
types defined by 85 polymorphic sites, and had
large haplotype and nucleotide diversities (H =
0.93, π = 0.012). Values of Tajima’s D and Fu’s Fs
were both negative and highly significant (D =
−1.77, p < 0.01; Fs = −193.4, p < 0.001). Pairwise
comparisons of all French MCR sequences with
those of other areas provided strongly significant
Snn values among all pairs (Table 3). The highest
Snn values were ob served between France and the
Baltic Sea. The χ2 tests also revealed significant dif-
ferences (Table 3). A lower but significant genetic
difference was ob served between France and the
Monach Isles (Snn = 0.82, χ2 = 54.61, p < 0.05 for
both tests).

The network constructed with Dataset_2, grouping
all data available from the Baltic Sea and the north-
east Atlantic, allowed the identification of 4 different
major haplogroups (named HA, HB, HC and HD),
including 6 sub-haplogroups (HA1, HA2, HB1, HB2,
HC1,HC2; Fig. 2). The central part of the network
was composed of the bulk of the haplotypes from
all the regions (Fig. 2). All major haplotypes were
shared among several regions, and only 1 haplotype
was shared among all regions. Many private haplo-
types were observed in the Baltic Sea colonies (n =
34), in the Orkney Islands (n = 77), and in the French
region (n = 10). All were minor haplotypes, shared by
only a few individuals, except one from France found
in 20 samples.

Mitochondrial haplogroup divergence time 

Among the 3 coalescent models tested, BF sup-
ported the constant size model (log BF > 1.3). In the
French sample, haplogroups F2, F3 and F4 were sup-
ported by posterior probabilities of 0.99 and 1 (Fig. S3
in the Supplement). Haplogroup F4 was estimated to
be the first to diverge, at approximately 43 100 ya (see
Table S3 in the Supplement for all 95% posterior in-
terval [PI] values). The divergence time between hap-
logroups F1 and F2 was estimated to have occur red
approximately 26 100 ya, while haplogroup F3 was
estimated to have diverged approximately 19 500 ya
from haplogroup F1 (Table S3).

The MCR haplotypes determined during this study
(n = 34) and the ones deduced from Baltic Sea grey
seals (n = 38; Graves et al. 2009, Fietz et al. 2013) over-
lapped on a 399 bp fragment. This combined dataset
(Dataset_3) of n = 72 haplotypes presented a large
haplotype diversity (H = 0.99), defined by 47 polymor-
phic sites, with only 4 shared haplotypes be tween the
2 locales. Nucleotide diversity was high (π = 0.016),
superior to the one of the French-only sample (Table 2).
Six haplogroups, observed on the global network as
haplogroups or sub-haplogroups (Figs. 2 & 3), were
discernible in this new haplotype network (Fig. S4).
The majority of the groups in cluded haplotypes from
both geographic regions (e.g. HC, HA2, HB1). In con-
trast, 2 haplogroups contained only Baltic haplotypes
(HB2 and HA1), whereas 1 haplogroup was formed
only by French haplotypes (HC2).

The haplotypes of all 6 groups and subgroups iden-
tified on the network were also clustered on the
BEAST tree (Fig. 3). The French haplotypes belonging
to haplogroups F2, F3 and F4 were clearly grouped in,
respectively, haplogroups HC, HB and HA (Fig. 3).

Haplogroup HC was estimated as being the first to
diverge, at approximately 84 000 ya, followed by
haplogroups HA and HB at approximately 60 000 ya
(see Table S3 for 95% PI values). The sub-hap-
logroups were individualized approximately between
44 700 and 20 500 ya (Table S3).
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Statistic Genetic differentiation between France and:
Nether- Monach North Orkney Isle of Farne Faroe Gulf of Estonia Stockholm 

lands Rona Islands May Islands Islands Bothania Archipelago

χ2 116.22 54.61 93.53 323.22 82.81 79.94 87.5 245.95 249.86 230.77
Snn 0.7 0.82 0.78 0.78 0.76 0.76 0.84 0.98 0.98 0.97

Table 3. Pairwise χ2 and nearest-neighbor statistic (Snn) values estimated from MCR poly morphisms among grey seals sam-
pled off the northwest coast of France and other European colonies. All tests were highly significant (France to Monach: 

p < 0.05, France to all other locations: p < 0.01)
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In groups HA2 and HB1, groups formed by haplo-
types from France have estimated divergence times
from the Baltic haplotypes of, respectively, 8500 and
8000 ya (Fig. 3; Table S3).

DISCUSSION

With the exception of newborn whitecoats, grey
seals can travel long distances (Stobo et al. 1990,
 Vincent et al. 2005), and no difference can be made a
prio ri between the origin of adults and that of juve-
niles. Our samples can therefore be considered as
representative of a geographic area larger than just
the French Atlantic coast. Haplotype and nucleotide
diversity were high in our samples, and a genetic
structure of 4 MCR haplogroups was discernible. No
correlations among these haplogroups and biologi-
cal, temporal or geographical parameters (age and
sex of animals, date and place of stranding) were
found, raising questions about their origin.

Comparisons at the European scale

Genetic differentiation indices all highlighted
marked differences between French grey seals and
those from all other locations. The largest differ-
ences were observed between the French and Baltic
populations, in agreement with the existence of dif-
ferent ESUs, one in the northeast Atlantic, including
the French samples, and another in the Baltic Sea.
Other studies also emphasized genetic differentia-
tion, according to distance between colonies, using
mitochondrial and/ or microsatellite markers (Allen
et al. 1995, Boskovic et al. 1996, Graves et al. 2009,
Klimova et al. 2014). No DNA sequence data is cur-
rently available for grey seals sampled in the south
of England, in Ireland or in Wales. Studies including
grey seals from these locations will help estimate
the actual level of differentiation, and determine
whether the British grey seal metapopulation (Gag-
giotti et al. 2002) could extend up to the Brittany
coasts in France, as hypothesized by Gerondeau et
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Fig. 2. Haplotype network representation of MCR polymorphisms of grey seal specimens from north Europe and the Baltic Sea
(this study, Klimova et al. 2014, van Bleijswijk et al. 2014). All available data (1878 DNA sequences defining 155 haplotypes;
Table 1) were used. Numbers above a link indicate number of mutations between haplotypes. The 4 colored areas highlight
the 4 haplogroups (HA, HB, HC, HD), and black bars crossing links mark borders between groups and/or subgroups. Colors of 

the haplotypes represent the geographic regions as defined in Klimova et al. (2014)
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al. (2007). However, the 10 private haplotypes found
in the French  samples, as well as the Hudson Snn
calculation (Hudson 2000), yielded a somewhat high
level of genetic differentiation among our samples
and those of the north and east British colonies, a
result which does not support this hypothesis. Gene
flow occurring at a lower geographical scale, among
col onies located along the Brittany coast in France,
the south of England and Wales, may appear more
likely.

The global European network highlights the exis-
tence of different haplogroups, some of which are
also found in the French samples. It is notable that
Baltic haplotypes are distributed in all the haplo -
groups (with the exception of the sub-haplogroup
HC2), suggesting an ancestral origin of our haplo -
groups older than the separation between the 2 ESUs
(between the Baltic Sea and the east Atlantic).

We estimated that the divergence between the
Baltic Sea and French coast populations occurred

224

Fig. 3. Bayesian divergence and radiation tree of grey seals from French (this study) and Baltic (Graves et al. 2009, Fietz et al.
2013) coasts based on MCR polymorphisms. Baltic haplotypes were named according to GenBank information. *Haplotypes
shared between French and Baltic populations. Posterior probabilities are provided above branches and clades. see Table S3
in the Supplement at www. int-res. com/ articles/ suppl/ m566 p217 _ supp. pdf for divergence time estimates. Grey lines show
95% posterior intervals of key divergence times. The scale axis is in millions of years before the present. Green and red bars
show groups formed by French haplotypes F3 and F4 (red boxes) in, respectively, haplogroups HB1 and HA2 and black and blue 

bars HC1 and HC2, respectively

http://www.int-res.com/articles/suppl/m566p217_supp.pdf
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approximately 8500 ya, a value very close to the
 estimations made by Klimova et al. (2014) using a
 different dataset and a different approach (Baltic and
north east Atlantic divergence time estimated be -
tween 7000 and 30 000 ya for Klimova et al. 2014,
close to the lower estimate of Graves et al. 2009).
Klimova et al. (2014) noted that this divergence time
could correspond to a transient connection of the Baltic
and the North Seas between 10 000 and 9000 ya
(Sommer & Benecke 2003). The differences in hap-
logroup distribution between our samples and those
of the Baltic Sea can be explained either by the
absence of grey seals of a specific lineage during the
colonization of a particular place, or by a more recent
loss of the lineage, most likely during the active grey
seal hunting periods.

MCR haplogroups and ancestral history in the east
Atlantic and the Baltic Sea

Boehme et al. (2012) compared sea surface temper-
ature and bathymetry during the last glacial period to
present grey seal habitat preference, estimated from
telemetry data. They hypothesized that fewer areas
were suitable for the grey seal in the North Atlantic
approximately 20 000 ya than at present. A strongly
reduced number of grey seals would have occupied
refugia, along the Bay of Biscay and Iberian coasts in
the east Atlantic, near the Flemish Cap in the west
Atlantic, and perhaps in the Mediterranean Sea
(Boehme et al. 2012). We hypothesize that these refu-
gia, separated from each other by large areas of
unsuitable habitats, have hosted disconnected grey
seal populations having no contact or gene flow with
each other, and thus becoming genetically distinct.

At the end of the last glacial period, around
12 000 ya, large parts of the coasts of the northwest
and northeast Atlantic again became appropriate for
grey seals, thus leading to a clear expansion of the
species from the different refugia. Such a scenario
can explain the present situation, where we detected
ancestral lineages older than the geographic separa-
tion between the present ESUs. These lineages could
well be representative of the different last glacial
period refugia.

The positive expansion signals found by Klimova et
al. (2014), and also in our study (all the Tajima’s D
and Fu’s Fs that we determined are negative, and
significant for Fu’s Fs, a more sensitive index to de -
tect recent expansion), strengthen the hypothesis of a
grey seal expansion in the North Atlantic. This is in
agreement with the fact that other pinniped species

have shown positive expansion signals approximate -
ly 11 000 ya, at the end of the last glacial age (West-
lake & O’Corry-Crowe 2002, Coltman et al. 2007,
Dickerson et al. 2010).

Impacts of our results in terms of conservation

For a given species, conservation priorities are
often defined at the level of the whole species.
Never theless, the preservation of intraspecific diver-
sity may be of primary importance (e.g. Baker et al.
2013, Mee et al. 2015). The demographic and genetic
characteristics of the 3 grey seal ESUs vary. The
inter actions with anthropogenic activities and the
local protection status contrast greatly between the
east and west North Atlantic. Our study focused on a
part of the northeast Atlantic grey seal ESU, and our
results reinforce previous knowledge of the genetic
heterogeneity of this ESU (Allen et al. 1995, Cammen
et al. 2011, Klimova et al. 2014). They also highlight
the requirement of an increased knowledge at the
metapopulation level. Here, we confirmed that the
grey seal is clearly a species undergoing a range
expansion in the northeast Atlantic since its protec-
tion and the end of hunting. But direct and indirect
interactions of the seals with fisheries and other
threats of anthropogenic origin can have negative
impacts (Cronin 2011). The mtDNA groups that we
detected during our study should be taken into ac -
count in terms of conservation of the grey seal in
northwest France and southwest England, as they re -
present historical maternal lineages whose possible
differential presence between British colonies should
be further examined.

The Molène archipelago represents the southern-
most settlement of the grey seal in the east Atlantic.
A particular grey seal diet in this geographic area has
been detected by 2 independent studies (Ridoux et
al. 2007, Méheust et al. 2015), but whether it reflects
opportunistic behavior linked to difference in prey
availability or to population specificity has yet to be
determined. Further studies to characterize the Mo -
lène archipelago grey seals from a genetic point of
view, and to determine their possible specificity in a
larger metapopulation, are thus warranted.
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